人教版七年级数学教案设计(专业18篇)
教案是教学活动中对教学内容、教学目标、教学过程等进行详细规划和安排的教学工具。编写教案时,教师需要合理选择适应的教学方法和教具。好的教案可以提高教学效果,激发学生的学习兴趣。
人教版七年级数学教案设计篇一
3,体验数形结合的思想。
教学难点归纳相反数在数轴上表示的点的特征。
知识重点相反数的概念。
教学过程(师生活动)设计理念。
设置情境。
引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类。
4,-2,-5,+2。
允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。
(引导学生观察与原点的距离)。
思考结论:教科书第13页的思考。
再换2个类似的数试一试。
培养学生的观察与归纳能力,渗透数形思想。
深化主题提炼定义给出相反数的定义。
学生思考讨论交流,教师归纳总结。
规律:一般地,数a的相反数可以表示为-a。
思考:数轴上表示相反数的两个点和原点有什么关系?
练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。
深化相反数的概念;“零的相反数是零”是相反数定义的一部分。
强化互为相反数的数在数轴上表示的点的几何意义。
给出规律。
解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?
学生交流。
分别表示+5和-5的相反数是-5和+5。
练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法。
小结与作业。
课堂小结1,相反数的定义。
2,互为相反数的数在数轴上表示的点的特征。
3,怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业1,必做题教科书第18页习题1.2第3题。
2,选做题教师自行安排。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.
2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.
3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.
课题:1.2.4绝对值。
教学目标1,掌握绝对值的概念,有理数大小比较法则.
2,学会绝对值的计算,会比较两个或多个有理数的大小.
3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.
教学难点两个负数大小的比较。
知识重点绝对值的概念。
教学过程(师生活动)设计理念。
设置情境。
学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反。
观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.
学生回答后,教师说明如下:
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。
验数学知识与生活实际的联系.
人教版七年级数学教案设计篇二
1、单项式。
对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式.单独一个数或一个字母也是单项式.
2、系数。
单项式中的数字因数叫做这个单项式的系数.
3、单项式的次数。
一个单项式中,所有字母的指数的和叫做这个单项式的次数.
4、多项式。
几个单项式的和叫做多项式.
5、多项式的项。
在多项式中,每个单项式叫做多项式的项.
-6是常数项.
6、常数项。
多项式中,不含字母的项叫做常数项.
7、多项式的次数。
多项式里,次数最高的项的次数,就是这个多项式的次数.
8、降幂排列。
把一个多项式,按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列.
9、升幂排列。
把一个多项式,按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.
10、整式。
单项式和多项式统称整式。
11、同类项。
所含字母相同,并且相同字母的次数也相同的项,叫做同类项.常数项都是同类项.
12、合并同类项。
把多项式中的同类项合并成一项,叫做合并同类项.
合并同类项的法则是:
同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.
13、去括号法则。
括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;。
括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.
例:a+(b-2c)-(e-2d)=a+b-2c-e+2d。
14、添括号法则。
添括号后,括号前面是“+”号,括到括号里的各项都不变符号;。
添括号后,括号前面是“-”号,括到括号里的各项都改变符号.
例:m+2x-y+z-5=m+(2x-y)-(-z+5)。
15、整式的加减。
整式加减的一般步骤:
1.如果遇到括号,按去括号法则先去括号;。
2.合并同类项.
16、代数式的恒等变形一个代数式用另一个与它恒等的表达式去代换,叫做恒等变形.
人教版七年级数学教案设计篇三
1、让学生生自主探索小数的加、减法的计算方法,理解计算的算理并能正确地进行加、减法。
2、使学生体会小数加减运算在生活、学习中的广泛应用,体会数学的工具性作用。
3、激发学生学习小数加减法的兴趣,涌动长大后也要为国争光的豪情,提高学习的主动性和自觉性。
教学重难点。
教学重点:用竖式计算小数加减法。
教学难点:理解小数点对齐的算理。
教学工具。
多媒体课件。
教学过程。
(一)情景引入。
师:同学们,你们还记得吗?整数的加减法是怎样计算的?让我们用一道习题回顾一下。
(呈现多媒体,学生自主完成习题并总结计算算理)。
师:同学们你们可真棒,那么今天我们学习小数的加减法(引出课题并板书)。
(二)例题讲解。
(1)小丽买了下面两本书,一共花了多少钱?
(2)《数学家的故事》比《童话选》贵多少钱?
生:好的。
(展示小丽遇到的问题(1),并让学生列出算式)。
师:根据咱们总结的整数加减法的算理,想一想这个式子怎么计算呢?
(让学生大胆的去尝试,小组讨论,并列出竖式)。
师:你们发现小数加减法计算时需要注意什么?
生1:注意数位对齐。
生2:注意小数点要对齐。
生3:……。
老师小结:小数点要对齐,得数的小数点也要对齐。
师:小丽啊还有一个问题让我们看一看(展示问题(2))。
(让学生自主解决,并再回忆需要注意什么?)。
完成后学生给予总结,完成小数加减法的时候需要注意什么?
(三)习题巩固。
课本72页做一做。
课后小结。
学生谈一谈本节课你学到了什么?
给出总结:计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
课后习题。
一、计算。
1.5-0.5=1-0.9=2.3+0.6=0.9+0.8=。
1.9-0.8=3.5-2.4=0.36+0.65=0.96-0.32=。
二、竖式计算。
20.87-3.65=3.25+1.73=。
18.77+3.14=23.5-2.8=。
三、解决问题。
1、小红买文具,买钢笔用去6.7元,买文具盒用去9.8元,一共用去多少钱?
板书。
计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
人教版七年级数学教案设计篇四
3、0既不是正数也不是负数。
4、有理数包括整数和分数;整数包括正整数、0和负整数;分数包括正分数和负分数。
5、数轴:规定了原点、正方向和单位长度的直线叫做数轴,它包括三个方面:
1)数轴的三要素:原点、正方向和单位长度,缺一不可。
2)数轴是一条直线,可以向两边无限延伸。
3)原点的选定、正方向的取向、单位长度大小的确定都是根据需要“规定”的。
现在是不是觉得学期学习很简单啊,希望这篇七年级上册数学知识点辅导可以帮助到大家。努力哦!
人教版七年级数学教案设计篇五
1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
2.掌握点到直线的距离的概念,并会度量点到直线的距离。
3.掌握垂线的性质,并会利用所学知识进行简单的推理。
[教学重点与难点]。
1.教学重点:垂线的定义及性质。
2.教学难点:垂线的画法。
[教学过程设计]。
一、复习提问:
1、叙述邻补角及对顶角的定义。
2、对顶角有怎样的.性质。
二.新课:
引言:
前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。
(一)垂线的定义。
当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
如图,直线ab、cd互相垂直,记作,垂足为o。
请同学举出日常生活中,两条直线互相垂直的实例。
注意:
1、如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。
2、掌握如下的推理过程:(如上图)。
反之,
(二)垂线的画法。
探究:
1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?
2、经过直线l上一点a画l的垂线,这样的垂线能画出几条?
3、经过直线l外一点b画l的垂线,这样的垂线能画出几条?
画法:
让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。
注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。
(三)垂线的性质。
经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:
性质1过一点有且只有一条直线与已知直线垂直。
练习:教材第7页。
探究:
如图,连接直线l外一点p与直线l上各点o,
a,b,c,……,其中(我们称po为点p到直线。
l的垂线段)。比较线段po、pa、pb、pc……的长短,这些线段中,哪一条最短?
性质2连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
(四)点到直线的距离。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
如上图,po的长度叫做点p到直线l的距离。
人教版七年级数学教案设计篇六
1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;。
2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;。
3,体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类。
知识重点正确理解有理数的概念。
教学过程(师生活动)设计理念。
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.••…(由于小数可化为分数,以后把小数和分数都称为分数)。
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会。
练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数这个分类可视学生的程度确定是否有必要教学。
小结与作业。
课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业1,必做题:教科书第18页习题1.2第1题。
2,教师自行准备。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概。
念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进。
行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分。
类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
人教版七年级数学教案设计篇七
1.有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)其中a表示横轴,b表示纵轴。
2.平面直角坐标系:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,竖直的数轴叫做y轴或纵轴,x轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。
3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4.坐标:对于平面内任一点p,过p分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点p的横坐标和纵坐标。
5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。
6.特殊位置的点的坐标的特点。
(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
(4)点到轴及原点的距离。
7.在平面直角坐标系中对称点的特点。
(1)关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。(横同纵反)。
(2)关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。(横反纵同)。
(3)关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。(横纵皆反)。
数学q是什么意思。
q是有理数集,但q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。
学数学的方法有哪些。
抓好预习环节预习。
这是上课前做好接受新知识的准备过程。有些学生由于没有预习习惯,对老师一堂课要讲的内容一无所知,坐等教师讲课,显得呆板被动。有些学生虽能预习,但看起书来却似走马观花,,这种预习一点也达不到效果。
认真做题。
课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。
及时纠错。
课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。
总结那些相似的数学题目。
当我们养成了总结归纳的习惯,那么的学生就会知道自己在解决数学题目的时候哪些是自己比较擅长的,哪些是自己还不足的。
同时善于总结也会明白自己掌握哪些数学的解题方法,只有这样你才能够真正掌握了数学的解题技巧。其实,做到总结和归纳是学会数学的关键,如果学生不会做到这一点那么久而久之,不会的数学题目还是不会。
人教版七年级数学教案设计篇八
教学重难点分析:
1、学情分析:从知识基础看,学生在小学已学习了求正方形的面积及正方体的体积,具备求一个正数的平方和立方的知识水平,且刚学完有理数的乘法,能帮助学生很好的理解乘方的定义及表示,实现知识的正迁移。但学生对于有理数乘方的符号法则的掌握上会有难度,对于这类计算容易混淆,是本节课的难点。
2、教学重、难点。
教学重点:理解乘方定义,会进行有理数的乘方运算;。
教学难点:有理数乘方运算的符号法则的形成与运用。
教法学法分析:
教法:启发式教学,多媒体辅助教学;。
学法:观察、比较、归纳,合作探究。
教学过程设计:
1、创设情境提出问题。
(1)、边长为3的正方形的面积是___3×3可以记作___,读作_________.
(2)、棱长为3的正方体的体积是___3×3×3可以记作___,读作_________.
通过创设问题情境,唤起旧知,为学习新知做好铺垫。
2、自主探索形成新知。
观察下列各式有何特征?
(1)2×2×2×2=。
(2)(-3)×(-3)×(-3)=。
引导学生通过类比、探究、归纳乘方定义及表示,实现知识的迁移,培养学生归纳、概括的能力。明确乘方是乘法的特殊形式,体现化归的数学思想。
3、应用新知巩固概念。
4、探索研究发现规律。
通过题组训练,探索规律,合作交流,获得乘方运算的符号法则,充分发挥学生的学习主体作用,体现分类的数学思想。
5、应用新知巩固训练。
进一步巩固学生对符号法则的运用及利用乘方的知识解决问题的能力。
6、拓展思维知识延伸。
利用故事提高学生学习数学兴趣,培养学生应用数学解决解决问题能力,激发学生的探索的热情。
7、课堂小结归纳反思。
锻炼学生及时总结的良好习惯和归纳能力。
教学评价分析:
对学生探究过程的参与及与同学合作交流进行评价,以增强学生学习主动性;。
(1)关注学生的智力参与度。
(2)学生的课堂参与度。
2、对不同层次的学生采取分层练习的评价方式,以满足不同层次的学生知识技能的发展。
人教版七年级数学教案设计篇九
用数学语言概括运算性质、
(三)解决办法
增强对三种运算性质的理解,并运用对比的方法强化训练以达到准确地区分、
一课时、
投影仪或电脑、自制胶片、
3、通过举例来说明积的乘方性质应如何正确使用,师生共练以达到熟练掌握、
4、多种题型的设计,让学生能从不同的角度全面准确地理解和运用该性质、
(一)明确目标
本节课重点学习积的乘方的运算性质及其较灵活地运用、
(二)整体感知
(三)教学过程
1、创设情境,复习导入
前面我们学习了同底数幂的乘法、幂的乘方这两个寨的运算性质,请同学们通过完成一组练习,来回顾一下这两个性质:
填空:
人教版七年级数学教案设计篇十
1知识与技能:
使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
2过程与方法:
通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。
3情感态度与价值观:
让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。
教学重难点。
1教学重点:
掌握用整十数除的口算方法。
2教学难点:
理解用整十数除的口算算理。
教学工具。
多媒体设备。
教学过程。
1复习引入。
口算。
20×3=7×50=6×3=。
20×5=4×9=8×60=。
24÷6=8÷2=12÷3=。
42÷6=90÷3=3000÷5=。
2新知探究。
1.教学例1。
有80面彩旗,每班分20面,可以分给几个班?
(1)提出问题,寻找解决问题的方法。
师:从中你能获取什么数学信息?
师:怎样解决这个问题?
(2)列式80÷20。
(3)学生独立探索口算的方法。
师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。
学生汇报:
预设学生可能会有以下两种口算方法:
a.因为20×4=80,所以80÷20=4这是想乘算除。
b.因为8÷2=4,所以80÷20=4这是根据计数单位的组成。
为什么可以不看这个“0”?(80÷20可以想“8个十里面有几个二十?”)。
这样我们就把除数是整十数的转化为我们已经学过的表内除法。
(4)师小结:
同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?
把你喜欢的方法说给同桌听。
(5)检查正误。
师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)。
(6)用刚学会的方法再次口算,并与同桌交流你的想法。
40÷2020÷1060÷3090÷30。
(7)探究估算的方法。
出示:83÷20≈80÷19≈。
师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。
生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。
师:谁想把你的方法跟大家说一说。
预设:83接近于80,80除以20等于4,所以83除以20约等于4。
19接近于20,80除以20等于4,所以80除以19约等于4。
2.教学例2。
(1)创设情境引出问题。
师:谁会解决这个问题?
150÷50。
(2)小组讨论口算方法。
(3)你是怎么这样快就算出的呢?
a.因为15÷5=3,所以150÷50=3。
b.因为3个50是150,所以150÷50=3。
这一题跟刚才分彩旗的口算方法有不同吗?
都是运用想乘算除和表内除法这两种方法来口算的。
师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。
口算练习:150÷30240÷80300÷50540÷90。
3.估算。
(1)探计估算的方法。
师:你能知道题目要求我们做什么吗?
你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。
(2)谁想把你的方法跟大家说一说。
(3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。
(4)判断估算是否正确:122÷60=2349÷50≈8为什么不正确?
3巩固提升。
1.独立口算。
观察每道题,怎样很快说出下面除法算式的商?
如果估算的话把谁估成多少。
2.算一算、说一说。
(1)除数不变,被除数乘几,商也乘几。
(2)被除数不变,除数乘几,商反而除以几。
3.解决问题。
(1)一共要寄240本书,每包40本。要捆多少包?
你能找到什么条件、问题。你会解决吗?
240÷40=6(包)。
答:要捆6包。
(2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。
出示条件:一共有120个小故事,每天看1个故事。
问题:看完这本书大约需要几个月?
问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?
120÷30=4(个)。
答:看完这本书大约需要4个月。
课后小结。
这节课你有什么收获?还有什么问题?
本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
板书。
口算除法。
有80面彩旗,每班分20面,可以分给几个班?
80÷20=。
人教版七年级数学教案设计篇十一
多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
及时了解、掌握常用的数学思想和方法。
中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
人教版七年级数学教案设计篇十二
这节课的内容是一元一次方程第一课时。课后,我对本节课从四方面进行了如下反思:
一:对选择引例的反思。
在小学学生已接触过方程,但没有过多的研究。而本节课是一元一次方程的开篇课,它起着承上启下的作用,通过这节课既要让学生认识到方程是更方便、更有力的数学工具,又要让学生体验到从算术方法到代数方法是数学的进步,这些目标的实现谈何容易!课本上的例题虽然能很好的体现方程的优越性,但难度较高。学生很少有利用方程解应用题的经历,能否理解和接受?斟酌再三,还是放到后面再讲。那么哪个题既简单又能明显地承载着从算术到方程的进步呢?几乎翻阅了所有的有关资料,无独有偶,在新课标教案126页的一道数学名题“啊哈,它的全部,它的一半,其和等于19。”让我眼前一亮,我为自己好不容易找到一个例题而兴奋不已,立刻拿去和我们数学组经验丰富的老教师交流一下我的想法,他们觉得这个例子倒挺好的,可是也提出了一个让我深思的问题,这个题不是能够很好地体现出从算术到方程的进步,因为题很简单,方程的优越性体现的不够明显。刚才的新奇和兴奋迅速冷却了下来,陈老师的一句话彻底点醒了我,如果实在找不到合适的例题,不妨就用这个题,通过这个题从语言和方法上突破它,可以先让学生感知方程的优越性,后面学习中再不断地渗透方程的优越性。听完陈老师的一席见解,我顿时豁然开朗,增加了以这个题作为引例的信心。事实证明,这个引例既富有创新又能激发学生的兴趣,既符合学生的已有经验和知识水平,又符合学生的认知规律。
二:对选题的反思。
我在备课中【活动3】最初选用的题是:
修改后的题是:
判断下列各式是方程的有:
(1)(2)(3)(4)(5)。
考虑到学生初对方程概念的研究,不在数字上人为的设置障碍,因为是否是方程与数字的大小根本无关,于是把数字全部统一成了6、2、8三个数,利于学生从未知数和等号的角度进一步理解方程的概念。最初选用的题数字太多,显得题很多且条理性不强,容易分散学生对概念本质的把握。改进后的题目更利于学生观察方程的特征,从而更深刻地掌握概念的本质。需要特别说明的是,如果说前5个小题是为了让学生抓住方程的两个要点,那么后3个小题则是对概念本质的提升,即:是否是方程与未知数所在的位置、未知数的个数、未知数的次数等均无关。
三:对课堂实践的反思。
本节课的设计思路:首先以“名题欣赏”导入,引入概念,通过四组练习让学生深刻理解方程和一元一次方程的概念,最后由学生自己归纳小结。
当环节进行到【活动3】时,我让学生写出一个或几个方程,在给学生判断点评时,我发现学生在黑板上写的全部都是未知数在等号左边的方程,这时我突然意识到学生在模仿我前面呈现的方程,不禁暗自责怪自己考虑不周,怎么没出一个等号两边都含有未知数的方程呢?它给我敲响了一个警钟。正当我想写一个等号两边都含有未知数的方程来弥补设计上的不足时,我忽然发现最后一排的一位男生已经高高地举起了手,他提出问题:“老师:等号两边都含有未知数的式子是不是方程,例如:2y-1=3y”?我为有学生能提出这样的问题而感到庆幸,一是因为它及时弥补了我备课中的不足;二是由学生提出问题要比我提出问题更有价值。这可以反映出该生善于思考,同时也反映出了学生真实的疑惑。为了提高学生的探究能力,我并没有急于解释,而是把问题抛给学生,让学生来解决。我立刻提出:“谁能解决这位同学提出的`问题呢?”这时我看到后面几位学生已经高高地举起了手。我随机点了一名学生,这位同学回答到:“判断一个式子是不是方程只要看是否含有未知数和等号就ok了,与未知数的位置无关!”他精彩的回答引起听课教师一阵喝彩!我也顿时惊喜万分,他说的太好了,不管是语言表达还是准确性上都无可挑剔。我为敢于给学生这样一个机会又一次感到庆幸;通过这个同学精彩的回答,我深深地感受到:“教师给学生一个机会,学生就会还你一个惊喜。”
四:教后整体反思。
成功之处:
1.引例、练习题的选择都很恰当。
2.思路清晰,重点突出,注意到了学生的自主探索,节奏把握较好。
3.数学文化的渗透比较自然。
4.“写一个或几个一元一次方程”此环节的设计体现了从理论到实践的过程,使学生的能力得到提升,学习效果得到落实。
5.语言简练,教态大方,师生互动比较热烈,充分调动了学生的积极性。
6.板书设计较为合理。本节课的主要内容都以提炼的方式呈现出来。
不足之处:
1.在处理三道实际背景题时留给学生的思考时间偏少,显得仓促。
2.在后面两组题环节之间的过渡语言不是很自然。
3.授课语言仍需加强锤炼。
这节课的准备和每个环节的设计我颇费了一些心思,上完课之后总的感觉是达到了我预期的目标。非常感谢评委组的老师们中恳的建议,以及同行们的肯定,这让我受益匪浅。在今后的教学中,我将扬长避短,力争做的更好!
人教版七年级数学教案设计篇十三
1、知识与技能:
理解相交线、垂线的定义,在具体的情景中了解同位角、内错角和同旁内角的定义,能找到图形中的同位角、内错角和同旁内角以及对顶角。
2、过程与方法:
能够通过观察推断等方法准确找到图形中的邻补角、对顶角,能够进一步发展空间观念。
3、情感态度价值观:
培养识图能力,发展空间想象能力,和逻辑推理能力。
1、重点:邻补角、对顶角的概念,对顶角的性质与应用,以及对同位角、内错角和同旁内角的概念和应用的理解。
2、难点:理解对顶角相等的性质的探索。
1、创设情景:通过多媒体展示自然界中的相交线的图形,和同学们探讨自然界中还存在哪些相交线的图形,帮助同学们理解数学和生活的紧密关系。
3、抽象图形:抽象出具体的图形,和同学们一起给出相交线的定义。
5、尝试反馈:在和同学们的探讨中和同学们一起给出邻补角和对顶角的定义。
6、在相交线的模型中,如果两条相交线形成的四个角为直角,介绍垂线的定义。
7、进一步研究:在研究了一条直线与另一条直线之间的关系之后进一步研究一条直线与两条直线分别相交时,讨论没有公共顶点的两个角之间的关系,理解同位角、内错角和同旁内角的定义。
引导同学们一起进行总结本节课学习的内容,并强调对顶角的概念和性质的理解。
第七页,第二题,第六题,第十题。
人教版七年级数学教案设计篇十四
1、《在山的那边》,作者王家新。
2、《走一步,再走一步》作者莫顿?亨特,美国作家。
3、《紫藤萝瀑布》选自《铁箫人语》,作者宗璞。
4、《童趣》节选自《浮生六记?闲情记趣》,作者沈复,字三白,清代文学家。
5、流沙河,原名余勋坦,四川金堂人,现代诗人。
6、玛丽?居里,波兰人,后加入法国国籍,的物理学家、化学家。1903年,她与居里、贝可勒尔共获诺贝尔物理奖,1911年获诺贝尔化学奖。
7、孔子(前551-前479),名丘,字仲尼,春秋鲁国(山东曲阜)人。我国古代伟大的思想家、教育家。《论语》是记录孔子和他的x行的一部书,共20篇,是儒家经典著作之一。
8、《春》选自《朱自清全集》,作者朱自清,原名自华,字佩弦。散文家、诗人、学者、民主战士。有诗文集《踪迹》,散文集《背影》《欧游杂记》。
9、《济南的冬天》,选自《老舍文集》,作者老舍,原名舒庆春,字舍予,作家。
10、《夏感》作者梁衡。
11、《秋天》作者何其芳,现代诗人、评论家。
12、《观沧海》选自《乐府诗集》,曹操,字孟德,东汉末年政治家、军事家、诗人。他的诗以慷慨悲壮见称。
13、《次北固山下》选自《全唐诗》,作者王湾,唐代诗人。
14、《钱塘湖春行》选自《白氏长庆集》,作者白居易,字乐天,晚年又叫香山居士,唐代大诗人。
15、《天净沙秋思》选自《全元散曲》,作者马致远,元朝戏曲作家。
16、法布尔,法国昆虫学家,著有《昆虫记》这部昆虫学巨著。
17、蒲松龄,字留仙,世称'聊斋先生',号柳泉居士,清代文学家。《聊斋志异》是一部文言短篇小说集。
18、《风筝》作者鲁迅,原名周树人,字豫才,浙江绍兴人。我国伟大的文学家、思想家、革命家。著作有小说集《呐喊》、《彷徨》;散文集《朝花夕拾》;散文诗集《野草》;杂文集《坟》、《华盖集》、《二心集》等。
19、《羚羊木雕》作者张之路。
20、《散步》作者莫怀戚。
21、《金色花》作者泰戈尔,印度文学家。著作有诗集《新月集》、《飞鸟集》,长篇小说《沙子》、《沉船》等。1913年获得诺贝尔文学奖。
22、《荷叶》作者冰心,原名谢婉莹,福建长乐人,诗人、作家,代表作有《繁星》、《春水》、《寄小读者》等。
23、安徒生,丹麦童话作家,主要作品有《卖火柴的小女孩》、《海的女儿》、《丑小鸭》等。
语文学习方法。
1、运用想象和联想。想象和联想伴随着语文学习的始终,听说读写都离不开想象和联想。比如:再看课文《春》的过程中可以联想到以前学过的描写春的古诗词,再现课文的内容和情景。在阅读过程中,有意识的把语言文字的内容与自己的生活经历和感悟结合起来。这样的锻炼会大大提高学生的阅读能力、和理解能力。如果把它运用到写作中,会有效地提高学生的写作水平。
2、积极主动的参与课堂活动。在课堂上老师对课文的理解是老师的理解,融入了老师的知识积累和生活经验,而同学们也许会有自己的理解,是站在一个未成年人的角度来理解课文,也许学生的理解会更好,所以学生要敢于在课堂上发表自己的见解。这些课堂活动可以激发学生的思维,锻炼他们都种能力。所以,同学们应该多思考,多提问,多研讨,使课堂活动丰富多样,精彩纷呈。
3、养成自控式的良好学习习惯。语文学习尤其要养成良好的学习习惯:字要规规矩矩的写,课文要仔仔细细的读,练习要踏踏实实的做,作文要认认真真的完成;要用心听讲、作业书写规范、独立完成作业、主动制定学习计划、多读、多背、多思考、经常练笔、看报等。这些都会帮助我们在不知不觉中提高语文水平。
语文学习方法有哪些。
1.把握课堂。
上课一定要认真听,因为你的语文老师会在课上讲什么重点,易错点,写作技巧等等,这些很重要。可以准备一个积累本,平时不认识的字,不熟悉的成语,文学常识都可以写上去。不懂一定要问老师,千万不要害羞,但如果你真的觉得不好意思,可以问你身边的学霸同学。
2.阅读理解学习方法。
阅读理解,这主要培养学生的阅读速度和思维记忆能力,所以在生活中你要大量读书,读好书,一些网络上的言情之类的小说就算了吧,那个看看电视剧就好了,读完一本书可以做读书笔记,读后感等等,也可以磨练你的作文,这是第一点,多读书。第二点,其实阅读理解的题都是有套路的,要不你就多做题自己总结,要不你就在网上搜,请教老师,都可以,但不要完全按照套路,不要那么死板。
3.作文写作技巧。
作文,你可以买一本中考作文,把里面的好词好句抄在本子上背下来,学习人家的写作结构,还有就是尽量一周写几篇作文,找老师或者其他人修改,锻炼写作能力,不要怕不知道写什么,你就在生活中细细观察,就比如你的家人都是怎样刷牙的,只要你细心观察,总会有可写的,你也可以记录一天中都干了什么,尽量写成一个小标题,然后你自己再扩充,为你以后写作文准备素材。
人教版七年级数学教案设计篇十五
比较正数和负数的大小。
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
负数与负数的比较。
一、复习:
1、读数,指出哪些是正数,哪些是负数?
—85。6+0。9—+0—82。
2、如果+20%表示增加20%,那么—6%表示。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)。
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
a、从0起往右依次是?从0起往左依次是?你发现什么规律?
(7)练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“—8在—6的左边,所以—8〈—6”
5、再通过让另一学生比较“8〉6,但是—8〈—6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,所有的负数都在0的'左边,也就是负数都比0小,而正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习。
1、练习一第4、5题。
2、练习一第6题。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。
四、全课总结。
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
第二课教学反思:
许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。
例3——两个不同层面的拓展:
1、在数轴上表示数要求的拓展。
数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1。5。建议此处教师补充要求学生表示出“+1。5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1。5和—1。5绝对值相等。同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。
2、渗透负数加减法。
教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。
例4——薄书读厚、厚书读薄。
薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)。
例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。
将厚书读薄——无论哪种类型,比较方法万变不离其宗。
无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“86,所以—8—6”来阐述其原因,其实也与数轴相关。因为当绝对值越大时,表示离原点的距离越远,那么在数轴上表示的点也就在原点左边越远,数也就越小。所以,抓住精髓就能以不变应万变。
在此,我还补充了—3/7和—2/5比较大小的练习,提升学生灵活应用知识解决实际问题的能力。
人教版七年级数学教案设计篇十六
2.初步培养学生观察、分析及概括的能力;。
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议。
一、教学重点、难点。
重点:通过具体例子了解公式、应用公式.
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析。
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构。
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议。
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例。
公式。
五、教具学具准备。
投影仪,自制胶片。
六、师生互动活动设计。
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.
人教版七年级数学教案设计篇十七
1、生物圈中的绿色植物类群有:藻类植物、苔藓植物、蕨类植物、种子植物,其中前三种植物生长到一定的时期会产生一种叫做孢子的生殖细胞。因为通过孢子进行繁殖,所以又称为孢子植物(没有种子植物)。
2、藻类植物大多数生活在水中(如淡水:水绵,衣藻海水:紫菜、海带)。
(1)形态结构:没有根、茎、叶的分化。
(2)营养方式:藻类植物细胞里都含有叶绿素能进行光合作用,营养方式为自养。
(3)繁殖方式:用孢子进行繁殖。
3、藻类植物在生物圈中作用:
(1)生物圈中氧气的重要来源。
(2)水生生物的食物来源。(如鱼类饵料)。
(3)供食用。(如海带紫菜)。
(4)药用。
4、苔藓植物大多数生活在陆地上的潮湿环境(葫芦藓、地钱、树干苔藓)。
(1)形态结构:一般都很矮小,通常具有类似茎和叶的分化,但是茎中没有导管,叶中也没有叶脉,根非常简单,称为假根(只起固定植物体作用)。
(2)营养方式:苔藓植物细胞里都含有叶绿素,能进行光合作用。
(3)繁殖方式:用孢子(生殖细胞)进行繁殖。苔藓植物是监测空气污染程度的指示植物。
5、蕨类植物多数生活在阴湿的环境中(如里白、贯众、满江红)。
(1)形态结构:有根、茎、叶的分化,在这些器官中有专门运输物质的通道——输导组织。
(2)营养方式:蕨类植物细胞里都含有叶绿素能进行光合作用,营养方式为自养。
(3)繁殖方式:用孢子(生殖细胞)进行繁殖。
蕨类植物与人类的关系及其在生物圈中的作用:
(1)可供食用,如蕨菜。
(2)可供药用,如卷柏、贯众等。
(3)作为绿肥和饲料,如满江红。
(4)煤的来源。
6、种子植物的分类:根据子叶数目分为:
(1)双子叶植物:胚里具有两片子叶的植物(叶脉网状),营养都储存在子叶中。如蚕豆、大豆、花生。
(2)单子叶植物:胚里具有一片子叶的植物(叶脉弧形),营养大部分储存在胚乳中。如水稻、小麦、高粱。
7、种子的结构:
(1)种皮:保护作用。
(2)胚(包含胚芽、胚轴、胚根、子叶)是新植物的幼体,将来能发育成一个植物体。
(3)只有单子叶植物有胚乳。子叶、胚乳中储藏的营养物质是胚发育成幼苗时养料的来源。
8、种子和孢子的比较:种子中含有丰富的营养物质,具有适应环境的结构特点,如果环境过于干燥或寒冷,它可以处于休眠状态。孢子只是一个细胞,只有散落在温暖潮湿的环境中才能萌发。
10、被子植物成为地球上分布最广泛的植物原因:被子植物一般都具有非常发达的输导组织,从而保证了体内水分和营养物质高效率地运输;它们一般都能开花和结果,所结的果实能够保护里面的种子,不少果实还能帮助种子传播。
生物实验题解题技巧。
深刻领会生物教材实验的设计思想。做好探究性实验大题,就要认真分析教材涉及的实验,理解每一个实验的原理与目的要求,弄清材料用具的选择方法与原则。
掌握生物实验方法和实验步骤,深入分析实验条件、过程、现象或结果的科学性、正确性、严谨性和可变性,能够描述教材中经典实验的原理、目的、方法步骤、现象与结果预测及结论,为实验设计提供科学的实验依据,搭建基本框架。
生物的学习方法和技巧。
掌握基本知识要点。
与学习其它理科一样,生物学的知识也要在理解的基础上进行记忆,但是初中阶段的生物学还有着与其它学科不一样的特点:面对生物学,同学们要思考的对象是陌生的细胞、组织、各种有机物、无机物以及他们之间奇特的逻辑关系。
因此只有在记住了这些名词、术语之后才有可能理解生物学的逻辑规律,既所谓“先记忆,后理解”。在记住了基本的名词、术语和概念之后,把主要精力放在学习生物学规律上。这时要着重理解生物体各种结构、群体之间的联系(因为生物个体或群体都是内部相互联系,相互统一的整体),也就是注意知识体系中纵向和横向两个方面的线索。
用生物学的基本观点统领生物学的学习。
树立正确的生物学观点,可以更迅速更准确地学习生物学知识。所以在生物学学习中,要注意树立以下生物学观点:
1.生命物质性观点生物体由物质组成,一切生命活动都有其物质基础。
2.结构与功能相统一的观点包括两层意思:一是有一定的结构就必然有与之相对应功能的存在;二是任何功能都需要一定的结构来完成。
3.生物的整体性观点系统论有一个重要的思想,就是整体大于各部分之和,这一思想完全适合生物领域。不论是细胞水平、组织水平、器官水平,还是个体水平,甚至包括种群水平和群落水平,都体现出整体性的特点。
4.生命活动对立统一的观点生物的诸多生命活动之间,都有一定的关系,有的甚至具有对立统一的关系,例如,植物的光合作用和呼吸作用就是对立统一的一对生命活动。
5.生物进化的观点生物界有一个产生和发展的过程,所谓产生就是生命的起源,所谓发展就是生物的进化。生物的进化遵循从简单到复杂,从水生到陆生、从低等到高等的规律。
6.生态学观点基本内容是生物与环境之间是相互影响、相互作用的,也是相互依赖、相互制约的。生物与环境是一个不可分割的统一整体。
系统化和具体化的方法。
系统化就是把各种有关知识纳入一定顺序或体系的思维方法。系统化不单纯是知识的分门别类,而且是把知识加以系统整理,使其构成一个比较完整的体系。在生物学学习过程中,经常采用编写提纲、列出表解、绘制图表等方式,把学过的知识加以系统地整理。
具体化是把理论知识用于具体、个别场合的思维方法。在生物学学习中,适用具体化的方式有两种:一是用所学知识应用于生活和生产实践,分析和解释一些生命现象;二是用一些生活中的具体事例来说明生物学理论知识。
人教版七年级数学教案设计篇十八
一、选择题:(本题共24分,每小题3分)。
在下列各题的四个备选答案中,只有一个答案是正确的,请你把正确答案前的字母填写在相应的括号中.
1.若一个数的倒数是7,则这个数是().
a.-7b.7c.d.
2.如果两个等角互余,那么其中一个角的度数为().
a.30°b.45°c.60°d.不确定。
3.如果去年某厂生产的一种产品的产量为100a件,今年比去年增产了20%,那么今年的产量为()件.
a.20ab.80ac.100ad.120a。
4.下列各式中结果为负数的是().
a.b.c.d.
5.如图,已知点c是线段ab的中点,点d是cb的中点,那么下列结论中错误的是().
a.ac=cbb.bc=2cdc.ad=2cdd.
6.下列变形中,根据等式的性质变形正确的是().
a.由,得x=2。
b.由,得x=4。
c.由,得x=3。
d.由,得。
7.如图,这是一个马路上的人行横道线,即斑马线的示意图,请你根据图示判断,在过马路时三条线路ac、ab、ad中最短的是().
a.acb.abc.add.不确定。
8.如图,有一块表面刷了红漆的立方体,长为4厘米,宽为5厘米,高为3厘米,现在把它切分为边长为1厘米的小正方形,能够切出两面刷了红漆的正方体有()个.
a.48b.36c.24d.12。
二、填空题:(本题共12分,每空3分)。
9.人的大脑约有100000000000个神经元,用科学记数法表示为.
10.在钟表的表盘上四点整时,时针与分针之间的夹角约为度.
11.一个角的补角与这个角的余角的差等于度.
12.瑞士的教师巴尔末从测量光谱的数据,,,…中得到了巴尔末公式,请你按这种规律写出第七个数据,这个数据为.
三、解答题:(本题共30分,每小题5分)。
13.用计算器计算:(结果保留3个有效数字)。
14.化简:
15.解方程。
16.如示意图,工厂a与工厂b想在公路m旁修建一座共用的仓库o,并且要求o到a与o到b的距离之和最短,请你在m上确定仓库应修建的o点位置,同时说明你选择该点的理由.
拓展知识。