解决问题的策略教案(模板15篇)
教案是教师对教学过程进行系统化组织和调控的一种工具。教案需要根据不同的学习目标和任务,选择适合的教学策略和方法。教案是指教师为备课和讲授课程而撰写的一种教学设计文件,它可以帮助教师系统地组织课堂教学内容,确保教学的有针对性和有效性。在编写教案时,要明确教学目标,并根据学生的学习情况来确定教学内容和方法。那么我们该如何写一份较为完美的教案呢?以下是小编为大家收集的教案范文,仅供参考,希望能给大家带来一些启示。
解决问题的策略教案篇一
教学目标:
1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤,有效地解决问题,同时体会画图、列表等策略在解决问题过程中的价值。
2、在对解决实际问题过程的不断反思中,感觉“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。
教学重点:让学生体会替换策略的优越性。
教学难点:对替换前后数量关系的把握。
教学过程:
一、创设情景导入:
有谁带了钢笔吗?
老师真是健忘啊,今天忘了带钢笔,谁能借老师用一下?
要不这样吧,有谁愿意让老师用一枝铅笔来换你的钢笔?(学生困惑)。
(严肃,让学生觉得真换)。
怎么啦?(学生说说)。
是啊!
那你倒是说说看希望老师拿几枝铅笔,你才肯和我交换?
为什么?(老师:成交!)。
用铅笔换钢笔依据。
板书:十枝铅笔---------换(黄色粉笔写)---------一支钢笔(价格相当)。
那你说说看为什么非要老师用十支铅笔才肯换呢?
(引导学生说出价钱差不多)。
紧接板书:价格相当。
十枝铅笔和一支钢笔价格相当,这正是公平交换的前提和依据。
板书:依据。
二、温故知新:
课件打开到曹冲称象图片。
(他用什么替换了什么?)。
你能联系上面情节讲一讲它替换的依据是什么呢?
(鼓励性评价:真聪明)。
石头和大象的重量相同作为替换的依据。
那曹冲是怎样来保证石头和大象的重量相同呢?
板书:一堆石头---------替换----------一头大象(重量相同)。
曹冲称象的故事给了我们这样一个启示:替换确实是一种解决问题的行之有效的方法。今天我们就来继续学习解决问题的策略之。。。对,替换。
板书:添上----替换两字。
三、协作创新。
曹冲是三国时期的人物,谈到三国,大家一定都知道赤壁大战吧。这场著名的战斗主要是在水上进行的。
三国时期的水上兵器比较多,有走舸,艨艟,斗舰和楼船等等。
(简略介绍其中的走舸和楼船。)。
题目看不清楚的话,可以拿出老师发给你们的纸,上面也有。
生一起读题。
你知道了哪些信息?
这道题目能用“替换”的策略解决吗?
接下来请同学们按照题目下面的要求,来亲身体验一下替换。
同桌合作:
1用什么替换什么?(把题目中替换的双方圈一圈)。
2替换的依据是什么?(在题目关键句的下面画一画)。
3替换前后的数量关系各是什么?(分别把替换前后的数量关系写一写,也可以用图画或者线段图表示)。
小组交流:
知道怎么替换了的同学请举手。
你们在替换的时候,有没有想到替换有什么好处啊?
请你在四人小组里面和同学交流一下。看看同学们是不是想的都和你一样?
1替换有什么好处?
2你替换的.方法和其他同学完全一样吗?
结合课件画面讲解,板书。
一艘楼船--替换--5艘走舸(每条走舸乘坐的士兵数量是楼船上士兵人数的1/5)。
课件展示:
替换前。
(10走舸与1楼船横排,出示数量关系:10艘走舸和1艘楼船上一共装了105名士兵)。
替换后。
(15走舸,出示数量关系:15艘走舸一共装了105名士兵)让学生计算。并讲一讲过程(数量关系)。
(注重:有什么不同的见解):还有其他的替换方法吗?(课件要可以在两种方法间自由切换)。
两种方法都讲解完后,让学生说说替换的好处。
四、巩固立新:
俗话说得好:兵马未动,粮草先行。
请学生说说如何替换?
板书:一条运粮船----------替换----------(一辆马车+15袋)。
让学生在自备本上用自己喜欢的方式画一画。
实物投影展示替换方法。(最好选文字和图画各一份)。
数学是需要简洁和凝练的,看赵老师怎么来做。。。
强调计算的时候是个倒推的过程,是先减还是先除,不能忘记什么?
课件演示思考过程。
同桌之间互相说说:替换前后的数量关系分别是什么?
学生自己列算式解答。
请学生说说替换的好处。
五、博古通今:
学校阅览室为了让大家能阅读三国的故事,进了3套《四大名著》和8本《三国演义》,一共花费了410.4元。每本《三国演义》比每套《四大名著》便宜31.2元。分别求《三国演义》和《四大名著》的单价。
学生独立完成。
让一学生上黑板进行板演(力求作出示意图)。
全班交流。
引导学生把四大名著换成三国演义。
并让学生体会把三国演义换成四大名著虽然也可以计算,但是比较繁琐。
六、自编自演:
大家家里都买过名著没有?小红她也想买些书来阅读,所以她就把平时的零花钱都放到储蓄罐里储存起来。
请大家开动脑筋,根据5角硬币1元硬币储蓄罐三个词语,抽象出一道可以用替换策略解决的应用题。(可适当加上数据条件)。
七、课堂小结:
今天我们学习了什么?你准备以后经常使用这个策略吗?说说原因。对于这个策略,你有什么要提醒在座的各位同学的呢?经验也可以。
解决问题的策略教案篇二
单元教材分析。
二
单元目标要求。
1、 使学生在解决问题的过程中初步学会应用替换和假设的策略分析数量关系,确定解题思路,并有效地解决问题。2、 使学生在对自己解决实际问题过程的不断反思中,感受替换和假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。3、 使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学习数学的信心。
三
单元设计意图。
四
单元目标达成分析。
板块。
教师活动。
学生活动。
小明把720毫升果汁倒入6个小杯和1个大杯,正好都倒满。小杯的容量是大杯的1/3。小杯和大杯的容量各是多少毫升?2、提问:大杯和小杯的容量有着什么样的关系呢(小杯的容量是大杯的1/3)?根据这句话你能想到什么呢?教师追问:在替换的过程中什么变了,什么没有变?引导学生进一步理解“替换”的策略:杯子的数量发生了变化,但总容量没有发生变化。.3、小结策略。
虽然是两种不同的替换方法,但它们有什么共同的地方?(两种不同的物体根据它们之间的关系替换成一种物体。)。
4、怎样检验结果是否正确?学生口头检验。
集体交流小结。
指导学生做练习十七的第1题。
学生思考说说。学生说说数量关系后口答列式。学生读题,结合学生提出的已有经验,学生可能出现的情况是:a.把大杯换成小杯b.把小杯换成大杯学生自己操作(可以用画图等方法)学生独立完成,请两名学生板演,集体评讲每种方法的解题思路和方法。比较有什么不同和相同之处。学生检验结果,从两个方面进行,一是算一算总量是否是72毫升;二是算一算两个数量是否是1/3的关系。学生读题后,自己画图分析,解答。集体评讲不同方法的解题思路。比较有什么相同和不同之处。学生试着用替换的策略尝试着计算。集体交流学生明确:例题是倍比关系:替换时总量不变,数量会变;练一练是差比关系:替换时总量变了,数量不变。激活学生的生活经验,为学习新知作铺垫。学会用“替换”的策略通过理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤和方法。在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。通过解决生活中的一些实际问题,进一步巩固用“替换”策略来分析题意,理解数量关系,提高学生的分析、解题的能力。课题:解决问题的策略——假设第2课时教学目标:1、在解决实际问题的过程中,初步学会运用假设的策略分析数量关系,确定解题思路,并有效解决问题。
2、在对自己解决实际问题的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展学生分析、综合和简单推理的能力。
板块。
教师活动。
学生活动。
教学目标及达成情况。
一、激趣导入。二、新知探究。三、巩固发展。四、课堂总结。
(1)组织学生思考:有没有巧妙的办法,能很快的找到答案?
(2)组织学生把找到的答案和方法与同桌同学进行交流。
(3)组织学生进行全班交流解决问题的方法。
(1)针对学生提出几种问题解决的不同的方法,如把10条船全部看作大(小)船,把一部分船看作大船,一部分看作小船等画图、列表方法,利用课件组织学生进一步观察讨论,交流和体会“假设——比较——调整”替换策略思想方法。
(2)引导学生对所得结论进行检验。
(3)结合学生交流过程,整理小结例2的问题解决策略及推理过程。
1.组织学生完成练习第1题。
(1)组织学生用自己的方式“画一画,算一算”等进行问题解决。
(2)组织学生交流讨论问题解决的过程,进一步体会“替换”策略。
2.组织学生完成练习第2题(结合实际有所调整改编)。
3.组织学生完成练习第3题。
4.组织学生完成练习第4题。
5.感受数学文化。
组织学生阅读我国古代的数学名题——“鸡兔同笼”问题。 组织学生交流本课学习收获,进一步感受用“假设”解决问题策略。学生思考交流想法,说说判断结论。
学生观察,审理问题信息。
学生画图思考,可以把答案先与同桌进行交流,再集体交流。学生完成练习第1题。
可以用自己的方式“画一画,算一算”等进行问题解决。
完成练习第2题(结合实际有所调整改。学生独立完成后进行交流。学生独立完成后进行交流。学生独立完成后进行交流。在解决实际问题的过程中,初步学会运用假设的策略分析数量关系,确定解题思路,并有效解决问题。
2、在对自己解决实际问题的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展学生分析、综合和简单推理的能力。通过解决生活中的实际问题,巩固用假设的策略来分析题意,进一步发展学生分析、综合和简单推理的能力。课题:解决问题的策略(练习题)。
第三课时。
板块。
教师活动。
学生活动。
教学目标及达成情况。
解决问题的策略教案篇三
内容:教科书p68-69教学目标:1、让学生在解决实际问题的过程中,进一步学会用列表的方法整理稍复杂的信息,并运用从问题想起的策略分析数量关系,寻找解决问题的有效方法。2、让学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。教学重难点:用从问题想起策略分析数量关系教学准备:挂图等教学过程:教师活动学生活动复习揭示课题一台织布机3小时织布84米,如果织8小时可以织布多少米?要求:先用列表的方法整理信息,再解答。指名说解题思路,并说说用列表的好处一台3小时84米一台8小时?米独立列表解答,交流思路上节课我们学习了用列表和画图的方法整理信息,运用这种策略,我们可以解决更多的问题。今天我们继续学习解决问题的策略(板书课题:解决问题的策略)教学例题出示例题中的已知条件小芳家栽了3行桃树、8行苹果树和4行梨树。桃树每行7棵,苹果树每行6棵,梨树每行5棵看了这些信息,你有什么感受?认真读题仔细分析信息比较多出示问题:桃树和梨树一共有多少棵?如果用列表的方法整理信息,解决这个问题,有必要把所有的信息都整理进去吗?你能根据问题列表整理信息?(巡视个别辅导)展示学生所列表格不需要都整理,只要用到“与桃树、梨树有关的信息”独立列表整理信息桃树3行每行7棵梨树4行每行5棵分析数量关系,你打算从哪里想起?怎样想?小组讨论交流可能有两种思路(分别从问题、条件想起)请列式解答巡视适当进行指导每一步求的是什么?独立列式解答交流说意思3×7=21(棵)4×5=20(棵)21+20=41(棵)试一试出示问题:苹果树比桃树多多少棵?要求:列表整理,分析数量关系,解答展示学生表格和答案桃树3行每行7棵苹果树8行每行6棵独立列表整理,互相交流分析数量关系的方法,独立列式解答检查订正3×7=21(棵)8×6=48(棵)48-21=27(棵)你能根据题目呈现的信息,自己提问题,再设计表格填表并解答吗?选择典型题展示共同交流(让其他学生猜一猜被展示者的分析思路)独立提问题,设计表格,填表列式解答互相交流比较小结刚才列的表格有什么相同的地方?分析数量关系的方法有什么相同的地方?思考交流组织练习用列表的方法,来算算,用这些栅栏还可以围成长是几米的长方形?长(米)8765宽(米)1234面积(平方米)8141820引导观察:刚才我们用18根1米长的栅栏围成一个长方形,可以围出很多种情况。想一想,如何围面积最大?指出:在确定长方形周长后,长和宽越接近,面积就越大。独立填表交流填表情况观察每组数据讨论交流8×1积最小,7×2、6×3积依次增大,5×4积最大,“想想做做”第1题选择列表、不列表的答案予以展示共同交流分析图意,收集信息独立解题(列表、不列表皆可)“想想做做”第3题展示学生作业共同评议怎样分析数量关系的?每步求的是什么?可以怎样检验我们的解答对不对?独立填表解答交流分析数量关系的思路互相说每步的意义口述检验过程课堂总结这节课你学习了解决问题的哪些策略?有什么收获?还有什么疑问?根据学生回答总结互相交流布置作业“想想做做”第2题要求:练习本上整理条件,作业本上解答教学随笔:
解决问题的策略教案篇四
教学目标:
1、运用画线段图的方法整理已知条件和问题,理解和差问题的解题思路,掌握和差问题的解题方法。
2、掌握画线段图分析问题的方法,感受画线段图的策略在分析问题中的好处,培养学生运用线段图进行分析问题的意识。
3、培养学生良好的逻辑思维能力,鼓励学生在合作交流中激发自主探究、创新的精神。
教学重点:理解和差问题的解题思路,掌握和差问题的解题方法。
教学难点:掌握画线段图分析问题的方法,培养学生运用线段图进行分析问题的意识。
教学准备:课件。
教学过程:
一、谈话引入。
1、课件出示:小明买3本故事书用了27元,小军买了5本同样的故事书需要多少元?
(1)将题目中的信息整理到下面的表格中。
(2)分析表格中的信息,明确解题思路。
引导学生明确:可以先算出一本故事书多少元,再计算出5本故事书多少元。
(3)学生独立解答。
一本故事书:27÷3=9(元)。
5本故事书:9×5=45(元)。
2、谈话导入。
他的解决问题的策略,同学们想学吗?今天我们就一起来学习新的解决问题的策略。(板书课题)。
二、交流共享。
1、课件出示教材第48页例题1。
让学生读题,说说题目中的已知条件和所求的问题。
已知条件:小宁和小春共有72枚邮票;小春比小宁多12枚。
所求问题:两人各有邮票多少枚?
提问:想一想:这道题我们用列表的方法来分析,能找到解题思路吗?
学生交流得出:由于两人的邮票数量都是未知的,用列表的方法进行分析,不容易找到解题思路。
引导:接下来我们就来学习用画线段图的策略来分析这道题。
3、根据题意画线段图。
(1)提问:题目中有几个相关联的量?应该用几条线段来表示呢?学生回答后课件出示:
小宁:
多枚()枚。
小春:
(2)追问:你能根据题意把线段图填写完整吗?
让学生在教材的线段图上填一填,完成后组织汇报交流。
小宁:
多(12)枚(72)枚。
小春:
4、看线段图,分析数量关系。
提问:观察线段图,想一想可以先算什么?
(1)学生独立观察思考后,小组交流讨论。
(2)全班交流解题思路。
汇报预测:
解题思路一:先算出小宁有多少枚邮票。两人邮票的总数减去12枚,等于小宁邮票枚数的2倍。
解题思路二:先算出小春有多少枚邮票。两人的总数加上12枚,等于小春邮票枚数的2倍。
5、学生独立解答。
引导学生选择一种自己喜欢的方法解答。
6、组织检验。
(1)提问:我们用什么方法进行检验?
(2)追问:检验要分几步进行?
(3)学生独立进行检验,并写出答案。
7、回顾反思。
先让学生在四人小组内说一说自己的体会,再组织全班交流。
8、交流讨论。
在之前的学习中,我们曾经运用画图的策略解决过哪些问题?
三、反馈完善。
1、完成教材第49页“练一练”。
这道题和例题1相似,只不过要让学生自己从线段图中获取已知条件,通过这样的练习可以培养学生的读图能力。
2、完成教材第52页“练习八”第1题。
这道题也和例题1相似,但题目要求先把线段图补充完整,组织练习时要把重点放在线段图的画法上。
3、完成教材第52页“练习八”第3题。
这道题练习的重点应放在观察线段图、分析数量关系上,引导学生从线段图上看出下层图书的2倍就是60×2=120(本)。
四、反思总结。
通过本课的学习,你有什么收获?还有哪些疑问?
解决问题的策略教案篇五
第三课时:整十数加、减整十数(综合练习课)教学内容:综合练习课(p59练习十8~11t及思考题)教学目标:1、知识与技能:练习整十数加减整十数,掌握正确的计算方法。2、过程与方法:通过创设生活情景,感受数学知识在生活中无处不在。3、情感态度与价值观:培养学生思维灵活性。教学重、难点:1、重点:正确计算整十数加减。2、难点:培养学生思维灵活性。教学准备:小黑板,挂图,口算卡,磁性教具教学过程:一、口算练习:40+3090-50100-8095-580-8060+640+20+880-50+440+50-3090-60-10(1)记时,独立计算,集体订正(2)师:说一说,40+30=?你是怎样想的?用小棒摆一摆,在小组里说出计算方法。(3)指名说出计算方法,还有谁的方法不同的?2、算一算,练一练(第8题)师出示口算卡片,开火车进行口算练习。40+3090-50100-8095-580-8060+640+20+880-50+440+50-3090-60-103、听算师报算式,生独立计算,然后集体订正,检查听算能力。10+40+3040+20+3070-40-3060-20-30二、读一读,算一算1、(课件出示p609t)要求:1、读一读,读懂题意。2、指明读题加深理解。3、列式计算,并说一说,你是怎么计算的?2、磁性教具摆出10t要求:1、仔细看图,数一数桃和梨的个数。2、比一比,谁的个数多?3、指出同样多的'部分和多余的部分,4、想一想,从桃里去掉桃和梨同样多的部分,剩下的是什么?5、在小组里说一说谁比谁多,谁比谁少,多几个?少几个?再填空。3、课件出示11t先出示美丽的校园,在逐步出示三个同学的对话,师:从刚才的对话中你知道了什么?学校里有什么树?你能提出什么问题?(1)在小组里提出问题,并自己解答。(2)全班反馈,说出你的问题和算式。(3)说一说你是怎么算出来的?三、思维训练p60的思考题下面每个括号里能填什么数?2.两位数加一位数和整十数第一课时:两位数加一位数和整十数(不进位)教学内容:两位数加一位数和整十数(p61例1和练习十一1~4t)教学目标:1、知识与技能:使学生学会两位数加一位数,整十数不进位加的口算方法,能正确的进行口算。2、过程与方法:经历探索两位数加整十数、两位数加一位数(不进位)的计算方法过程,体验数学与生活的密切联系。3、情感态度与价值观:培养学生的计算能力。教学重、难点:1、重点:提高学生计算能力。2、难点:掌握正确的计算方法。教学准备:捆扎好的练习本,磁性教具。教学过程:一、旧知复习,引入新知。1、30+65+2060+49+4030+6050+2060+4050+502、65是有几个十几个一组成的?29是有几个十几个一组成的?二、创设情境,自主探索今天学校新到了一批书,老师打算发给同学们,我们班有()个同学,我们先算算有多少本书,看够不够发给同学们。1、观察,课件出示主题图要求:从图中你看到了什么?数一数,你知道它们有多少吗?一捆有多少本?数学书有多少本?语文书有多少本?2、小组讨论:看图提出问题,谁能提出不同的问题?怎么能算出来?3、合作探究:如果要你算出有多少本数学书,你能怎样算?想一想,你是怎样列式的?用小棒摆一摆,你是怎么算的?说一说,你是怎么想的?4、再次探究:如果要算出我们班领了多少本书,你能算出来吗?请看图,我们领了多少本?一包语文书和一包数学书有多少本?5、全班反馈:a动手操作,理解口算办法。b总结算法,计算时要注意计算的单位,个位上的数要加在个位上。整十数要加在十位上。6、比较算法,加深理解,让学生认真观察两个算式,这2个算式有什么相同的地方?在计算方法上有什么不同?怎样计算?你是怎么想的?(分组说,后指名全班交流)三、巩固练习,促进理解1、p61的做一做。先在书上完成“做一做”第一题,请同学讲一讲上下两题有什么关系,并举几个例子口头考考其他同学。2、p63的练习十一的第一题和第二题(1)独立计算后集体订正。(2)指名说53+4和20+67是怎么计算的?(3)你是怎么算的?(4)小组互相说一说你是怎么想的?3、出示p63:3图(1)你从图中看到了什么?你能完整说出来吗?(2)你根据这些信息列出算式吗?(4)说出结果,你是怎么算的?四、全课总结。
解决问题的策略教案篇六
1、使学生理解求两数相差多少的应用题的数量关系,学会解答此类应用题.。
2、通过操作、观察和讨论,初步培养学生的逻辑思维能力和语言表达能力.。
3、通过教学,向学生渗透比较思想,激发学生学习数学的兴趣.。
教学重点和难点。
重点:解答“求比一个数少几的数”的应用题.。
难点:理解“求比一个数少几的数”的应用题中的数量关系,学会分析这类应用题.。
教学过程设计。
(一)学习新课。
生:第二名。
生:第一名。
……。
2.师:我们一起来看一看全校卫生评比表。(出示表格)。
生:我们班最多16面。
师:用统计表很容易看出各班的卫生成绩。
3.师:那你还可以知道其他班得红旗情况吗?(表格下面被树遮住)。
生:二(2)班比我们班少3面,
生:二(1)班比我们班少5面,
生:二(4)班比我们班少1面,
……。
4.师:知道他们班红旗比我们班少,可以算出他们有多少面吗?(补上问题)。
学生计算。
师:为什么这样算?同桌讨论一下。
出示课件。再请几个学生说一说思路.。
5归纳.。
二、巩固练习.。
师:比15少8的数是多少?怎样计算?
生:15-8=7,比15少8的数是7.。
师:比30少6的数是多少?怎样计算?
生:30-6=24,比30少6的数是24.。
(三)巩固反馈。
1.拍手游戏.。
(1)老师拍6下,同学们比老师少拍2下,同学们拍几下?
(2)同桌同学仿照上面的做法,进行拍手游戏.。
2.出示书23页,做一做。
(1)国庆节促销,每个球优惠8元。
(2)让学生提出问题。
(3)学生独立完成,完成后把思考过程小声说给同学听一听.。
(四)合作练习。
1、根据各国金牌数关系进行计算。小组合作完成。
算式。
解决问题的策略教案篇七
今天我说课的内容是苏教版义务教育课程标准实验教材五年级数学(下册)第九单元《解决问题的策略》—倒推法。本单元是在学生已经学习了用画图和列表的策略解决问题的基础上,教学用“倒推法”的策略解决相关实际问题。“倒推法”是一种应用于特定问题情境下的解题策略。教材首先通过两道例题让学生解决具体的问题,体会适合用“倒推法”的策略来解决的问题的特点,初步掌握运用这一策略解决问题的基本思考方法和过程;再在接下来的练习中安排了不同的实际问题,让学生灵活运用学过的数学知识去解决,进一步体会“倒推法”的策略意义及其适用性,提高解决实际问题的能力。
2、教学目标和重难点。
根据课程标准与教学内容,结合学生的实际情况,我确定了以下的教学目标和重难点:
(1)使学生在解决实际问题的过程中学会用“倒推法”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题方法。
(2)使学生在对解决实际问题过程的不断反思中,感受“倒推法”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。
(3)使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数数学的信心。
教学重点:学生学会运用“倒推法”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题方法和步骤。
本节课力求借助传统媒体与现代媒体相结合的手段再现具体的生活情境,我主要采用直观教学法、观察比较法、启发教学法等教学方法,有意识地培养学生自主探究,合作学习的能力,教会学生学会通过观察、分析、归纳了解并掌握用“倒推法”的策略解决实际问题。
在整个教学设计上,力求充分体现“以学生发展为本”的教学理念,我将教学思路拟定为以下四个方面:
在学生自学的基础上,让学生在交流展示中说出自己的想法,也在听取别人意见的同时梳理自己的思路。这样能帮助学生再次理顺问题思路,初步感知倒推来解决问题的方法。
例1是通过在两个杯子之间倒果汁这样一个操作性强,过程清晰的问题情景,让学生初步理解并感悟“倒推法”的策略和列表格解决问题的方法。此时的学生并没有真的掌握倒推法解决问题的策略,于是要进一步设计类似的问题,让学生根据感知的方法尝试自主探究这一策略,这一部分以学生的分析为主,让学生相互补充,力求说具体,说完整。
引导通过比较解决这两个问题过程的相同点和不同点,让学生再次体会倒推的策略以及明确什么样的情况下适合用倒推的策略来解决问题。在学生充分理解后,我还设计了让学生检验答案是否正确。从而比较解决问题的思路和检验的思路又什么不同。解决问题的思路是从现在到原来,是倒推的策略;检验的思路是从原来到现在,是按题意进行顺推。
俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。对此,我非常注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用。通过学生熟悉的生活情境,在解决问题的过程中,激活学生思维,让学生初步学会用“倒推”的策略解决实际问题。
学生说一说本节课有哪些收获?还有哪些疑问?教师引导学生总结一下本节课的内容,再次重申学习的解决问题的倒推策略。
总之,本节课教学活动中我力求充分体现以下特点:以学生发展为本,以学生为主体,思维为主线的思想;充分关注学生的自主探究与合作交流,做到“先学后教,以学定教,能学不教”;练习体现了层次性,体现数学与生活的密切联系,增强学生学好数学的信心。教师是学生学习的组织者、引导者、合作者,而非知识的灌输者,因而对一个问题的解决不是要教师将现成的方法传授给学生,而是教给学生解决问题的策略,给学生一把在知识的海洋中行舟的桨,让学生在积极思考,大胆尝试,主动探索中,获取成功并体验成功的喜悦。
两个未知量假设一个未知量。
复杂简单。
解决问题的策略教案篇八
首先说说我对教材的理解。这部分内容是苏教版六年级上册第四单元的《解决问题的策略》的第一课时,在此之前我们学习了一些解决问题的策略,以及列方程解决实际问题,这为我们本节课的学习奠定了知识基础,而本节课将为我们后面要学习的解决更复杂实际问题奠定基础。
新课标要求,人人都要获得良好的数学教育,不同的人获得不同的发展。根据这一理念,联系学生实际,我制定了以下教学目标目标:
1、知识目标:让学生在解决实际问题的过程中,初步学会运用假设的策略分析数量关系,确定解题思路,并有效解决问题。
2、技能目标:让学生在对自己解决实际问题的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展学生分析、综合和简单推理的能力。
3、情感目标:进一步培养学生独立思考、主动与他人合作交流、自觉检验等习惯,积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
本节课的教学重点在于:理解并运用假设的策略解决问题。
教学难点:运用假设策略要理清楚新的数量关系。
新课标指出:学生是学习的主体,教师是学习的组织者,引导者,合作者。为了达到这一要求,为了实现教学目标,有效突出重点,突破难点,本节课我将运用启发式教学、复习引导教学、讲授法、探究法等多种教学方式,去引导学生积极思考、自主探究、合作交流,引导他们去感悟运用假设策略解决实际问题的妙处。
根据上述分析,结合学生的实际情况,我将本节课分为以下几个教学环节:
第一个环节:复习铺垫,引入课题。
首先,我向学生展示两道关于果汁的问题,这道题目是根据教材中的例题改编过来的。读题并提问:“同学们,你会解决这两个问题?”让学生根据题意分别列出算式后,引导学生提问:“你能说说每一道题目都是根据什么数量关系式列式计算的吗?(学生积极思考后,回答问题)接着提问:“每一道题目中都有几种类型的杯子?”接着指出:只求一种杯子的容量是比较简单的。
然后,出示例1,先让学生齐读题目,体会和上面两道题目的不同。接着,比较两道题目的异同点,培养学生审题与表达的能力。根据题目的异同点引出课题,今天就来学习解决这类含有两个未知量的实际问题的策略。通过改编例题也会学生解决例题提供了一种思路,为下面的教学做了很好的铺垫。
第二个环节:合作交流,探究策略。
解决这道题目似乎有些困难,先和学生一起分析一下题意,找出两个数量关系式。
然后让学生根据数量关系式再联系以前的知识,讨论探索解决这个问题的思路。学生的思路可能有:第一种:列方程,让学生说出怎么设未知数,设小杯的容量是x毫升,则大杯的容量是3x毫升。第二种:画线段图的方法。引导指出一般我们先画单倍量。小杯共9段,大杯共3段。第三种:全部换成小杯,一个大杯就可以换成3个小杯,一共9个小杯。学生只要说出思路即可,然后事实总结三中思路的共同点,引导学生进一步思考。学生能够发现:都是把两种杯子转化成了一种杯子(小杯)。根据学生们的发现,可以指出:像这样把两个未知量转化成一个未知量的方法就是我们今天要学习的策略假设,运用假设策略可以把复杂的问题转化成简单的问题。进一步揭示课题。
接下来,让学生打开课本69页,任选其中的一个思路解决这个问题,填写在书上,并提醒学生要检验。教师巡视,观察并引导学生的解题方法。学生完成后,选择使用列方程和画线段图的学生说说解题过程。因为这两种方法是以前学过的,这节课就一带过过,目的是让学生明白解决一个问题有很多方法,起到活跃学生思维的作用。而本节课的重点是第三种思路全都换成小杯,也就是假设全是小杯,需要重点讲解。根据课件辅助教学运用假设全是小杯的解题思路和过程,提供给学生一种思考过程,因为是本节课的重点,所以请了3位学生按照该思路想一遍,然后再让全班学生想一遍。思路比较明确了,学生比较容易的根据思路列出算式,教师根据学生想法板书解题过程,以及检验过程。学生容易忽略检验的重要性,所以一定要提醒学生养成检验的好习惯。
提问:刚才假设全是小杯解决了这个问题,这道题还可以怎样假设?让学生不能只满足于解决问题,还要多加思考用不同的假设解决问题。学生比较容易想到还可以假设全是大杯。同样,根据课件讲解思考过程,这一遍主要是让学生自己说,自己想,独立完成解答。
第二环节:归纳整体,提炼策略。
讲完例题后,及时回顾整个例题,总结运用假设策略解决问题的步骤,让学生进一步理解假设策略。根据刚才解题的过程,一步一步地总结出5个步骤,第一步,分析题意,找到数量关系,发现要求两个未知量,需要使用假设策略。第二步,做出假设,假设全是小杯或假设全是大杯,把两个未知量转化成只有一个未知量的问题。第三步,根据假设,调整数量关系,使数量关系变得简单。第四步,列式解答。第五步,检验反思。
第三环节:运用策略,掌握策略。
出示练一练,及时巩固新知。练一练是和例题类似的题目,于是我要求学生根据刚才总结的运用假设策略解决问题的5个步骤,去思考并解决这个题目。这道题可能对一部分学生来说还是有些难度,于是我和学生一起完成了第一步分析题意,让学生找到数量关系。接下来的4步就由学生独立完成。第2步时提醒学生假设全是什么更方便解题。一些学生会模仿老师的解题步骤完整得做完这一题。这就说明他们学会了运用假设策略。通过本题提问为什么不假设全是桌子,让学生明白在做假设时要选择方便解题的那个假设。
在以前的学习过程中,学生已经在不知不觉中,使用过假设策略。让学生先回想一下,小学生的联系知识能力并不强,可能不能一下子想出来。于是,教师让学生观察老师想出来的,让他们判断一下是否运用了假设策略,进一步加深对假设策略的理解,同时也培养学生联系知识的能力,让学生有用新知联系旧知,让自己的知识成为一个体系的意识。
第四环节:运用策略,闯关练习。
简单总结一下所学新知,设计三个题目,考察学生掌握情况。题目由易到难,层次分明。第一关,填空题,有一个是看图填空,题目比较简单,学生基本都能通过,这便增强了学生的信心,提高了继续闯关的欲望。第二关,稍有难度,但题目中提供了解题思路,根据解题思路,多数学生可以正确解答出来,启发学生课下运用第二种假设解决该题目。第三关,图文题目,先让学生从图中读出有用的信息。然后独立完成,教师巡视,用奖品激励大家认真完成,并找出运用不同假设策略解决问题并且书写完整和完美的学生,放到展示台上供大家学习。
第四个环节:归纳小结。
提问:今天你有什么收获?通过学生自己归纳,对所学过的知识进行整理,进一步培养学生归纳概括的能力。
板书设计:
两个未知量假设一个未知量。
复杂简单。
假设全是小杯分析题意。
共有:31+6=9(个)。
小杯:7209=80(毫升)作出假设。
大杯:803=240(毫升)。
检验:806+240=720(毫升)调整关系。
803=240(毫升)。
答:小杯的容量是80毫升,大杯的列式解答。
容量是240毫升。
检验反思。
解决问题的策略教案篇九
教学内容:课程标准实验教科书苏教版六年级上册教材第89~90页例一、练一练和练习十七第一题。
教学目标:
1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤,有效地解决问题,同时体会画图、列表等策略在解决问题过程中的价值。
2、在对解决实际问题过程的不断反思中,感觉“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。
教学重点:让学生体会替换策略的优越性。
教学难点:对替换前后数量关系的把握。
教学准备:
课前学生自学《曹冲称象》,并分组,准备大量铅笔约20支。
课前给学生合作要求纸。正面题目1和要求,反面自编题目。
打开课件。
教学过程:
一、创设情景导入:
有谁带了钢笔吗?(学生举手)。
老师真是健忘啊,今天忘了带钢笔,谁能借老师用一下?
要不这样吧,有谁愿意让老师用一枝铅笔来换你的钢笔?(学生困惑)。
(严肃,让学生觉得真换)。
怎么啦?(学生说说)。
是啊!
那你倒是说说看希望老师拿几枝铅笔,你才肯和我交换?
为什么?(老师:成交!)。
用铅笔换钢笔依据。
那你说说看为什么非要老师用十支铅笔才肯换呢?
(引导学生说出价钱差不多)。
紧接板书:价格相当。
十枝铅笔和一支钢笔价格相当,这正是公平交换的前提和依据。
板书:依据。
二、温故知新:
课件打开到曹冲称象图片。
(他用什么替换了什么?)。
你能联系上面情节讲一讲它替换的依据是什么呢?
(鼓励性评价:真聪明)。
石头和大象的重量相同作为替换的依据。
那曹冲是怎样来保证石头和大象的重量相同呢?
板书:添上----替换两字。
三、协作创新。
曹冲是三国时期的人物,谈到三国,大家一定都知道赤壁大战吧。这场著名的战斗主要是在水上进行的。
三国时期的水上兵器比较多,有走舸,艨艟,斗舰和楼船等等。
(简略介绍其中的走舸和楼船。)。
题目看不清楚的话,可以拿出老师发给你们的纸,上面也有。
生一起读题。
你知道了哪些信息?
这道题目能用“替换”的策略解决吗?
接下来请同学们按照题目下面的要求,来亲身体验一下替换。
同桌合作:
1用什么替换什么?(把题目中替换的双方圈一圈)。
2替换的依据是什么?(在题目关键句的下面画一画)。
3替换前后的数量关系各是什么?(分别把替换前后的数量关系写一写,也可以用图画或者线段图表示)。
小组交流:
知道怎么替换了的同学请举手。
你们在替换的时候,有没有想到替换有什么好处啊?
请你在四人小组里面和同学交流一下。看看同学们是不是想的都和你一样?
1替换有什么好处?
2你替换的方法和其他同学完全一样吗?
结合课件画面讲解,板书。
一艘楼船--替换--5艘走舸(每条走舸乘坐的士兵数量是楼船上士兵人数的1/5)。
课件展示:
替换前。
(10走舸与1楼船横排,出示数量关系:10艘走舸和1艘楼船上一共装了105名士兵)。
替换后。
(15走舸,出示数量关系:15艘走舸一共装了105名士兵)。
让学生计算。并讲一讲过程(数量关系)。
(注重:有什么不同的见解):还有其他的替换方法吗?(课件要可以在两种方法间自由切换)。
两种方法都讲解完后,让学生说说替换的好处。
四、巩固立新:
俗话说得好:兵马未动,粮草先行。
请学生说说如何替换?
板书:一条运粮船----------替换----------(一辆马车+15袋)。
让学生在自备本上用自己喜欢的方式画一画。
实物投影展示替换方法。(最好选文字和图画各一份)。
数学是需要简洁和凝练的,看赵老师怎么来做。。。
强调计算的时候是个倒推的过程,是先减还是先除,不能忘记什么?
课件演示思考过程。
同桌之间互相说说:替换前后的数量关系分别是什么?
学生自己列算式解答。
请学生说说替换的好处。
五、博古通今:
学校阅览室为了让大家能阅读三国的故事,进了3套《四大名著》和8本《三国演义》,一共花费了410.4元。每本《三国演义》比每套《四大名著》便宜31.2元。分别求《三国演义》和《四大名著》的单价。
学生独立完成。
让一学生上黑板进行板演(力求作出示意图)。
全班交流。
引导学生把四大名著换成三国演义。
并让学生体会把三国演义换成四大名著虽然也可以计算,但是比较繁琐。
六、自编自演:
大家家里都买过名著没有?小红她也想买些书来阅读,所以她就把平时的零花钱都放到储蓄罐里储存起来。
请大家开动脑筋,根据5角硬币1元硬币储蓄罐三个词语,抽象出一道可以用替换策略解决的应用题。(可适当加上数据条件)。
七、课堂小结:
今天我们学习了什么?你准备以后经常使用这个策略吗?说说原因。对于这个策略,你有什么要提醒在座的各位同学的呢?经验也可以。
解决问题的策略教案篇十
本课是苏教版义务教育教科书五年级上册第七单元第一课时的教学内容。本课是在学生已经学习过用列表和画图的策略解决问题,对解决问题策略的价值已有了一些具体的体验和认识的基础上。进一步使学生加深对现实问题中基本数量关系的理解,增强分析问题的条理性和严密性,也使学生进一步体会到解决问题的策略常常是多样的,知道同一个问题可以用不同的策略,从不同的角度去分析,有利于提高学生分析,解决问题的能力。
根据课程标准与教学内容并结合学生实际我认为这节课的教学要达到以下几个目标:
(1)知识与技能:
使学生经历用列举的策略解决简单实际问题的过程,能运用列举的策略找到符合要求的所有答案。
(2)过程与方法:
使学生在对自己解决实际问题过程中的不断反思中,感受“一一列举”的特点和价值,进一步发展思维的条理性和严密性。
(3)情感态度与价值观:
使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。依据课程标准和教学目标,我确定本课的教学重点是:让学生经历用列举的策略解决实际问题的过程,感受列举策略的特点和价值,增强分析问题的条理性和严密性。教学难点是:根据不同实际问题的特点,通过合乎逻辑的思考,不重复、不遗漏的列举出符合要求的各种情况。
说教法:
根据本节课的特点,游戏方式引入,以帮助王大叔“解决问题”为核心,以“自主探索”为主线展开的多维合作活动,让学生了解什么是“一一列举”,并能熟练运用“一一列举”这种策略去解决相应的实际问题。教学中为学生提供各种机会,采取独立思考和小组合作的方式进行教学,让学生经历思维冲撞、自主探究、合作交流的活动,使学生体验探索的过程,体会学数学的乐趣。
说学法:
本节课让学生运用直观的教学手段理解掌握新知识,学会有顺序地观察问题、对比分析问题、概括知识及联想的方法。
为了有效组织学生的探索和发现等学习活动,课前我准备了一套多媒体教学课件,并为学生准备了22根等长的小棍、表格。
本课知识我主要分为五个部分进行教学:
(一)游戏机导入,体验列举;
(二)弄清题意,引发需要;
(三)尝试列举,感知策略;
(四)反思回顾,加深理解;
(五)拓展应用,丰富体验。
(一)游戏机导入,体验列举。
游戏的方式更容易学生学习的兴趣,通过4人握手,每两个同学只握一次手,一共握几次手导入。并找4位同学演一演,更形象的展示握手过程,顺势板书所有握手情况,并揭题。让学生明确这节课的主题。告诉学生用列举的策略可以解决生活中的许多问题,从而进入到下一环节。
(二)弄清题意,引发需要。
出示例题图,提问:中你能读出哪些数学信息?引导学生分析题意。通过引导学生分析题目条件,主要明确以下几点:
(1)围成长方形的周长是22米。
(2)围成的长方形的长和宽都是整米数。
(3)围法是多种多样的。
基于以上讨论追问:
既然围成长方形的方法有很多种,那么究竟怎样围面积最大?明确:要想知道怎样围面积最大,就要把所有的围法都找出来。从而探讨如何解决这个问题。通过小组讨论明确可以用22根小棒摆出不同的长方形,再分别求出它们的面积。也可以列举的方法解决。放手先让学生围一围,交流并展示围法。再组织学生用列举的方法解决。
(三)尝试列举,感知策略。
提出问题:
列举长和宽的依据是什么?通过学生讨论知道:长+宽=11。紧接着,带领学生填出一组数据,其他则放手学生自己做。凸显由扶到放的过程,另一方面,通过学生自己填写,发现学生存在的一些问题。
然后全班交流:
如何填写的?对比两位学生的填写方法(有序列举,无序列举)哪张更好?为什么?使学生注意要有序思考,做到不重复,不遗漏。
提问:
列举法和小棒摆一摆的方法哪种更好?使学生自觉优化解决问题方法,并感知列举策略的应用。最后提醒学生列举完后还有重要的一部要完成,即对列举的结果进行比较,做出选择。感知列举的意义。例题完成,思考还在继续,继续对学生提问:表格里还隐藏着一个小规律,你发现了吗?从而使学生进一步思考,进而发现周长一定,长和宽越接近,围成的长方形面积越大。
(四)反思回顾,加深理解。
一方面通过回想解题过程,使学生能自觉的意识到列举策略在解决实际问题中意义和作用。另一方面通过对以前知识的回顾,体会列举策略的价值,在回顾中加深对列举策略应用过程的认识,丰富应用策略解决问题的经验。
(五)拓展应用,丰富体验。
1、练一练第1题,通过讨论明确:列表是列举的一种很好的形式,但不是唯一的形式,所以在练习时也可以用其他的形式来列举。学生在做“练一练”时课提问你打算用什么策略解决这个问题,展示各种列举形式,体会列举形式的多样性,引导学生有条理的表达列举思考的过程,巩固了所学知识。
2、练一练第2题,明确题意后,通过先填表再回答,着重让他们进一步积累运用策略的经验。
通过让学生说本节课的所学,所想,及问题,进一步巩固本节课所学内容。
解决问题的策略教案篇十一
进一步积累解决问题的经验,增加解决问题的策略意识,获得解决问题的成功体验。
教学过程:
一、积累铺垫。
4.从图中你能求出什么?
二、初步感知。
2.审题激需:你能想个办法让大部分同学都能理解题意顺利闯关呢?(画图)。
4.现在图有了,你能根据图来求出原来操场的面积吗?
(1)学生尝试,教师巡视。(2)讨论交流:
三、再次体验。
四、深入体验。
(一)第四关:
1.引入:应用画图的策略,我们来闯第四关。
2.分层出示:
到底增加了多少?学生解答后交流。(交流“整体”和“分块”两种思路)。
3.反思小结:从用经验猜测,到画图验证,最后到解决问题,你有什么启发吗?
(二)第五关:
1.引入:第四关我们都闯过了,下面我们要挑战——第五关!
(1)审题后问:与第四关有什么区别?(一个是“同时”,一个是“或者”)。
五、全课总结。
解决问题的策略教案篇十二
启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标。
1、使学生在解决实际问题的过程中初步学会运用假设的策略分析数量关系、确定解题思路。
2、使学生在对自己解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:使学生理解并运用假设的策略解决问题。
教学难点:当假设与实际结果发生矛盾时该如何进行调整是学生学习的难点。
教学过程:
一、导入:
板书:画图、列表、倒推、替换。
二、新课:
提问:你准备怎样来解决这个问题?
学生独立思考交流想法。
根据学生回答板书各种假设:
假设10只都是大船。
假设10只都是小船。
假设5只大船,5只小船。
2、借助画图,初步感知调整策略。
谈话:刚才同学们提出了三种假设,下面我们先来研究假设成同一种船的情况。
(2)研究调整:
发现矛盾引发思考:问题1:假设10只船都是大船,从图上我们发现什么问题呢?(板书:多出8人)。
追问:为什么会多出来呢?
借助画图,研究调整:
问题2:那多出8人需要怎样调整?(板书:大船小船)。
先想一想,然后再图上画一画。集体交流:画法,上台展示并让学生说说想法。
追问:你是怎么想到把4条大船调整为4条小船的呢?
[设计意图]。
帮助学生调整策略:一条大船调整成一条小船会少了2人,每划去2人就相当于将一只大船替换成了一只小船。多出的8人正好是4个2人,所以要把4条大船调整为4条小船。
3、借助列表,再次感知调整策略。
谈话:刚才我们借助画图找到了调整的策略,解决了实际问题。我们还可以借助什么方法来寻找调整的策略呢?(列表)。
(1)观察书上p91页表格,发现什么?
(2)借助表格调整:
填入假设,发现矛盾:假设5只大船5只小船,就会比42人少2人(板书少了2人)。
引导思考,表格调整:还少2人,也就是这2人还没坐上船,那要让这2人也坐上船,大船和小船的数量应该怎么调整呢?先想一想,然后在表中填一填。再在小组里交流一下你的想法。
学生展示方法:
[设计意图]:引导学生:少2人,需要把一些小船调整为大船。一条小船调整为一条大船可以多做2人,所以调整为小船4条,大船6条。
4.还有其它方法吗?想一想,在小组里交流一下。
5、检验结果。
想知道结果是否正确怎么办呢?你有办法检验吗?
学生口答,老师板书:65+43=42(人)这是对什么进行检验?如果还需要对船只进行检验怎么办呢?6+4=10(条)。
同学们,我们一起回顾一下,刚才我们是怎么样解决这个问题的?
(板书:1.假设2.调整3.检验)。
三、练习:
1.练一练第1题:
要知道鸡和兔各有多少只?我们可以怎样来假设呢?(学生提出各种假设)让学生完整说一说,是怎样画图、调整,来推算出结果的)。
2.练一练第2题:
出示题目:估一估:可能会是各几块?你是怎么想的?
学生会出现画图和列表两种,这时可以让学生选择,并说说为什么你们都选择列表的方法?
五、小结反思,分享收获。
六、巩固提高。
你能运用今天所学的知识解决这个问题吗?
解决问题的策略教案篇十三
教学目标:
1.能根据解决问题的需要,恰当选用不同的策略进行思考;能根据具体的问题灵活确定解题思路,合理选择解题方法,有效解决问题。
2.在运用策略解决问题的过程中进行合理灵活的思考,并清晰地表述自己的想法;具有主动运用策略解决问题的意识,体验解决问题策略的多样性,提升对解题策略价值的认识。
教学过程:
一、理一理。
1.列表。
用列表的方法收集、整理信息,便于分析数量关系。
2.画图。
在解决问题的过程中,有时可以用画图的方法整理相关信息,如:可以用画“示意图”的方法解决有关面积计算的实际问题;可以用画“线段图”的方法解决有关行程问题的实际问题。
3.在具体的问题情境下,还可以用一一列举、还原、替换、假设、转化等策略寻求解决问题的思路。
二、练一练。
1.王大叔用18根1米长的栅栏围成一个长方形羊圈,有多少种不同的围法?
学生用一一列举的方法找出不同的围法,然后交流,再要求学生算出每个围成的长方形的面积,说说自己的发现。
学生用不同的方法来解决这一题,然后交流。
学生用替换的策略解决问题,然后交流解题思路,教师及时小结。
学生用假设法来解决,然后交流解题思路,教师及时小结。
学生用“转化”的策略解决这一题,然后交流不同的解题思路,教师及时小结。
三、补充练习。
1.小明有5元和2元两种人民币若干张,他要拿37元,有多少种不同的拿法?
6.一套西服840元,其中裤子的价格是上衣的2/5。上衣比裤子贵多少元?
课后反思:
本课时内容与后一课时内容合并为一课时进行了复习。从复习情况看,大部分学生还是掌握了以前学习的这些内容。难度不大的有关找规律或是用假设、替换等策略解决一些简单的实际问题时,学生也都能正确解答。在运用假设法或替换法解决实际问题后,检验也很重要,课上结合一些实际问题,我请学生在列式计算后再进行检验,看看是否符合已知信息。
和沈老师一样,感到学生之间存在较大的差异,复习中学习困难生就感到困难重重,体验不到学习的快乐。
课后反思:
总的来说,大部分学生完成的不错,补充习题的第3题和第4题学生错的比较多,可以理解,在之前学习的时候,第3小题也是学生有错误的。而第4小题主要是让学生知道用替换的策略解决问题时,分倍数和差数关系,题中如果告诉我们的是倍数关系,则总量是不变的,如果是差数关系,则总量要发生变化。另外对于一些有困难的学生,有时候判断不出用替换还是假设的策略解决问题时,则可以让学生用列方程来解答。而且在练习的过程中也有不少学生采用了列方程的方法,在没有明确用哪种方法解答时,这也未尝不可。
解决问题的策略教案篇十四
各位评委老师大家好!今天,我上的这节课是苏教版小学数学六年级上册第七单元《解决问题的策略》的第一课时用替换的策略解决问题。在学习本课之前,学生已经学习了用画图、列表、一一列举和倒推等策略解决简单的实际问题,并在学习和运用这些策略的过程中,感受了策略对于解决问题的价值,同时也逐步形成了一定的策略意识。这些都为本课的学习奠定了基础。通过本课的学习,让学生学会运用替换的策略解决问题,增强策略意识,体会不同策略在解决问题过程中的不同价值。
根据上述教材分析,考虑到学生已有的认知结构和心理特征,我制定了如下教学目标:
1、让学生初步学会用“替换”的策略分析数量关系,并能根据问题的特点确定合理的解题步骤。
2、让学生在解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单的推理的能力。
3、让学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
因此本课的教学重点是:让学生掌握用“替换”的策略解决一些简单问题的方法。教学难点是:弄清在有差数关系的问题的中替换后总量发生的变化。
下面,为讲清重点难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈。
(1)引导发现法。充分调动学生学习的主动性和积极性。
(2)合作探究法。引导学生合作学习,逐步启发学生探究用替换的方法来解决问题,增强学生探索的信心,体验成功。
(3)练习巩固法。力求突出重点、突破难点,使学生运用知识、解决问题的能力得到进一步的提高。
(4)利用多媒体课件辅助教学,突破教学重点难点,扩大学生知识面,使每个学生稳步提高。
最后,我来具体谈一谈这一节课的教学过程:
在课的引入部分,从替换的意义入手,出示《曹冲称象》图片,再现典型的小故事,唤醒学生潜在的与替换有关的经验,一下子就扣住学生心弦,唤醒了他们头脑里已有的生活经验,为下面的探究过程做好了心理准备和认知铺垫。
1、课件出示两道准备题与例1,让学生通过比较题型,体会到什么是用替换的策略解决的问题。
2、教学例1:解决这个问题的关键,一是能够由题意想到可以把“大杯”替换成“小杯”,或把“小杯”替换成“大杯”;二是正确把握替换后的数量关系,从而实现将复杂问题转化为简单问题的意图。
教师首先引导学生讨论:大杯和小杯的容量有着什么样的关系呢?引领学生发现替换的依据。根据这句话你能想到什么呢?让学生充分发挥想象。
结合学生已有的经验,学生可能出现以下两种情况:把大杯换成小杯b、把小杯换成大杯。
学生汇报时,教师同时多媒体演示以上两种替换过程。然后让学生选择自己喜欢的'替换方法,进行计算。集体评讲时,让学生说说替换的方法,重点说明算式:720÷(6+3)中“3”的含义以及720÷(6÷3+1)中“6÷3”的含义。
本课教学任务较重,为了让学生坚信今天所学的替换策略是正确可行的,并检验例题1所求答案是否正确,因此要进行检验,这是严谨的态度与科学的精神,是教学中应该倡导的。
接着教师追问:在替换的过程中什么变了,什么没有变?引导学生进一步理解“替换”的策略:杯子的数量发生了变化,但总容量没有发生变化。
这一环节的设计是将“练一练”进行了改编,这也是本节课的难点所在,改编的目的在于:不让学生的思维中断,继续思考大杯和小杯之间的关系以及如何替换。在两个相差关系的量之间进行替换时,学生在上面例题的思维定势下,比较难理解为什么替换以后总量变了、总量是怎样变的。通过电脑课件演示替换的过程,能引起学生关注替换后总量的变化,进而找到解决问题的关键。教学时,先让学生在纸上画一画具体的替换过程,然后说说为什么可以这样替换。再独立计算,集体评讲,千万别忘记检验。
2、讨论交流:两种替换的方法有什么不同?我们要注意什么?
带领学生归纳认识出:当两个量成倍数关系,替换时总量不变,数量会变;当两个量成相差关系,替换时总量变了,数量不变。
1、完成“练习十七”第一题。
学生独立解决,集体评讲时,请学生说说体现两个量之间关系的条件。接着用课件帮助演示替换的过程:边演示边说替换的方法,注意检验。
3、课件出示:“练一练”
将“练一练”作为习题巩固相差关系之用。学生独立完成后,集体评讲。
今天我们学习了一种新的解决问题策略是什么?运用替换这一策略解决实际问题,你觉得需要注意些什么?(学生总结反思)。
以上就是我对《解决问题的策略-替换》这一课的设计,不足之处,由于刚接触六年级教材,很多方面都考虑不够成熟,敬请各位评委老师多多批评指正,谢谢!
解决问题的策略教案篇十五
教学目标:
1.进一步学会用“替换”“假设”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2.在对解决实际问题过程的不断反思中,感受“假设”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3.进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
灵活运用多种解题策略解决稍复杂的实际问题。
教学过程:
一、揭示课题。
谈话:前几节课,我们学习了新的解题策略,你能举例说明吗?(请几位学生交流。)今天这节课,老师准备了一些实际问题,请同学们灵活运用我们学过的解题策略来解决这些稍复杂的实际问题。(板书课题)。
二、基本练习。
6.1元钱买4分一张和8分一张的邮票共20张,应买4分邮票多少张?
小结:运用“替换”或“假设”的策略解决问题后都应该及时进行检验。
三、拓展练习。
鼓励学生用自己理解的方法来解决这些问题,解答后给学生充分的时间进行交流,教师及时评价学生。
四、全课总结。
谈话:今天我们综合运用一些策略来解决实际问题。你们又有什么新的收获吗?
五、布置作业: