2023年数学教案数轴范文(14篇)
一份精心设计的教案可以有效地引导学生的学习兴趣和积极性。教案的编写应当注意语言的准确性和表达的清晰性。以下是小编为大家收集的教案范文,仅供参考,希望能给大家带来一些启示。
数学教案数轴篇一
理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。
1、重点:弄清应用题题意列出方程。
2、难点:弄清应用题题意列出方程。
一、复习。
1、什么叫一元一次方程?
2、解一元一次方程的理论根据是什么?
二、新授。
分析:等量关系;a盘现有盐=b盘现有盐。
检验所求出的解是否合理。培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。
1、题目中有哪些已知量?
(1)参加搬砖的初一同学和其他年级同学共65名。
(2)初一同学每人搬6块,其他年级同学每人搬8块。
(3)初一和其他年级同学一共搬了1400块。
2、求什么?初一同学有多少人参加搬砖?
3、等量关系是什么?
初一同学搬砖的块数十其他年级同学的搬砖数=1400。
三、巩固练习。
教科书第12页练习1、2、3。
四、小结。
列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。
五、作业。
数学教案数轴篇二
4.最小的正整数为______,最大的负整数为________,最小的自然数为________,最小的非负数为______,最大的非正数为________,最大的负数为________.
5.小于6的所有正整数的和是________.
6.点a在数轴上表示的数是+1,从点a出发,沿数轴向左平移3个单位长度到达点b,则点b所表示的数是________.
7.在数轴上,与表示-1的点距离为2的点所表示的数为________.
8.小明在写作业时不慎将两滴墨水滴在数轴上,根据图中数值,判定墨迹遮盖的整数共有________个.
12.一辆货车从百货大楼出发负责送货,向东走4千米到达小明家,继续向东走1千米到达小红家,然后向西走10千米到达小刚家,最后回到百货大楼.以百货大楼为原点,向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置。
数学教案数轴篇三
1.在下面数轴上:
(1)分别指出表示-2,3,-4,0,1各数的点.。
(2)a,h,d,e,o各点分别表示什么数?
2.在下面数轴上,a,b,c,d各点分别表示什么数?
3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};
课堂教学设计说明。
数学教案数轴篇四
小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。数轴是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是数轴的根本依据。数轴与它所在的位置无关,但为了教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要注意原点位置选择的任意性。
关于有理数与数轴上的点的对应关系,应该明确的是有理数可以用数轴上的点表示,但数轴上的点与有理数并不存在一一对应的关系。根据几个有理数在数轴上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。
数学教案数轴篇五
掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的'过程和自觉检验方程的解是否正确的良好习惯。
1、重点:掌握去分母解方程的方法。
2、难点:求各分母的最小公倍数,去分母时,有时要添括号。
一、复习提问。
1.去括号和添括号法则。
2.求几个数的最小公倍数的方法。
二、新授。
例1:解方程(见课本)。
解一元一次方程有哪些步骤?
一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。
补充例:解方程(x+15)=-(x-7)。
三、巩固练习。
教科书第10页,练习1、2。
四、小结。
1.解一元一次方程有哪些步骤?
2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。
五、作业。
教科书第13页习题6.2,2第2题。
数学教案数轴篇六
1.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感。
2.在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子。
3.能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的资料尝试对变化趋势进行初步的预测。
【学习方法】自主探究与小组合作交流相结合.
【学习重难点】重点:能从表格的数据中分清什么是变量,自变量、因变量以及因变量随自变量的变化情况。
难点:对表格所表达的两个变量关系的理解。
【学习过程】。
模块一预习反馈。
一、学习准备。
1.我们生活在一个变化的世界中,很多东西都在悄悄地发生变化.
你能从生活中举出一些发生变化的例子吗?
教材精读。
1.请同学们观察思考,逐一回答下面的问题:
根据上表回答下列问题:
(1)支撑物高度为70厘米时,小车下滑时间是多少?
(3)h每增加10厘米,t的变化情况相同吗?
(4)估计当h=110厘米时,t的值是多少,你是怎样估计的?
(5)随着支撑物高度h的变化,还有哪些量发生变化?哪些量始终不发生变化?
支撑物的高度h和小车下滑的时间t都在变化,它们都是。其中小车下滑的时间t随支撑物的高度h的变化而变化。支撑物的高度h是,小车下滑的时间t是。
在这一变化过程中,小车下滑的距离(木板的长度)一直变化。像这种在变化过程中的量叫做。
我国从1949年到的人口统计数据如下(精确到0.01亿):
(2)x和y哪个是自变量?哪个是因变量?
(3)从1949年起,时间每向后推移,我国人口是怎样的变化?
(4)你能根据此表格预测时我国人口将会是多少?
在“人口统计数据”中:
时间和人口数都在变化,它们都是。其中人口数随时间的变化而变化。时间是,人口数是。
归纳:借助表格,我们可以表示因变量随自变量的变化而变化的情况。
模块二合作探究。
1.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当氮肥的施用量是101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?
(3)据表格中的数据,你认为氮肥的施用量是多少时比较适宜?说说你的理由。
(4)粗略说一说氮肥的施用量对土豆产量的影响。
模块三形成提升。
某电影院地面的一部分是扇形,座位按下列方式设置:
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)第5排、第6排各有多少个座位?
(3)第n排有多少个座位?请说明你的理由。
模块四小结反思。
一、本课知识。
1.变量、自变量、因变量:在某一变化过程中不断变化的量,叫做;如果一个变量y随另一个变量x的变化而变化,则把x叫做,y叫做。即先发生变化的量叫做,后发生变化或者随自变量的变化而变化的量叫做。
2.常量:。
二、我的困惑;。
数学教案数轴篇七
3.使学生初步理解数形结合的思想方法.。
重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.。
难点:正确理解有理数与数轴上点的对应关系.。
2.用“射线”能不能表示有理数?为什么?
3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)。
在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.。
通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.。
示出来.。
2.说出下面数轴上a,b,c,d,o,m各点表示什么数?
1.在下面数轴上:
(1)分别指出表示-2,3,-4,0,1各数的点.。
(2)a,h,d,e,o各点分别表示什么数?
2.在下面数轴上,a,b,c,d各点分别表示什么数?
3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};
数学教案数轴篇八
3.使学生初步理解数形结合的思想方法.
教学重点和难点。
重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.
难点:正确理解有理数与数轴上点的对应关系.
课堂教学过程设计。
一、从学生原有认知结构提出问题。
1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2.用“射线”能不能表示有理数?为什么?
3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.
二、讲授新课。
让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)。
在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.
通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.
三、运用举例变式练习。
例1画一个数轴,并在数轴上画出表示下列各数的点:
例2指出数轴上a,b,c,d,e各点分别表示什么数.
课堂练习。
示出来.
2.说出下面数轴上a,b,c,d,o,m各点表示什么数?
最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.
四、小结。
指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.
本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.
五、作业。
1.在下面数轴上:
(1)分别指出表示-2,3,-4,0,1各数的点.
(2)a,h,d,e,o各点分别表示什么数?
2.在下面数轴上,a,b,c,d各点分别表示什么数?
3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:
课堂教学设计说明。
从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等.
数学教案数轴篇九
《倒数》这一节课内容很简单,它是在分数乘法计算的基础上进行教学的,它主要为分数除法做准备。本节课主要让学生理解倒数的意义,掌握求一个数的倒数的方法。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。本节课反思如下:
一、用游戏来增强学生学习数学的趣味性。
这节课我设计的两个游戏贯穿了新授内容的始终。课的一开始我是让学生听音乐,找朋友,通过找朋友的游戏理解“什么是互为好朋友”?从而真正理解“互为”的含义,为以后学习倒数的意义打下基础。接着我又设计“猜字”来引出倒数?如:我说“吴”“杏”字上下颠倒,变成什么字?那数学是不是与有这样的特征呢?使学生在做猜字的同时理解倒数的意义,同时也增加了数学学习的趣味性。
二、引导学生在自主、探究的活动中来获取新知。
我不做讲解,学生自己去寻找。在学生找好后,我让学生一一回答,在回答的过程中,交流寻找的方法,逐步归纳、抽象出一般方法。如学生一开始在找3/2的倒数时,第一名学生从倒数的意义去寻找:2/3×()=1,我立即对此进行鼓励:这是找倒数的方法,只要掌握了这一点,学生便永远不会忘记如何找倒数。随后,我继续让学生说说还有什么方法?学生从前面的算式中,很自然地发现了只要把分数的分子和分母颠倒位置即可。我没有以此为满足,在提供给学生的材料中,出现了小数、整数、1和0,通过对这些数的倒数的寻找,学生的认知建构不断完整,认识越来越深,对方法地理解由表面到本质,实现了质的转变。
三、不足之处:
由于本课我为了增强学生学习的趣味性,设计的游戏环节花费时间过长。但让学生亲历学习过程,势必要花去大量的时间,这样练习应用的时间就相对减少,以至于在求带分数、小数的倒数时练习的少,因此,合理安排授课时间还是应当讲究。
总之,一节下来,经历了,收获了。在今后的教学中我会更加努力地去上好每一节课。
数学教案数轴篇十
紧张有序的高二教学工作已经结束了,经受了磨砺和考验的我,在各个方面都得到了很大的提高,尤其是学科知识的理解和业务水平方面更有了进步,这都离不开学校领导和同组的有经验的老师的支持和帮忙。
“学高为师,身正为范”,作为一名人民教师,最重要的是教书育人,而要做好教学工作就务必具备精湛的专业水平和良好的思想道德品质。
这一年来我认真钻研数学中的每一个知识点,精心设计每一节课,虚心向教学经验丰富的教师请教,同时用心主动的学习老教师的实际教学方法,与此同时,我努力做好教学的各个环节,做好学生的课后辅导工作,注意学生的心理素质的提高。尽管我在教学中留意谨慎,但还是留下了一些遗憾。
为了以后更好提高教学效果。经过一番深思,我个人觉得高二数学教学,就应作到夯实“三基”,理顺知识网络。因为高考命题是以课本知识为载体,全面考查潜力,所以,促进学生对基本知识、基本概念和基本方法的巩固掌握相当关键。我从中得到的教学反思如下:
一、教学定位要合理化,重基础知识、基本方法和基本思想。
透过一年来的高二的数学教学,以及对会考试题及市统测的研究分析发现,数学考查的多是中等题型,占据总分的百分之八十之多,所以我认为,对于大多数的学生作好这部分题是至关重要的。我的做法是:加大独立解题和考场心理的模拟训练,这是我们能够进一步改善的地方,可大大提高整体的数学成绩。与此同时,又要有针对性地提高程度较好的学生,先从思想认识和学习方法上加以指导,提高拔尖人才,这样把一些偏、难、怪的资料减少一些,在平时考试中,个性注意对试题整体的把握,指导学生的整体学习思想。
二、教师指导好学生对教材的合理利用。
数学考试考查点“万变不离教材”,许多的试题就来源于教材的例题和习题,提高学生对教材的重视的同时,关键做好学生的学习指导工作,对于教材的改造和加工至关重要,先整体把握全教材的章节,再细化具体的资料,用联想的方式,对于详略的处理交代清楚,使学生在自己的头脑中构建知识体系,理解解题思想和知识方法的本质联系,提高实际运用潜力十分重要。
三、理解知识网络,构建认识体系。
各知识模块之间不是孤立的,我们要引导学生发现知识之间的衔接点,有的在概念外延上相连,有的在应用上相通等。这样,就能够把已有知识连成一个完整的体系,在解决问题时便会左右逢源,如鱼得水。
四、高度重视新课程新增资料的复习。
新课程新增资料:简易逻辑、平面向量、线形规划、概率、是大纲修订和考试改革的亮点,在高考都有涉及。现行教学状况与过去相比,教学时间比较紧张,复习时间相对短,新增资料考察要求逐年提高,分值也不断加大,如向量已经成为分析和解决问题不可缺少的工具。
在新课程试题中,有些题目属于新教材和旧教材的结合部,在高考命题中采用新旧结合的方法。例如函数的单调性问题既能够用导数解决也能够用定义解决。立体几何问题的处理既能够用传统方法也能够用向量方法。只有重视和加强新增资料的复习,才能紧跟教改和高考改革的步伐,提高学生的认知潜力和思维潜力。
五、明确考试资料和考试要求,把握好复习方向和明确重难点。
我结合自身的状况,工作中,我首先在进行复习资料的时候,先把《新课程标准》精读一遍,平时通读争取做到心中有数,同时经常请教本组有经验的老师学习好的经验,其次我总是努力多听本组老师的课,这样最有利于把握一节课的教学重点和难点,掌握难点的突破方法,及时反思并结合自己学生的状况做为教学中的指导,再次我争取把近几年的全国的高考试题做一遍,认真研究,从知识、方法和思想上入手。透过实践证明效果很好,能够在今后的教学中得到应用。
六、把握教材,注重通性通法的教学、做好学习方法的指导工作。
近几年高考数学试题坚持新题不难、难题不怪的命题方向,强调“注意通性通法,淡化特殊技巧”。就是说高考最重视的是具有普遍好处的方法和相关的知识。尽管复习时间紧张,但我们仍然要注意回归课本。回归课本,不是要强记题型、死背结论,而是要抓纲悟本,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选取一些针对性极强的题目进行强化训练,这样复习才有实效。
学生的心理素质极其重要,以平和的心态参加考试,以实事求是的科学态度解答试题,培养锲而不舍的精神。考试是一门学问,高考要想取得好成绩,不仅仅取决于扎实的基础知识、熟练的基本技能和过硬的解题潜力,而且取决于临场的发挥。我们要把平常的考试看成是积累考试经验的重要途径,把平时考试当做高考,从心理调节、时间分配、节奏的掌握以及整个考试的运筹诸方面不断调试,逐步适应。
教师自己还要思考一个问题,就是针对学生存在的问题如何调整复习策略,使复习更有重点、有针对性。
数学教案数轴篇十一
本节课上后个人感觉还有很多细节问题没有处理好,虽然同事们都给予了肯定,但我个人还是不太满意的。下面作出自我反思:
1、本节课拖堂5分钟,主要原因有二:
首先可能是教学内容较多,在新课中就有许多练习,整体上时间已经比较紧凑了。
第二,在两个环节上个人认为还处理不当,导致时间浪费过多。一是学生收集的信息中有一个关于8和9的小故事,这在试教时是没有的,因为两个班学生收集的信息不同。我觉得这个题材不错,于是在课堂上给学生读了一下,也浪费了1分钟时间,虽然感觉这能吸引学生的兴趣,但在时间如此紧凑的前提下,也只能放在课后让学生去了解。另外,在处理8和9的序数意义时,我怕读题太费时间,但结果学生由于识字量有限,对这一题解决得并不理想,也许读一读题目,效果会好很多,毕竟这是一年级的学生。由于我对低段教学经验不足,总是忽略这个问题,这是今后应十分重视的问题。
2、8和9的书写环节应该调整在揭题之后。
这是吴老师给我提的第一个建议,我发现其实这个问题很明显,但自己之前却没有考虑到,而只是一味地照本宣科,看到课本上的顺序是这么安排的,就这么死板地去教,可见自己处理教材上还应考虑得更周全些。
吴老师的建议让我觉得豁然开朗,比如在理解8、9的基数和序数意义时,我是通过数花朵一题来完成的,但由于没有读题,学生反馈情况不太理想,吴老师建议我让学生现场站一站,如请从左数第8个学生站起来,请从右数8个学生站起来。这样的方法既直观又生动,可以有效帮助学生理解“几和第几”,从而突破难点。遗憾的是我只能将吴老师的建议带回我平时的课堂深化下去,感谢的是有这么多专家及同事给出中肯的建议,让我学到更多!包括黄校长,亲临我的试教,悉心指导;还有吴老师的谆谆指导,总是让我受益匪浅,而面对这所有的一切,我只有更快地改正自己的不足!
个人觉得自己此次准备仓促,也暴露出了自己在教学上的许多不足之处,比如设计上,还没有特别创意的设计。又如以往对于教研课,我都至少试教2次,而本次只教了1次,所以也足以看出自己的功底还不够,以后应朝着“精教”的方向去努力。另外,本节课我都采用保护环境这个主题,后面的练习设计也都在“花”上下功夫,但给人的感觉却有些视觉疲劳,可见我的情境没有连贯好。借着此次机会给自己提出一个忠告:不要忽视每一节课,不要因为这是一节普通的教研课而不够重视,我需要的是初上讲台时的那种执着和不懈的努力。不要给自己找任何的借口,正视不足,不断改之,方为上策!
数学教案数轴篇十二
1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;。
3.感受在特定的条件下数与形是可以互相转化的,体验生活中的数学.
[教学重点与难点]。
重点:数轴的概念和用数轴上的点表示有理数.难点:同上.[教学设计]。
一.创设情境引入新知。
观察屏幕上的温度计,读出温度..(3个温度分别是零上,零,零下)。
[问题1]:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(分组讨论,交流合作,动手操作)。
二.合作交流探究新知。
通过刚才的操作,我们总结一下,用一条直线表示有理数,这条直线必须满足什么条件?(原点,单位长度,正方向,说出含义就可以)。
1.你能举出生活中用直线表示数的实际例子吗?(温度计,测量尺,电视音量,量杯容量标志,血压计等).
四.反复演练掌握新知。
教科书12练习.画出数轴并表示下列有理数:。
1.5,-2.2,-2.5,,,0.2.写出数轴上点a,b,c,d,e所表示的数:。
2.数轴的作用是什么?
[作业]。
必做题:教科书第18页习题1.2:第2题.[备选题]。
1.在数轴上,表示数-3,2.6,,0,,,-1的点中,在原点左边的点有个.2.在数轴上点a表示-4,如果把原点o向负方向移动1.5个单位,那么在新数轴上点a表示的数是()。
(2)你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?
总结可以由教师提出问题,学生总结,教师完善.2题也可以启发学生反过来想,即点a向正方向移动1.5个单位.3题有一定的难度,两次变动可转化成原点实际怎样移动了,移动了几个单位,那么-5实际上怎样移动了.
数学教案数轴篇十三
百分数是在学生学过整数、小数和分数,个性是解决“求一个数是另一个数的几分之几”问题的基础上进行的教学。百分数在学生生活、社会生产中有着广泛的应用,大部份学生都直接或间接接触过一些简单的百分数,对百分数有了一些零散的感性知识。所以在教学中我从学生生活实际入手,采用学生自主探究、合作交流为主,教师点拨引导为辅的策略,让学生在生活实例中感知,在用心思辨中发现,在具体运用中理解百分数的好处。
百分数是在日常生产和生活中使用频率很高的知识,学生虽未正式认识百分数,但对百分数却并非一无所知。在上课之前让学生收集生活中的百分数,能够让学生从中体会到百分数在生活中的广泛应用,对激发内在的学习动机起到了很好的作用。
百分数是一种特殊的分数,它与一般的分数既有必须的联系,又有一些区别。透过小组学习,让学生感悟在生活中搜集到的具体的例子,让学生在探索学习中悟出一些百分数的意思,从而总结出百分数的好处,然后再解决应用到实际生活例子中。
练习有层次、有拓展、有坡度。学生在理解百分数的基础上,透过想象,说一说你还想到了什么,学生的思维一下子就被打开了。例如上半年完成了任务的60%。学生想到了还有40%没有完成;上半年的进度很快,他们的效率很高;他们先紧后松。
上完这一节课后,我觉得学生对这一节资料掌握得还是不错的,但也存在以下的不足:
1、就应多给学生一些写百分数的机会。整节课学生缺少写百分数的机会,只是强调了一下百分数的写法,也许学生的印象不会太深刻。
2、因为我都是利用自我准备的素材贯穿了整节课,先是认识百分数、掌握读写法、然后根据生活素材具体说明每个百分数所表示的好处而引出百分数的好处,课本的主题图和例子就没有充足的时光在本节课内完成,但如果不讲解,让学生自我领会,可能效果不够明显,是一句带过还是重新讲一次呢?该怎样处理这种状况,我总觉得还需要思考和探讨。但我始终相信要以“学定教”,不是以“教定学”,要做到“学海无涯,教无定法”。
数学教案数轴篇十四
2.会用数轴上的点表示有理数,能说出数轴上(表示有理数)的点所表示的数.。
3.会利用数轴比较有理数的大小.。
4.初步感受“数形结合”的思想方法.。
【教学过程设计建议(第一课时)】。
1.情境创设。
2.探索活动。
可以让学生对照“做一做”的几个步骤共同评价“板演”作业,形成对数轴的正确认识.。
3.例题教学。
可以根据学生的实际情况,适当增加在数轴上表示分数的练习.。
【教学过程设计建议(第二课时)】。
1.探索活动。
借助生活经验(温度的高低),引导学生探索:
边的点所表示的数”.。
“议一议”中的第2个问题,应组织学生认真操作,为得出上述结论增加感性认识.。
对于两个负数比较大小,学生比较陌生,教学中还可以采用以下方法:
2.例题教学。
3.小结。
下一篇:华师大版七上2.2数轴(含答案)。