指数数学教案范文(15篇)
编写教案需要考虑教学资源的有效利用和教学评价的合理安排。编写教案要注意在教学过程中注重启发学生的思维,提高学生的学习能力。以下是小编为大家收集的教案范文,希望对大家有所借鉴。请注意,这些范文仅供参考,具体教案的制定需根据教学内容和学生实际情况进行灵活调整。教案的质量直接关系到教学质量,希望大家能够认真对待,制定出高质量的教案。
指数数学教案篇一
(1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域.
(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质.
(3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如。
的图象.
2.通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.
3.通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.
教学建议。
教材分析。
(1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.
(2)本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质.难点是对底数在和时,函数值变化情况的区分.
(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.
教法建议。
(1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是。
的样子,不能有一点差异,诸如。
(2)对底数。
的限制条件的理解与认识也是认识指数函数的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.
关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.
<
指数数学教案篇二
1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用.
(1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象.
(2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题.
2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力.
3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性.
教学建议。
教材分析。
(1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.
(2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点.
(1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.
指数数学教案篇三
一、教学目标:
1、知识与技能:
(1)结合实例,了解正整数指数函数的概念.
(2)能够求出正整数指数函数的解析式,进一步研究其性质.
2、过程与方法:
(1)让学生借助实例,了解正整数指数函数,体会从具体到一般,从个别到整体的研究过程和研究方法.
(2)从图像上观察体会正整数指数函数的性质,为这一章的学习作好铺垫.
3、情感.态度与价值观:使学生通过学习正整数指数函数体会学习指数函数的重要意义,增强学习研究函数的积极性和自信心.
二、教学重点:正整数指数函数的定义.教学难点:正整数指数函数的解析式的确定.
三、学法指导:学生观察、思考、探究.教学方法:探究交流,讲练结合。
四、教学过程。
(一)新课导入。
[互动过程1]:
(2)请你用图像表示1个细胞分裂的次数n()与得到的细胞个数y之间的关系;。
(3)请你写出得到的细胞个数y与分裂次数n之间的关系式,试用科学计算器计算细胞分裂15次、20次得到的细胞个数.
解:
分裂次数12345678。
细胞个数248163264128256。
(3)细胞个数与分裂次数之间的关系式为,用科学计算器算得,所以细胞分裂15次、20次得到的细胞个数分别为32768和1048576.
小结:从本题中可以看出我们得到的细胞分裂个数都是底数为2的指数,而且指数是变量,取值为正整数.细胞个数与分裂次数之间的关系式为.细胞个数随着分裂次数的增多而逐渐增多.
[互动过程2]:问题2.电冰箱使用的氟化物的释放破坏了大气上层的臭氧层,臭氧含量q近似满足关系式q=q00.9975t,其中q0是臭氧的初始量,t是时间(年),这里设q0=1.
(1)计算经过20,40,60,80,1,臭氧含量q;。
(2)用图像表示每隔臭氧含量q的变化;。
(3)试分析随着时间的增加,臭氧含量q是增加还是减少.
(2)用图像表示每隔20年臭氧含量q的变化,它的图像是由一些孤立的点组成.
(3)通过计算和观察图形可以知道,随着时间的增加,臭氧含量q在逐渐减少.
小结:从本题中可以看出我们得到的臭氧含量q都是底数为0.9975的指数,而且指数是变量,取值为正整数.臭氧含量q近似满足关系式q=0.9975t,随着时间的增加,臭氧含量q在逐渐减少.
正整数指数函数的定义:一般地,函数叫作正整数指数函数,其中是自变量,定义域是正整数集.
说明:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.
(二)、例题:某地现有森林面积为1000,每年增长5%,经过年,森林面积为.写出,间的函数关系式,并求出经过5年,森林的面积.
分析:要得到,间的函数关系式,可以先一年一年的增长变化,找出规律,再写出,间的函数关系式.
解:根据题意,经过一年,森林面积为1000(1+5%);经过两年,森林面积为1000(1+5%)2;经过三年,森林面积为1000(1+5%)3;所以与之间的函数关系式为,经过5年,森林的面积为1000(1+5%)5=1276.28(hm2).
练习:课本练习1,2。
解:一个月后他应取回的钱数为y=2000(1+2.38%),二个月后他应取回的钱数为y=2000(1+2.38%)2;,三个月后他应取回的钱数为y=2000(1+2.38%)3,,n个月后他应取回的钱数为y=2000(1+2.38%)n;所以n与y之间的关系为y=2000(1+2.38%)n(nn+),一年后他全部取回,他能取回的钱数为y=2000(1+2.38%)12.
(三)、小结:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数。
指数数学教案篇四
一、教学目标:
知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。
过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。
情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
二、教学重点、难点:
教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。
三、教学过程:
(一)创设情景。
学生回答:y与x之间的关系式,可以表示为y=2x。
问题2:一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%。求出这种物质的剩留量随时间(单位:年)变化的函数关系。设最初的质量为1,时间变量用x表示,剩留量用y表示。
学生回答:y与x之间的关系式,可以表示为y=0.84x。
引导学生观察,两个函数中,底数是常数,指数是自变量。
问题:指数函数定义中,为什么规定“a?0且a?1”如果不这样规定会出现什么情况?
(1)若a0会有什么问题?
x1则在实数范围内相应的函数值不存在)2(2)若a=0会有什么问题?(对于x0,a无意义)。
(3)若a=1又会怎么样?(1x无论x取何值,它总是1,对它没有研究的必要。)。
师:为了避免上述各种情况的发生,所以规定a?0且a?1。
1(1)y4x(2)yx4(3)y4x(4)y4(5(于:,n的大小:
设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。
(五)课堂小结。
(六)布置作业。
指数数学教案篇五
1.使学生掌握指数函数的概念,图象和性质.
(1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域.
(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质.
(3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如的图象.
2.通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.
3.通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.
教材分析。
(1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.
(2)本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质.难点是对底数在和时,函数值变化情况的区分.
(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.
教法建议。
(1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是指数函数.
(2)对底数的限制条件的理解与认识也是认识指数函数的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.
关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.
教学重点和难点。
重点是理解指数函数的定义,把握图象和性质.
难点是认识底数对函数值影响的认识.
教学用具。
投影仪。
教学方法。
启发讨论研究式。
教学过程。
一.引入新课。
我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数-------指数函数.
这类函数之所以重点介绍的原因就是它是实际生活中的一种需要.比如我们看下面的问题:。
由学生回答:与之间的关系式,可以表示为.
问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了次后绳子剩余的长度为米,试写出与之间的函数关系.
由学生回答:.
在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量均在指数的位置上,那么就把形如这样的函数称为指数函数.
1.定义:形如的函数称为指数函数.(板书)。
教师在给出定义之后再对定义作几点说明.
2.几点说明(板书)。
(1)关于对的规定:。
教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若会有什么问题?如,此时,等在实数范围内相应的函数值不存在.
若对于都无意义,若则无论取何值,它总是1,对它没有研究的必要.为了避免上述各种情况的.发生,所以规定且.
教师引导学生回顾指数范围,发现指数可以取有理数.此时教师可指出,其实当指数为无理数时,也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以指数函数的定义域为.扩充的另一个原因是因为使她它更具代表更有应用价值.
(3)关于是否是指数函数的判断(板书)。
刚才分别认识了指数函数中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是指数函数,请看下面函数是否是指数函数.
(1),(2),(3)。
(4),(5).
学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是指数函数,其中(3)可以写成,也是指数图象.
最后提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质.
3.归纳性质。
作图的用什么方法.用列表描点发现,教师准备明确性质,再由学生回答.
函数。
1.定义域:。
2.值域:。
3.奇偶性:既不是奇函数也不是偶函数。
4.截距:在轴上没有,在轴上为1.
对于性质1和2可以两条合在一起说,并追问起什么作用.(确定图象存在的大致位置)对第3条还应会证明.对于单调性,我建议找一些特殊点.,先看一看,再下定论.对最后一条也是指导函数图象画图的依据.(图象位于轴上方,且与轴不相交.)。
在此基础上,教师可指导学生列表,描点了.取点时还要提醒学生由于不具备对称性,故的值应有正有负,且由于单调性不清,所取点的个数不能太少.
此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据.连点成线时,一定提醒学生图象的变化趋势(当越小,图象越靠近轴,越大,图象上升的越快),并连出光滑曲线.
二.图象与性质(板书)。
1.图象的画法:性质指导下的列表描点法.
2.草图:。
当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且,取值可分为两段)让学生明白需再画第二个,不妨取为例.
此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单.即=与图象之间关于轴对称,而此时的图象已经有了,具备了变换的条件.让学生自己做对称,教师借助计算机画图,在同一坐标系下得到的图象.
最后问学生是否需要再画.(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如的图象一起比较,再找共性)。
由于图象是形的特征,所以先从几何角度看它们有什么特征.教师可列一个表,如下:。
以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满.
填好后,让学生仿照此例再列一个的表,将相应的内容填好.为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质.
3.性质.
(1)无论为何值,指数函数都有定义域为,值域为,都过点.
(2)时,在定义域内为增函数,时,为减函数.
(3)时,,时,.
总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质.
三.简单应用(板书)。
一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题.首先我们来看下面的问题.
例1.比较下列各组数的大小。
(1)与;(2)与;。
(3)与1.(板书)。
首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同.再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想指数函数,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小.然后以第(1)题为例,给出解答过程.
解:在上是增函数,且。
(板书)。
教师最后再强调过程必须写清三句话:。
(1)构造函数并指明函数的单调区间及相应的单调性.
(2)自变量的大小比较.
(3)函数值的大小比较.
后两个题的过程略.要求学生仿照第(1)题叙述过程.
例2.比较下列各组数的大小。
(1)与;(2)与;。
(3)与.(板书)。
先让学生观察例2中各组数与例1中的区别,再思考解决的方法.引导学生发现对(1)来说可以写成,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说可以写成,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决.(教师可提示学生指数函数的函数值与1有关,可以用1来起桥梁作用)。
最后由学生说出1,1,.
解决后由教师小结比较大小的方法。
(1)构造函数的方法:数的特征是同底不同指(包括可转化为同底的)。
(2)搭桥比较法:用特殊的数1或0.
三.巩固练习。
练习:比较下列各组数的大小(板书)。
(1)与(2)与;。
(3)与;(4)与.解答过程略。
四.小结。
3.简单应用。
指数数学教案篇六
理解无理数指数幂得实际意义。
教材52页至53页的意义解读。
同学们,你们通过自主学习,还有哪些疑惑请写在下面的横线上:
课内探究学案。
1.能熟练进行根式与分数指数幂间的互化。
2.理解无理数指数幂的概念。
学习重点:实数指数幂的的运算及无理数指数幂的理解。
学习难点:无理数指数幂的理解。
1.解释的意义,理解分数指数幂与根式的互化。探究的实际意义。
2.反思总结。
得出结论:一般地,无理数指数幂(是无理数)是一个确定的实数。有理数指数幂的运算同样适用于无理数指数幂。
3.当堂检测。
(1)参照以上过程,说明无理数指数幂的意义。
课后练习与提高。
1.下列说法错误的是()。
a.根式都可以用分数指数幂来表示。
b.分数指数幂不表是相同式子的乘积,而是根式的一种新的写法。
c.无理数指数幂有的不是实数。
d.有理数指数幂的运算性质适用于无理数指数幂。
本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。
本节课的什么叫基本物理量、物理量的单位、导出单位、单位制以及单位制和单位统一的重要性的理解是课本上重要内容。
指数数学教案篇七
1、使学生掌握指数函数的概念,图象和性质。
(1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域。
(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质。
(3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如。
的图象。
2、通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。
3、通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。
教材分析。
(1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。
在
和
时,函数值变化情况的区分。
(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。
(1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是。
的样子,不能有一点差异,诸如。
(2)对底数。
的限制条件的理解与认识也是认识指数函数的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。
关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。
指数数学教案篇八
讲授新课前,做一份完美的教案,能够更大程度的调动学生在上课时的积极性,以下是白话文为大家整理的人教版高一数学《指数函数》教案,希望可以帮助到有需要的朋友。
1。使学生掌握的概念,图象和性质。
(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。
(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。
(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象。
2。通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。
3。通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。
(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。
(2)本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数在和时,函数值变化情况的区分。
(3)是学生完全陌生的一类函数,对于这样的.函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。
(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是。
(2)对底数的限制条件的理解与认识也是认识的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面对数函数中底数的认识,所以一定要真正了解它的由来。
关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。
1。理解的定义,初步掌握的图象,性质及其简单应用。
2。通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。
3。通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。
重点是理解的定义,把握图象和性质。
难点是认识底数对函数值影响的认识。
投影仪。
启发讨论研究式。
一。引入新课。
我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数———————。
1。6。(板书)。
这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:
由学生回答:与之间的关系式,可以表示为。
问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了次后绳子剩余的长度为米,试写出与之间的函数关系。
由学生回答:。
在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量均在指数的位置上,那么就把形如这样的函数称为。
一。的概念(板书)。
1。定义:形如的函数称为。(板书)。
教师在给出定义之后再对定义作几点说明。
2。几点说明(板书)。
(1)关于对的规定:
教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若会有什么问题?如,此时,等在实数范围内相应的函数值不存在。
若对于都无意义,若则无论取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定且。
(2)关于的定义域(板书)。
教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时,也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为。扩充的另一个原因是因为使她它更具代表更有应用价值。
(3)关于是否是的判断(板书)。
刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。
(1), (2), (3)。
(4), (5)。
学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3)可以写成,也是指数图象。
最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。
3。归纳性质。
作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。
函数。
1。定义域:
2。值域:
3。奇偶性:既不是奇函数也不是偶函数。
4。截距:在轴上没有,在轴上为1。
对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于轴上方,且与轴不相交。)。
在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故的值应有正有负,且由于单调性不清,所取点的个数不能太少。
此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当越小,图象越靠近轴,越大,图象上升的越快),并连出光滑曲线。
二。图象与性质(板书)。
1。图象的画法:性质指导下的列表描点法。
2。草图:
当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且,取值可分为两段)让学生明白需再画第二个,不妨取为例。
此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单。即=与图象之间关于轴对称,而此时的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到的图象。
最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如的图象一起比较,再找共性)。
由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:
以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。
填好后,让学生仿照此例再列一个的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。
3。性质。
(1)无论为何值,都有定义域为,值域为,都过点。
(2)时,在定义域内为增函数,时,为减函数。
(3)时,, 时,。
总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。
三。简单应用 (板书)。
1。利用单调性比大小。 (板书)。
一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。
例1。比较下列各组数的大小。
(1)与; (2)与;。
(3)与1。(板书)。
首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。
解:在上是增函数,且。
(板书)。
教师最后再强调过程必须写清三句话:
(1)构造函数并指明函数的单调区间及相应的单调性。
(2)自变量的大小比较。
(3)函数值的大小比较。
后两个题的过程略。要求学生仿照第(1)题叙述过程。
例2。比较下列各组数的大小。
(1)与; (2)与 ;。
(3)与。(板书)。
先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说可以写成,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说可以写成,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)。
最后由学生说出1,1,。
解决后由教师小结比较大小的方法。
(1)构造函数的方法:数的特征是同底不同指(包括可转化为同底的)。
(2)搭桥比较法:用特殊的数1或0。
三。巩固练习。
练习:比较下列各组数的大小(板书)。
(1)与 (2)与;。
(3)与;(4)与。解答过程略。
四。小结。
1。的概念。
2。的图象和性质。
3。简单应用。
五。板书设计。
指数数学教案篇九
我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数-------.
1.6.(板书)。
这类函数之所以重点介绍的原因就是它是实际生活中的一种需要.比如我们看下面的问题:。
由学生回答:与之间的关系式,可以表示为.
问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了次后绳子剩余的长度为米,试写出与之间的函数关系.
由学生回答:.
在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量均在指数的位置上,那么就把形如这样的函数称为.
一.的概念(板书)。
1.定义:形如的函数称为.(板书)教师在给出定义之后再对定义作几点说明.
2.几点说明(板书)。
(1)关于对的规定:。
教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若会有什么问题?如,此时,等在实数范围内相应的函数值不存在.
若对于都无意义,若则无论取何值,它总是1,对它没有研究的必要.为了避免上述各种情况的发生,所以规定且.
(2)关于的定义域(板书)。
教师引导学生回顾指数范围,发现指数可以取有理数.此时教师可指出,其实当指数为无理数时,也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为.扩充的另一个原因是因为使她它更具代表更有应用价值.
(3)关于是否是的判断(板书)。
刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是.
学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3)可以写成,也是指数图象.
最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质.
3.归纳性质。
作图的用什么方法.用列表描点发现,教师准备明确性质,再由学生回答.
函数。
1.定义域:。
2.值域:。
3.奇偶性:既不是奇函数也不是偶函数。
4.截距:在轴上没有,在轴上为1.
对于性质1和2可以两条合在一起说,并追问起什么作用.(确定图象存在的大致位置)对第3条还应会证明.对于单调性,我建议找一些特殊点.,先看一看,再下定论.对最后一条也是指导函数图象画图的依据.(图象位于轴上方,且与轴不相交.)。
在此基础上,教师可指导学生列表,描点了.取点时还要提醒学生由于不具备对称性,故的值应有正有负,且由于单调性不清,所取点的个数不能太少.
此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据.连点成线时,一定提醒学生图象的变化趋势(当越小,图象越靠近轴,越大,图象上升的越快),并连出光滑曲线.
二.图象与性质(板书)。
1.图象的画法:性质指导下的列表描点法.
2.草图:。
当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且,取值可分为两段)让学生明白需再画第二个,不妨取为例.
此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单.即=与图象之间关于轴对称,而此时的图象已经有了,具备了变换的条件.让学生自己做对称,教师借助计算机画图,在同一坐标系下得到的图象.
最后问学生是否需要再画.(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如的图象一起比较,再找共性)。
由于图象是形的特征,所以先从几何角度看它们有什么特征.教师可列一个表,如下:。
以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满.
填好后,让学生仿照此例再列一个的表,将相应的内容填好.为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质.
3.性质.
(1)无论为何值,都有定义域为,值域为,都过点.
(2)时,在定义域内为增函数,时,为减函数.
(3)时,,时,.
总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质.
三.简单应用(板书)。
1.利用单调性比大小.(板书)。
一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题.首先我们来看下面的问题.
例1.比较下列各组数的大小。
(1)与;(2)与;(3)与1.(板书)。
首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同.再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小.然后以第(1)题为例,给出解答过程.
解:在上是增函数,且.(板书)教师最后再强调过程必须写清三句话:。
(1)构造函数并指明函数的单调区间及相应的单调性.
(2)自变量的大小比较.
(3)函数值的大小比较.
后两个题的过程略.要求学生仿照第(1)题叙述过程.
例2.比较下列各组数的大小(1)与;(2)与;(3)与.(板书)。
先让学生观察例2中各组数与例1中的区别,再思考解决的方法.引导学生发现对(1)来说可以写成,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说可以写成,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决.(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)。
最后由学生说出1,1,.
解决后由教师小结比较大小的方法。
(1)构造函数的方法:数的特征是同底不同指(包括可转化为同底的)。
(2)搭桥比较法:用特殊的数1或0.
指数数学教案篇十
(1)正确理解乘方、幂、指数、底数等概念。
(2)会进行有理数乘方的运算。
通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想。
培养探索精神,体验小组交流、合作学习的重要性。
教学重、难点与关键。
1.重点:正确理解乘方的意义,掌握乘方运算法则。
2.难点:正确理解乘方、底数、指数的概念,并合理运算。
3.关键:弄清底数、指数、幂等概念,注意区别-an与(-a)n的意义。
1.几个不等于零的有理数相乘,积的符号是怎样确定的`?
几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正。
2.正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?
边长为a的正方形的面积是aa,棱长为a的正方体的体积是aaa.
aa简记作a2,读作a的平方(或二次方)。
aaa简记作a3,读作a的立方(或三次方)。
一般地,几个相同的因数a相乘,记作an.即aaa.这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a叫底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
指数数学教案篇十一
我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时——指数函数的定义,图像及性质。我将尝试运用新课标的理念指导本节课的教学。新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。
1、教材的地位和作用。
函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。
2、教学的重点和难点。
根据这一节课的内容特点以及学生的实际情况,学生对抽象的指数函数及其图象缺乏感性认识。为此,在教学过程中让学生自己去感受指数函数的生成过程以及图象和性质是这一堂课的突破口。因此,指数函数的图像、性质及其运用作为教学重点,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。
3、课前思考与准备。
指数数学教案篇十二
一、教学目标:
知识与技能:理解指数函数的概念,能够判断指数函数。
过程与方法:通过观察,分析、归纳、总结、自主建构指数函数的概念。领会从特殊到一般的数学思想方法,从而培养学生发现、分析、解决问题的能力。
情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
二、教学重点、难点:
教学重点:指数函数的概念,判断指数函数。教学难点:对底数的分类。
三、学情分析:
学生已经学习了函数的知识,,指数函数是函数知识中重要的一部分内容,学生若能将其与学过的正比例函数、一次函数、二次函数进行对比着去理解指数函数的概念、性质、图象,则一定能从中发现指数函数的本质,所以对已经熟悉掌握函数的学生来说,学习本课并不是太难。学生通过对高中数学中函数的学习,对解决一些数学问题有一定的能力。通过教师启发式引导,学生自主探究完成本节课的学习。高一学生的认知水平从形象向抽象、从特殊向一般过渡,思维能力的提高是一个转折期,但是,学生的自主意识强,有主动学习的愿望与能力。有好奇心、好胜心、进取心,富有激情、思维活跃。
四、教学内容分析。
本节课是《普通高中课程标准实验教科书·数学(1)》(人教b版)第二章第一节第二课()《指数函数及其性质》。根据我所任教的学生的实际情况,我将《指数函数及其性质》划分为三节课(探究指数函数的概念,图象及其性质,指数函数及其性质的应用),这是第一节课“探究指数函数的概念”。指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。函数及其图象在高中数学中占有很重要的`位置。如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,主要是让学生学会如何去发现研究心的函数,为后面学习对数函数、幂函数做出铺垫。
五、教学过程:
(一)创设情景。
(二)导入新课。
引导学生观察,两个函数中,有什么共同特征?
(四)巩固与练习例题:
(五)课堂小结。
(六)布置作业。
指数数学教案篇十三
(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.
(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.
(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.
教法建议。
(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.
(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.
关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.
指数数学教案篇十四
2、能较熟练地运用指数函数的性质解决指数函数的平移问题。
一、情境创设。
二、数学应用与建构。
例1、解不等式:
小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围。
例2、说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图。
小结:指数函数的平移规律:y=f(x)左右平移,y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移y=f(x)+h(当h0时,向上平移,反之向下平移)。
练习:
(1)将函数f(x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数x的图象。
(2)将函数f(x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数y的图象。
(3)将函数图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是()。
(4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是(),函数y=a2x—1的图象恒过的定点的坐标是()。
小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口。
(5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?
(6)如何利用函数f(x)=2x的图象,作出函数y=|2x—1|的图象?
小结:函数图象的.对称变换规律。
例3、已知函数y=f(x)是定义在r上的奇函数,且x0时,f(x)=1—2x,试画出此函数的图象。
例4、求函数的最小值以及取得最小值时的x值。
小结:复合函数常常需要换元来求解其最值。
练习:
(1)函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于();
(2)函数y=2x的值域为();
(4)当x0时,函数f(x)=(a2—1)x的值总大于1,求实数a的取值范围。
3、指数型函数的草图及其变换规律。
课本p55—6、7。
(1)函数f(x)的定义域为(0,1),则函数f(x)的定义域为?
(2)对于任意的x1,x2r,若函数f(x)=2x,试比较函数的大小。
指数数学教案篇十五
地址:河南省郑州市向荣街3号建设路第三小学邮编:450007。
教学内容:平面图形的周长和面积。
教学目标:。
1.理解平面图形的周长,面积的意义,以及计算公式的推导过程,并能熟练地进行计算.2.了解学过的平面图形,以及有关计算的关系,构建平面图形的知识网络.3.在学生参与过程中,学会学习和探究问题的方法.教具准备:多媒体课件,用硬板纸作成的六种平面图形.学具准备:打印好课本第128页中间的两组图形和六种平面图形,发给学生.教学过程:。
引入:。
人们常说狐狸聪明,狡猾,聪明的狐狸也有被难住的时候,请看大屏幕.(课件演示)“我是小狐狸,我的花园漂亮吧!我想在四周围上篱笆,准备去买材料,应该先干什么呢”
师:谁来帮帮小狐狸!
生:……。
师:很好!应该先算出这个花园的周长,然后才能决定买多少材料.二.复习周长,面积的概念.1.师:什么是平面图形的周长(板书:周长)。
生:计量平面图形的周长要用长度单位.师:我们学过的长度单位有哪些。
生:它们是计量面积用的单位.(板书:面积)。
师:什么是平面图形的面积。
生:物体表面或围成的平面图形的大小,叫做它们的面积.师:我们学过的面积单位有哪些。
生:……。
生:……。
(板书:周长一周的长短用长度单位计量。
面积面的大小用面积单位计量)。
三.巩固,提高:。
1.我们学过的六种平面图形中,最基本的图形是长方形.把长方形(如图)贴在黑板上。
师:长方形有什么特征。
生:……。
师:怎样计算长方形的周长。
生:……。
(板书:c=(ab)×2)。
(1)练习:王师傅在院子里围了个长方形的篱笆,(如下图),围成篱笆的周长是多少米。
你是怎么想的为什么只算了三条边的和。
(2)怎样求长方形的面积。
(板书:s=ab)。
师:怎样计算正方形的周长(板书:c=4a)。
(1)练习:下图的周长是多少分米。
你们是怎么想的找学生回答,经过平移,这个图形可以转化成一个什么图形观察课件演示.(2)正方形的面积应该怎样计算呢(板书:s=a)。
练习:下图中,圆的直径是6厘米,求正方形的oabc的面积是多少平方厘米。
这个题应该如何解答你是怎么想的3.刚才我们复习了长方形,正方形的周长和面积,还有4种平面图形,有关这些图形的知识你们知道哪些分小组合作学习,小组讨论,总结这些图形的特征,有关周长,面积的计算.小组汇报,展示,可以自选一个图形.(1)当长方形保持对边平行,四个角变成都不是直角的时候,变成了什么图形(课件演示变化过程),平行四边形,有关这个图形的知识你们了解多少小组汇报讨论结果.把平行四边形(如下图)贴在黑板上,(板书:s=ah)。
练习:下图中三角形cde的面积是4平方分米,ae长。