2023年人工智能的影响论文大全(17篇)
有效沟通是保持人际关系和谐的重要因素,我们应该学会如何与他人更加有效地沟通。写总结时,可以借助一些写作工具和软件,如思维导图、文字处理软件等,提高写作的效率和质量。以下是小编为大家整理的一些实用工具和资源,希望能为大家提供便利和帮助。
人工智能的影响论文篇一
语言文学专业学术论文具有突出的学术性,它只能把学术问题当作自己的论题,把学术成果当作自己的描述对象,把学术见解作为自己的核心内容。它以学术性区别于一般的社会理论文章和政治理论文章。学术是有系统、较专门的学问,它往往以学科的形式表现出来。人们通常将学科分为自然科学和社会科学两大类。两大类又可逐层划分下去。如社会科学可以分为哲学、政治、经济、法律、历史、语言文学等,语言文学又可划分出语言、文学,文学又可以划分出文学理论、文学史,文学史又可以分为中外文学史,中外文学史又可以划阶段、设专题。分工越细,学问也就越专门化。但一切专门化的学问,又隶属于它的上级学科。语言文学专业学术论文所研究的,就是这些专门化的学问。语言文学专业学术论文所要研究和解决的问题,是这些专业知识中的某一问题。
(二)独创性。
人工智能的影响论文篇二
人工智能是一门交叉性的前沿学科,也是一门极富挑战性的科学。人工智能技术和理论在一定程度上代表了信息技术的发展方向,所以对其人才的培养也是重中之重。
人工智能是多种学科相互渗透而发展起来的交叉性学科,其涉及计算机科学、信息论、数学、哲学和认知科学、心理学、控制论、不定性论、神经生理学、语言学等多种学科。随着科技的飞速发展和人工智能技术应用的不断扩延,其涉及的学科领域将愈来愈多,它已和人们的学习、生活息息相关,时代和社会需要此方面的大量人才。在高中信息技术课中开设人工智能初步模块是十分必要的,本文拟从其发展现状、存在问题等几个方面对我国高中信息课程中人工智能教育做一下探讨。
人工智能(ai,artificialintelligence)是计算机科学的一个分支,己成为一门具有广泛应用的交叉学科和前沿学科。它研究如何用计算机模拟人脑所从事的推理、证明、识别、理解、设计、学习、规划以及问题求解等思维活动,来解决人类专家才能解决的复杂问题,例如咨询、探测、诊断、策划等。
现实世界的问题可以按照结构化程度划分成三个层次:结构化问题,是能用形式化(或称公式化)方法描述和求解的一类问题;非结构化问题难以用确定的形式来描述,主要根据经验来求解;半结构化问题则介于上述两者之间。
将人工智能课程引入到我国现行的教育中,可以让学生在了解人工智能基本语言特征、理解智能化问题求解的基本策略过程中,体验、认识人工智能技术的同时获得对非结构化、半结构化问题解决过程的了解,从而使学生了解计算机解决问题方法的多样性,培养学生的多种思维方式,更好的解决现实问题。
目前,该学科的教育正处于摸索阶段,由于中学信息技术师资水平、学校硬软件设备等条件的制约,我国尚未在中学专门开设独立的人工智能类课程,internet上与人工智能教育相关的中文信息资源也十分贫乏,在教学环境上大致存在以下问题:
(一)教学条件参差不齐。
开设好人工智能课程,就要求安排更多的实践课程和活动来增强课程的趣味性,让广大师生切实体会到人工智能对我们生活的影响。这些活动大部分要求上机操作或利用网络资源来学习交流,这就对教学条件提出了较高的要求,尤其是一些偏远农村、条件相对落后的中学在开设人工智能课程上存在很大困难。
(1)对硬件性能的要求。
人工智能课程中有较多的实践课程需要老师和学生利用网络资源,使用计算机进行操作。这就需要学校配备计算机网络教学机房,若其性能较差,会延长学生在线进行人机对话的时间,一旦遇到网络堵塞,可能连网页都打不开,这不仅浪费了仅有的'上课时间,而且大大降低了学生的学习兴趣。
(2)对软件性能的要求。
为了降低成本,学校可以利用互联网上提供的免费下载软件和免费在线教学网站等进行实践教学,可大大减少自研开发软件和软件维护的费用。但一旦遇到网络不通、网络拥挤或在线网站停止服务等情况,将无法使用网络资源进行教学,可见,软件的依赖性较强也存在很大的问题。
(1)学生的认识误区。
提及人工智能,给大多数学生的感觉是一门神秘、遥不可及的科学。很多学生认为人工智能技术是很高深的科学,离我们现实生活有一定距离,研究和接触这门科学是少数科学家的事情,从而对该科学的关注程度不高。其实,人工智能学科是一门渐渐成长的科学,它将应用在我们生活的方方面面。我们应在教学中让学生多去体验人工智能的魅力所在,吸引更多对该学科感兴趣的人去研究和使用它。
(2)教师对人工智能学科开设存在偏见。
一些从事该学科教学的教师没有接触过人工智能方面的知识,在接触过后被其中深奥难理解的知识所吓倒,认为即使开设了这门课程也不易被同学们所接受;而一些在大学接触过人工智能课程的教师则认为,其理论枯燥乏味,知识内容艰深,不适合放在高中开设。
(三)一线教师经验不足。
在我国大学教育中,开展人工智能专业课程的大学为数不多,师范类院校更是少之又少。从事人工智能领域的专业人才输出少,所以,缺乏具备一定知识结构、有专业素养的教师来担任高中信息技术课中人工智能课程的教育工作。绝大多数的一线教师并没有接受过人工智能课程的专业培训,在授课内容上的着重点掌握不好,教学目标不够明确;在授课形式上也没有前人的经验可寻,这就给一线教师带来了极大的挑战。
(一)加强软、硬件建设。
在学校条件允许的条件下,应加大硬件设施的投入,改善网络传递信息的效率,同时加强软件资源建设。鼓励师生上网搜索更多适合ai教学的网站,教师应整理出和ai相关的趣味小故事、电影、光盘等和教材相关的素材,以便更好的配合硬件教学。
(二)端正认识,增强支持。
作为教师要树立对高中人工智能选修课程的正确认识。通过对课标中规定的相关内容的深入了解和学习,克服对人工智能的神秘感或恐惧感,理性而客观的看待人工智能技术及其应用,明确在高中开设该课程的目的。同时,教师也不能因为该课程的“选修”性质,从而轻视该课程的作用。
作为学生不应该仅仅看见这门课程的娱乐趣味性,应把一些重要的技术理论知识重视起来,不能过分的放松自己而偏离了我们的教学目标。家长也应该支持和赞同学生选择该课程,不能应认识不到这门课程的作用、怕耽误学生主干课的学习而反对学生积极参与。
校方领导也不应条件限制就轻易放弃这门课程的开设,应给予积极的配合。社会各界也应加强舆论与正确引导,让更多的人们认识人工智能并予以肯定。
总之,人工智能是一门逐渐成长的科学,开设好该课程需要广大教育工作者和校方领导不断努力,互相交流,共同克服困难。
参考文献:
[1]张剑平.人工智能技术与“问题解决”[j].中小学信息技术教育,2003(10).
[2]段东辉.浅谈信息技术课程中人工智能教育[j].新乡教育学院学报,第19卷第二期2006,6.
[3]教育部.普通高中技术课程标准(实验稿).人民教育出版社,2003年4月.
[4]张家华,张剑平.开展高中人工智能教学存在的问题及对策[j].
人工智能的影响论文篇三
摘要:在航空业的发展中,人工智能技术起着积极的促进作用。本文介绍了空中交通管理中的人工智能理论及方法运用,为优化空中交通流量管理系统提供理论依据,更好地服务于空管系统。
关键词:人工智能;空中交通;管理。
人工智能,即artificialintelligence,是计算机科学的一个分支,研究对人的意识及思维的信息过程的模拟并对其进行延伸和扩展,通过了解人类智能,研究出类似的反应的智能机器。随着计算机技术的发展,人工智能越来越多的运用于民航的各个方面,如飞行间隔的控制,空中流量的预测,飞行冲突的调配。但随着民航业的飞速发展,飞行流量日益增大,需要将人工智能技术有效运用于空中交通流量管理中,建立人工智能辅助系统,扩大空域容量,优化空中交通流量,提升空管秩序。
1空中交通流量管理探讨。
在空中交通流量管理(airtrafficflowcontrolmanagement)中,空中交通流量是指单位时间和空间通过的航空器数量。通过优化空中交通流量,将空中交通管制服务与机场、航路有效结合,减少延误,提高机场和空域的利用率。从时间角度上,空中交通流量管理可以分为航路流量管理和机场终端区流量管理两部分,从时间上又可划分为战略流量管理,预战术流量管理和战术流量管理。当航空器数量饱和时就要对航空器进行流量控制,目前的常用的控制措施如下:1)地面等待,最主要的空中交通流量管理措施,本着地面让空中的原则,对地面航空器的起飞时间进行限制;2)空中等待,航空器在航路上或终端区规定的等待点或没有冲突的临时等待点进行盘旋等待;3)更改航路等待,当航路航线的容量饱和时,航空器可以通过选择其他航路航线;4)控制航路间隔,通过对航空器进入空域的间隔进行限制,来达到流量管理的目的,吸收部分拥挤的流量。
agent在人工智能的研究中,指能自主活动的软件或者硬件实体,目前国内普遍翻译为智能体。在人工智能中,设计关键智能体,对于研究人工智能的应用是非常重要的。在空中交通流量管理中,设计如下关键智能体:航班智能体、航路智能体和机场终端区智能体。航班智能体的属性有高度、速度、上升/下降率、起飞机场、目的地等。航班智能体可以与区域内或终端区的其他航班智能体建立通信,通过获取航班信息和逻辑判断,结合周围环境与自身状况,指导控制自身行为。如果航班智能体需要做出相应的调整如改变高度航向等,需要给上级的航路智能体或机场终端区智能体发出申请,上级智能体批准后,航班智能体才能采取相应的调整,作出相应的控制行为,才能通过交互环境反馈相应结果。在实际工作中,这个过程是通过空中交通管制员指挥航空器实现的。空中交通管制员在实际指挥工作中,需要结合当时的空中交通状况和自身的经验知识。航路智能体的主要属性有航路的`高度、宽度、容量等。航路智能体需要对航班智能体进行指挥,管理航路上的智能体,同时与其他航路智能体和机场终端区智能体进行通信,对航班智能体进入和离开航路的时机进行协调,记录流量信息并报告给上级流量管理部门,接收上级智能体的指令。在航班智能体进入航路之前首先要进行容量评估。通过评估后的航班智能体回收到航路智能体发出的放行许可才能进入航路。如果没有通过容量评估,则要向上级智能体发送将流量限制的申请,发布流量限制后航路就不能批准航班智能体的进入,通过减少航班智能体的数量,控制航路交通流量。机场终端区智能体:在实际工作中,机场终端区的航班管理包括管制指挥、流量控制、地面场面监视、进离场等,难度较大。终端区智能体(通常运行中为塔台管制)首先要处理所收到的信息,如天气雷达信息、地面运行信息和情报信息等等,结合已有知识开展机场的容量评估。如遇到低云低能见度、雷雨等天气时可以调低终端区/机场容量,对进入离开的航空器进行限制。通过容量评估,塔台会给航班智能体一个slottime,航班智能体按照塔台的slottime起飞或降落,从而达到流量控制。如果没有通过容量评估,则需要通过上级的智能体批准,发布流量控制,限制终端区的流量,通过控制进入或离开的航空器数量达到流量限制的目的。机场终端区智能体(塔台)对终端区的航空器进行管理,还需要与航路智能体和平级的终端去智能体进行通信,对航班进出的slottime进行协调,并将流量管理信息报告给上级流量管理部门,接收上级智能体的命令。如果出现拥堵机场终端区智能体需要通过一些措施来管理流量,如分配slottime、指挥航空器地面或空中盘旋等待。
3结论。
综上所述,以往在模拟空中交通流量进行研究的时候,首先制定流量控制信息,再在系统模拟航班飞行计划。这样的模拟过程不能解决容量告警问题。如果流量控制不合理,只能重新设定流控信息,再次进行模拟,因而加大模拟过程的工作量。而通过智能体的运用,可以在模拟中不断调整智能体来模拟空中流量,增加了模拟流量过程中的灵活性,将人工智能运用于模拟中,借助智能体来模拟空中流量,可以更好的分析空中交通流量问题。
参考文献。
[2]甘鑫鑫基于多agent的空中交通协同流量管理研究[j].科学与财富,20xx(30):278.
[5]陈言俊,刘甜甜.人工智能与机器人.[6]黄昱斌.基于multi-agent的空中交通流量的探究[j].科技创新与应用,20xx(14):57-57.
人工智能的影响论文篇四
你听说过或者看到过智能垃圾桶吗?如果你们没看到,那就请跟我一起坐时光穿梭机到未来世界去参观吧!
未来的大街上,干净无比,没有落叶、没有垃圾、没有到处飞舞的苍蝇、蚊虫、更没有刺鼻的汽油味......
哟!多可爱的米奇老鼠啊!我们一起跑上前,正想抚摸它,嘿!原来是一个垃圾桶。这可不是一般的垃圾桶哟!你们瞧:米奇两眼还发着光呢,原来它正在发电来处理自已肚里的东西。米奇嘴巴紧闭着,头上有二根天线,这天线可不是好玩的,它左边一根天线是吸收路旁汽车的尾气的,右边一根天线是吸收太阳能的,以用来发电处理垃圾的;米奇胖乎乎的身体上还有三颗颜色不同的大纽扣。一个小朋友好奇的触摸了一下第一颗红色的扣子,垃圾桶的门自动翻开了,又按了一下第二颗绿色扣子,门又自动的关上了,那第三颗是干什么的呢?小朋友忍不住又按了一下第三颗的扣子,哈!真神奇,扣子眼里弹出一个微型。这时,一位阿姨走过来,见我们围着米奇,知道我们想知道这只神奇的米奇的功能,于是,便给我们介绍起来:这只米奇的脑袋里装有电脑芯片,它只要看到有人不小心掉了垃圾,它就会走过去,用手将垃圾捡起来,张开紧闭的嘴,把它扔进去。如果看到有人不爱清洁,它的另一只手那么会出示”保护环境荣耀,破坏环境羞耻”的小牌。它还有许多的内在功能:它会垃圾分类,把有毒和无毒的分装在肚子的两边,它肚子里还有一种溶化器,它把无毒的垃圾处理成肥料,把有毒的垃圾通过自身的.排毒器将它转换成一种无毒的清新气体,释放出来。它还有一种非常有趣的趣事,一但它肚子的垃圾装满了,它就会自动处理垃圾,并会走到一棵树下,从紧闭的嘴里弹出一根管了,然后插入土里,把垃圾养份注入树里,然后又回到它原来的位置。
到了秋天,秋风扫落叶时,米奇头上便会张开一个巨大的吸盘,把黄叶都吸进去,然后又做成肥料。米奇的脚下还有一种粘了水的毛刷式吸尘器,它可以一边唱”小曲”,一边走一边清洁道路。如果我们现实中有这种垃圾桶,那该多方便啊!我想,这个愿望不会是梦,我们的愿望一定会实现。
人工智能的影响论文篇五
1、构思要围绕主题展开:若要使论文写得条理清晰、脉络分明,必须要使全文有一条贯穿线,这就是论文的主题。主题是一篇学术论文的精髓,它是体现作者的学术观点学术见解的。
2、构思论文布局,要力求结构完整统一:在对一篇论文构思时,有时按时间顺序编写,有时按地域位置(空间)顺序编写,但更多的还是按逻辑关系编写,即要求符合客观事物的内在联系和规律,符合科学研究和认识事物的逻辑。但不管属于何种情形,都应保持合乎情理、连贯完整。
3、要作读者分析:撰写并发表任何一篇科技文章,其最终目的是让别人读的,因此,构思时要求做“心中装着读者”,多作读者分析。有了清晰的读者对象,才能有效地展开构思,也才能顺利地确定立意、选材以及表达的角度。
提高构思能力。
1、写学术论文之前,先拟定提纲,可以极大地帮助作者锻炼思想,提高构思能力。
2、写作提纲,可以帮助作者勾划出全篇论文的框架,体现自己经过对材料的消化与进行逻辑思维后形成的初步设想,可计划先写什么、后写什么,前后如何表述一致,重点又放在哪里,哪里需要进行一些注释或解说。按此计划写作,可使论文层次清晰,前后照应,内容连贯,表达严密。
3、拟制写作提纲,只需要运用一些简单的句子甚至是词与词组加以提示,把材料单元与相应的论点有机组织编成顺序号,工作量并不大,也容易办到。提纲中用以提示写作的句子,有时即可用来做论文段落的标题。
讨论部分的写作技巧。
1.描述结论:首先,从专业角度对自己的研究进行总结,此部分务必与研究结果和研究目的保持一致,也就是说讨论部分的内容必须在结果中找到依据。否则就会给人一种课题设计不完善的感觉。
2.解释结论:对本研究的结论进行解释,为了突出解释的科学性和可靠性,一般是在和别人的研究分析对比中进行解释。列出几篇和自己结论一致的文献,同时也要列出几篇和自己不一致或者相悖的文献,但要解释出不一致的理由,比如是因为所选群体不一致,研究条件不一致等等,因为科学研究中的可控变量较多,所以解释两个结论不一致一般不难。
3.研究价值:结论解释完之后,还要说明本研究的应用价值,也就本研究所能给社会或者临床带来什么实际价值,比如本研究可以进一步明确某种方法治疗某种疾病的效果,本研究发现某种药物存在一些尚未发现的治疗作用,或者本研究可以为相关研究提供参考。
4.不足之处:任何一项研究由于客观条件的限制,不可能尽善尽美,都会或多或少存在一些不足之处,或者由于当前科技水平的限制,也会导致研究所存在的一些局限性,描述此部分内容时,一定要慎重。
尽量列出1~2个不影响本研究结论科学性和准确性的限制,比如本研究的样本含量较小,或者本研究随访时间较短等等,一般不要列出诸如本研究所用统计方法不当,或者本课题的所用评价标准不够成熟等。
5.研究心得:在文章最后,应说明本文所要传递的信息,或者是对后续研究的展望。一般文章最后写出本文要传递给读者什么有价值的知识或信息,也可以是给读者带来的启发。比如:“随着对不稳定型上颈椎结核性骨折的研究不断深入,探求一种既能实现理想的复位固定,又可保留寰枢椎关节活动功能的内固定方法是我们当前研究的方向。”
人工智能的影响论文篇六
第一个是人工智能技术专业术语叫数据结构化技术,可以把当前采集的数据编进计算机进行分析。
比如学生所做的试卷、作业,这是课前和课后衔接的一个重要环节。以前作业做完就结束了,现在机器可以把做完的作业编成计算机可以处理、分析的数据。
第二个是可以让优秀经验模式化。
现在的人工智能技术可以批阅越来越多的数学和中英文作文题,以后还可以批阅更多领域的题目。未来机器还可以把更多优秀的`活动变成一种模型让计算机去运行,从而代替很多繁琐的工作。
第三个是数据驱动的个性化的教学资源。
机器可以变成千里眼帮老师观察每一个学生。每个学生都有一个机器学习伴侣,可以帮助学生整理学习笔记、发现学习中的问题,帮助学生更有效率地学习。所有的教育专家们都在关注教育数据,而海量的学生学习数据也需要大量采集。
而在教育教学中人工智能主要作如下应用:
第一个是优质教学资源的结构化。将原先的精品课堂和微课再细分,片段化,优化资源结构。
第二个是全时互动以学定教。运用反转课堂进行互动,以学定教。
第三个是虚拟现实或者增强现实对教学的支撑。学生有一些需要发挥想象的课程,在有了虚拟现实以后,学生可以非常好地去理解原来很难想象的知识点。
第四个是个性化教学。有了大量学习的数据以后,系统可以对学生进行问题诊断,最后给学生推送个性化的学习资源。
第五个是主观题的评测。主观题的评测难点在于海量的数据支撑,只有有了海量的大数据支撑,主观题才能发挥出人工智能的优势。
人工智能的影响论文篇七
在二十一世纪的将来,宁波市室验小学的中心,有一座巨大的建筑物――大本钟。
这不是大本钟的仿照,而是一座高科技的智能教学楼。这座楼分成一个个小小的圆,那是一个个教室。现在,可以让你见识见识所谓的“高科技”啦。走上楼梯,来到四(五)班的教室门口,门口摆着好多双鞋,不用惊奇,教室是圆的,固然得穿特别的鞋啦。在门框上,有一个指甲大小的洞,那是微形录像头,假如你晚到了便会自动发信息给教师,以防你不诚恳,偷偷溜进来。教室的中心有一大个一大个的沙包,那是学生座椅,你任凭怎么坐都可以,由于它有一个芯片,可以测你的心理,只要在听课就可以。假如没听课,它就会像一把扎满钉子的“活火山”,把你弄得苦痛不堪。教室里没有桌子,一人一个平板电脑,教师讲课的板书占一半,不用怕看不见,在为可以放大。另一半是录像机,把教师讲的课全程录像。
教室前面的讲台更牛,还有那个“大本钟”语。数教师(包括全部教师)要拖课,那把教室建成大本钟干吗?钟一响,学生倒安平稳稳的,教师在讲台上却被震得象在12级地震现场,五脏六腑都“蹦”了出来。假如学生很喜爱,只要在“课后评分”地方点一个好,教师就会留下来。“墙”上的黑板也有芯片,教师不用找文件,心里一想,文件就会立即翻开。芯片还能识别人。同学假如在动,不到5秒,电脑就会自动关机,以防坏掉。黑板角落一个个白色的,上面画有图案的是教室按扭,一按,相应的教室布置,让同学们和教师不会为没有教室而苦恼。
教室后边的图书角也很奇妙。想到什么书,什么书就会被推出一个角,不用我们一本本地找了。图书角的边上有一个生物角,透亮的玻璃里一个“动物园”一样的地方。每天都会引来很多奇怪的眼睛,里面除了凶狠的野兽,其它动物几乎都不缺。进入边上的“更衣室”,一套适合你的衣服就穿在了你身上,再走进“迷你动物园”,边上不是透亮的了,而是一望无际的“动物天堂”。尽管知道这是幻觉,但学是很吸引人。走近那些动物,衣服起了作用,让人听懂了它们的语言,还能和它们沟通呢!
不止这些呢,节日里,“天花板”上的灯会身出五彩的`光线,平常只会在摔倒时变软的“地板”现在一不当心踩着了哪块,“砰”地一下就会炸出五色的彩带,立即又自动恢复,为节日增加不少乐趣。
噢,差点遗忘了,教室是园的,真正的目的就是不让教师体罚学生。由于那把“沙包椅”已经起到这个作用了啦!
这样一个智能教室,肯定会在21世纪被创造出来让我们用的。我们肯定要去研发出这种高科技的智能教室。
人工智能的影响论文篇八
智能交通系统(intelligenttransportationsystems,简称its)是将先进的信息技术、数据通讯传输技术、电子传感技术、电子控制技术及计算机处理技术等有效地集成运用于整个地面交通管理系统而建立的一种在大范围内、全方位发挥作用的,实时、准确、高效的综合交通运输管理系统。its能有效地利用现有交通设施、减少交通负荷和环境污染、保证交通安全、提高运输效率、促进社会经济发展、提高人民生活质量,并以推动社会信息化及形成新产业而受到各国的重视。目前已形成世界二十一世纪的发展方向。
交通仿真是智能交通领域的重要分支,它是利用最先进的计算机技术,通过仿真模拟的方法来分析交通问题,辅助交通管理人员做决策。传统上,数学推导、科学实验是进行科学研究、解决科学问题的主要方法。对于交通问题来说,由于参与交通的人很多,影响交通出行的因素也很多,人们很难、甚至无法对交通问题建立精确的数学模型。同时,由于安全、法规,以及开销方面的原因,进行现场交通实验通常也是不可行的。而交通仿真恰恰能够有效地解决上述两个方面的困难。
然而,传统的交通仿真由于设计理念上的原因,并不能从根本上有效地解决交通问题。这是因为,交通系统是一个庞大的复杂系统,必须用对付复杂系统的方法来处理,也就是要用综合的方法,而不是还原分解的方法来处理。
1)城市交通系统是由经济、环境、人口等因素综合作用的结果,必须全面综合地考虑城市交通和这些系统之间的关系。例如,不能为例城市交通问题的解决,而导致城市生态恶化,危害人居环境;不能为了城市交通的畅通,阻碍城市社会经济活动的健康发展。我们必须在已有工作的基础上,突破传统思维,探索研究此类复杂系统的新途径,而基于人工系统的研究方法正是这种有效途径之一。
2)城市交通问题不存在“一劳永逸”的解决方案。城市交通系统涉及人与社会的动态变化,本身也在不断变化和发展之中,不可避免地需要一个不断深化地认识过程,这类系统实际上不存在精确完备的整体解析模型。因此,无法“一劳永逸”地解决城市交通问题,我们需要基于“不断探索和改善”的'原则,研究建立有效可行的计算实验方法体系,为不断地完善城市交通系统的综合可持续发展方案提供科学依据。
3)城市交通问题不存在一般意义下的最优解,更不存在唯一的最优解。首先,基于解析模型的最优解与假设条件直接相关,具有条件敏感性,但对于城市交通这样的问题,假设条件与实际情况往往存在很大差别。其次,解决这些问题一般不存在单一的优化指标,而多层次多目标优化往往导致多个甚至无数个解决方案,就连采用近似模型的多目标优化也是如此。再者,对于这类复杂系统,有时甚至连确定一个量化的综合优化指标也有困难,特别是由于复杂系统长期行为的不可预测性,试图求解其某一最优化解决方案本身就是不可行的。因此,我们应当接受有效解决方案的概念,而且还要接受一般情况下存在多个有效解决方案的事实。在这种情况下,我们应该利用平行系统方法,追求具有动态适应能力的有效解决方案。
基于以上分析,中国科学研自动化所王飞跃研究员提出了人工交通系统的概念。其基本思想是利用人工社会的理论与方法,把交通仿真推向更高的层次、获得更广的视野。它利用基于代理的建模、面向对象的编程和并行分布式计算等方法和技术,“生长”和“培育”交通系统,即“人工交通系统”。
利用人工交通系统解决问题的思路跟改革开放摸着石头过河差不多,不断探索和改善,使过程、方法更科学化、系统化、综合化,不断改善探索建立城市交通、物流、生态综合发展的理论和方法体系。
三是平行管理运行,虚拟交通系统与实际交通系统相结合,直接采集现实交通数据,进行超前运算,以判断可能发生的交通事件,提前采取预防措施,为交通的高效畅通提供保障。
1)在宏观认识上,人工交通系统不是单纯的讨论交通自身的问题。相反,人工交通系统将交通看作社会整体的一个子系统,与经济、人口、环境、气候等子系统具有平等的地位,并将各个子系统之间的相互衔接、相互联系、相互作用和相互影响作为研究的重点之一。
2)在仿真方法上,人工交通系统属于微观仿真的范畴,但是不局限于研究局部的交通问题。人工交通系统面向大区域的仿真研究,采用复杂性科学中“涌现”的原理,在底层建立单个交通出行元素的代理模型,通过大交通区域内单个代理模型之间的相互作用,“涌现”出宏观的交通现象。
3)在实现手段上,人工交通系统不能在单一、孤立的计算机上进行仿真,要使人工交通系统具备真实交通系统的分散性和社会性,必须采用先进的分布式计算方法,如网格和p2p等,在互联网上建立结构化、分散化的虚拟交通路网系统,并且通过终端界面将网络中的真实人吸引到人工交通系统的运行中来,以使每一个代理模型具有逼近现实的社会属性。
4)在仿真目的上,人工交通系统不是一味的追求逼近现实交通环境和状态。除此之外,人工交通系统可以通过调整参数、添加随机事件等方法产生现实交通系统可能但尚未发生的交通现象,用以制定突发事故的紧急预案、交通控制方案的预评估以及交通参与人员的培训等等。
人工系统说起来有一点抽象,其实说穿了很简单。第一是充分利用计算机技术的发展,第二是仿真与模拟的常态化。仿真不再是一个项目立项前跑一跑看看行不行的手段,仿真要秒秒在、分分在、永远在。它是经验与知识的数字化、动态化和即时化,使人工影响现实,虚拟影响实在。
人工交通系统完善之后,人们可以像玩网络游戏一样,作为一个行人或司机加入到系统中,不必出门即可体验交通;交警同志可以在人工交通系统中学习指挥交通,而不必担心造成拥堵;交通分析人员可以利用人工交通系统研究各种突发事故对交通的影响,而不必担心人民的生命财产受到威胁;交通管理和决策人员可以在人工交通系统试验交通政策和方案,而不必承担决策失败的风险。
人工智能的影响论文篇九
随着超声诊断技术在临床中广泛应用以及不断的发展和日益完善中,超声学对患者的病情及时快速的检测方面做出了重大的作用。使得很多腹部疾病以及意外创伤的患者得到了迅速、及时且有效的治疗方案,减轻了患者的痛苦,给患者提供了医治空间,提高了患者的致残率以及死亡率。本文主要将我院20xx年6月至20xx年10月收治的50例急诊患者分别采用常规诊断和超声医学进行诊断,且分析比较,现将调查结果报告如下:
1资料与方法。
1.1一般资料。
采用随机数字表法将我院在20xx年6月至20xx年10月收治的50例急诊患者,均分为超声医学诊断的观察组和常规诊断的对照组,且都符合急诊诊断的标准[1]。其中治疗组男性患者14例,女性患者11例,年龄31-64岁,平均年龄为(43±21),黄体破裂出血5例,急性阑尾炎15例,胃十二指肠穿孔2例,急性胆囊炎3例;对照组男性患者18例,女性患者7例,年龄28-66岁,平均年龄为(38±25),病程1-8年,黄体破裂出血8例,急性阑尾炎12例,胃十二指肠穿孔3例,急性胆囊炎2例;两组患者性别、年龄、原发疾病等一般资料组间比较,差异无统计学意义(p0.05)。
1.2治疗方法。
主要采用多种超声诊断仪器,如logiq400、logiq5、迈瑞ma77―0786等诊断仪器,探头的频率使用3.5―8.0mhz.在诊断过程中要求患者不能空腹,对于盆腔检查的患者需要憋尿或或者使用生理盐水对膀胱进行充盈,患者检测时采取仰卧或者侧卧的姿势,对进行全腹部多切面检查的患者,需要采取坐位进行胸膜腔的探查。
1.3疗效评价标准。
当超声诊断的结果和临床诊断一致时,便为符合标准;当超声诊断的结果仅仅显示了患者腹腔的积血、积液或者病灶区的血供量逐渐减少,便为基本符合标准;当超声诊断的结果和临床诊断不一致时,则为误诊或漏诊,称为未诊断。
1.4统计学方法。
采用spssl5.0软件进行统计分析,计量数据将采用采用x2检验;当p0.05,差异是具有统计学的意义。
2结果。
2.1两组数据比较。
通过对比分析两组分别使用超声医学进行诊断以及常规诊断的结果,见表1。
3讨论。
急诊患者一般病情都比较的紧急,且症状比较的严重。有时病人会处在休克期或者休克的前期,病情相对比较的复杂,婴幼儿的患者一般不能完全的表达病情。是否能够对患者及时明确的进行诊断,可以有效的减少并发症以及死亡率,成为临床抢救措施的关键因素。临床的医生可以根据患者病情的症状、体征以及其他检查作出一些鉴别性的诊断,但在大多数的情况下还是难以进行确诊。然而具有操作方便、使用快捷的超声检查,发挥其特点,用独特的声像图片为临床提供有利的证据。超声医学的检查可以有效的缩短医生的确诊时间,减轻了急诊患者的病痛,给患者提供了足够的治疗空间。超声诊断在妇产科疾病、肠胃疾病以及胆囊等各类疾病中的表现具有差异性,以下将对各种病情做出分析[3]。妇产科疾病:超声医学在妇科的作用是无法代替的,异位妊娠的声图像是子宫内膜中出现不同程度增厚现象的表示,在患者的子宫一侧会出现混合型的团块,但在声像图中并没有非常明显特征的表示。盆腔炎患者病情严重时,超声图像则会变现为子宫增大和输卵管的逐渐变粗。患者出现黄体破裂出血时在超声图中的显示和异位妊娠表现形式具有细微的变化,在检查过程中需要仔细。当随着患者的发病时间以及血块的多少变化时,胎膜下积血声像学则会表现胎盘和子宫壁间的边缘部分具有粗糙且规则不一的液体状的暗区,有许多斑点状呈现高回声、杂乱的回声或者不均质的低回声。胃肠道系统疾病超声检查:当患者的胃十二指肠穿孔时一般会出现误诊或者漏诊的情况,此时在检查过程中还要结合其他的手段进行辅助性的检查,如x光线等。当患者出现急性阑尾炎时,超声图像一般表现为阑尾体型会有显著性的增大,呈现出模糊的周围结构且具有高、低、高的回声。急性阑尾炎的图像特点为:一般的阑尾炎,阑尾肿大,其直径一般9mm,具有比较清晰的阑尾管的壁层,且从外到内逐渐呈现出高回声、低回声、高回声;急性化脓性的阑尾炎,阑尾具有明显的粗大状态,可以通过肉眼辨别出来,具有较厚的阑尾壁,腔内具有较多的积液,且有代表性的少量的斑片状的高强回声。阑尾的横切面呈现出强弱相间的环形回声以及靶环征;急性阑尾炎合并周围脓肿,其患者的阑尾状态是无法进行辨认的,但在右下腹可以看到类似于圆形团状的回声,且在内部会呈现出不均匀的杂乱的低回声。胆管系统疾病:当患者出现胆总管结石时,进行超声检查,管内具有强回声且伴随位于后方的图像影射[3]。当患者胆管内具有胆汁淤积时,胆管就会出现不同程度的扩张现象。患者胆囊发炎时,超声图像中的胆囊具有显著性的扩充,具有较厚的胆囊壁,较强的张力,强回声光团会出现在胆囊颈部。
综上所述,超声医学的诊断具有操作简单、经济适用、准确诊断的特征,且还可以在定位的同时,了解患者是否存在并发症,因此在临床中的应用越加广泛,为临床的医生提供了具有重要价值的参考以及治疗方案。特别是在胸腹部创伤以及急性腹部的疾病急诊体系中起到了重要的作用,且不同程度上促进了医疗急救体系的发展。
参考文献:
人工智能的影响论文篇十
摘要:电气工程及其自动化的实现,从根本上促进我国电气产业迅速发展,满足人们的日常生活需求。但在实际的自动化发展过程中,还存在一些不足之处影响电气工程的生产效率,难以满足当前时代的需求,基于此,作者结合自身经验,对电气工程及其自动化发展的现状,及其中存在的问题及解决措施进行有效的分析,以供相关人员参考,为其提供借鉴。
关键词:电气工程;自动化;问题。
引言。
随着时代不断发展,信息技术、电气工程自动化技术逐渐被广泛应用。受生产力水平提升的影响,人们对于电气工程及其自动化的要求也不断提升,以满足时代发展,但实际上,现阶段电气工程及其自动化中存在诸多问题,其技术水平与社会生产力发展需求未能有效的相适应,难以满足当前社会的需求。
1我国电气工程及其自动化现状分析。
电气工程及其自动化属于新型的技术,具有较强的综合性,直接影响我国工业的生产水平,并与人们的日常生活息息相关。现阶段,我国电气工程技术不断创新发展,从根本上带动电气工程及其自动化领域发展,并促使其逐渐向高新技术转化,扩大技术的应用范围,从整体上促进国民经济提升。实际上,电气工程及其自动化属于现代电气信息领域,其涵盖内容非常广泛,包括与电气工程相关的所有工程,并在多个领域中进行应用,例如,工业领域、军事领域、农业领域等,对我国的工业与社会发展起到积极的促进作用,同时,电气工程及其自动化技术的创新与发展对于人们的日常生活方式与生产方式也产生影响,以推动国民经济稳定发展[1]。
2我国电气工程及其自动化中存在的问题。
2.1电气工程能源损耗问题。
在电气工程及其自动化的实际应用过程中,受自身的工作性质与设备影响,存在能源损耗问题,直接造成能源浪费,加剧现阶段我国能源紧缺的压力,与当前的节能减排理念相悖,不符合可持续发展战略的实施,同时提升了工业生产的成本支出,降低了经济效益。
2.2电气系统的集成化不高。
现阶段,受时代发展与实际需求的影响,促使电气工程自动化系统逐渐向集成化方向发展,以满足当前时代的要求,但由于我国电气集成化起步较晚,当前的集成化水平较低,处于独立自动化阶段,影响信息与资源的共享。
2.3电气工程自动化系统难以统一。
为了满足当前的发展需求,电气工程要利用先进的技术,构建完善合理的自动化系统,以此提升工作效率,但受多种因素影响,系统难以进行合理的统一,缺乏兼容性,降低了系统的工作效率。
2.4电气工程质量达不到要求。
电气工程的质量直接影响其使用寿命,但受实际的工程质量管理工作影响,以及工作人员自身的管理水平偏低、管理意识落后等因素的影响,导致电气工程质量经常达不到实际的要求,质量管理效率不高。
3现阶段我国电气工程及其自动化中存在问题的解决措施。
3.1合理对电气工程进行节能设计。
在当前的时代背景下,工作人员应重视电气工程的能源损耗问题,利用先进的技术手段,降低能源消耗,以满足当前可持续发展战略,缓解我国能源与资源紧缺问题。例如,利用合理的技术手段,优化电气工程的节能设计,从根本上降低能源的不必要浪费,降低成本的支出。在实际的节能设计优化过程中,工作人员应结合实际情况,以工作最基本要求为基础,对非重点环节进行有效的改良,如,对现阶段的变压器进行改良,选择绕组阻值较小的供电系统变压器,以此来降低变压器的能源损耗,从而减少不必要的损失浪费,达到节能的目的,促使我国电气工程实现可持续发展。
3.2从整体上提升电气工程自动化系统的集成化水平。
提升工作人员自身的专业水平与能力,利用工作人员的专业技术,建立完善的系统平台,并充分发挥其创新意识与主观意识,从根本上满足实际的集成化需求,具体来说,主要从以下两方面入手:一方面,完善电气工程系统的兼容性,保证系统软硬件在交换过程中具有统一的接口,从而实现信息数据的共享;另一方面,提升各功能与系统之间的链接效率,从整体上降低电气工程自动化系统的运行成本,从而促使减少设计成本的支出,以满足当前时代的需求。
3.3构建科学合理、统一的电气自动化系统。
构建科学合理、统一的电气自动化系统是电气工程未来发展的主要方向与趋势,以此来提升电气工程的整体质量。具体来说,主要包含以下几方面:首先,积极引进先进的技术,以先进的电气自动化技术为基础,构建完善的系统,从而提升整体的管理水平;其次,引进先进的设计理念,完善现阶段电气自动化系统,改善其中的不合理之处,并针对现阶段的企业不同需求进行个性化开发;最后,实现信息资源的有效共享,促进我国电气工程领域稳定发展,跟上时代发展的步伐[2]。
3.4重视对电气工程的质量管理。
重视对电气工程的质量管理,可以从根本上提升电气工程质量与使用寿命,并保证工程使用安全。具体来说,可以从以下几方面入手:首先,加强工作管理人员对电气工程质量管理的重视力度,认识到管理的重要性,以此来保证工程质量;其次,加强现阶段工作人员自身的专业水平与能力,通过定期的培训,强化工作人员的专业水平与技术理念,利用其良好的综合素养,提升质量管理效率;然后,加强对电气工程施工材料的管理,保证材料的质量,从而提升电气工程的质量;最后,重视对各个施工环节的质量管理,通过合理的监督与管理,保证施工的规范性,并以其整体质量为基础,适当对施工进度进行合理的调整,以此来保证施工的整体进度。
4结论。
综上所述,电气工程及其自动化中存在的问题,直接影响电气工程的整体质量与效率,因此,工作人员应积极引进先进的技术与设备,通过不断的革新与发展,合理的进行资源节约,降低成本的支出,以此来获取可观的经济效益。同时,加强对电气工程的研究力度,不断提升其技术水平,从而推动我国电气工程及其自动化领域稳定发展。
参考文献:
[1]宋海南.电气工程及其自动化中存在的问题及解决措施[j].南方农机,20xx,47(11):134+148.
[2]闫海东,程世伟.浅析电气工程及其自动化中存在的问题及解决措施[j].科技创新与应用,20xx(06):69.
人工智能的影响论文篇十一
摘要:
随着科学技术的不断创新与完善,人工智能化发展得到了质的飞跃。人工智能技术应用作为电气工程自动化过程的重中之重,是一个不可或缺的关键部分,直接关系到电气工自动化的稳定持续发展。人工智能领域涵盖的内容主要包括了图像识别、机器学习、智能搜索、语言识别以及专家系统等。为了推动我国电气自动化控制的创新发展,相关企业要加强对人工智能的研究开发工作,为社会创造出更多的价值效益。本文将进一步对人工智能在电气工程自动化中的应用展开分析与探讨。
关键词:
当前是一个科学技术时代,电气工程发展要与时俱进,跟上时代前进的脚步。电气工程行业要想有效实现电气自动化控制和管理,就必须充分发挥出人工智能技术的作用。人工智能的研究范围不仅涵盖了图像语言识别和自动化控制,还包括了专家系统和人工神经网络等内容。因此,电力企业必须通过合理利用人工智能技术,才能有效实现对各项机械设备的自动化控制,从而大大降低企业的人工成本,保障企业创造出更多的经济效益和社会效益。
二、电气工程自动化过程应用人工智能的主要优势。
(一)利于参数的优化调节。
相比较传统的控制器,通过利用人工智能技术控制有利于各项参数的科学优化调节,同时还较为简单易学,具备了良好的适应能力。合理调整人工智能的相关参数,能够最大限度提升智能函数的各项性能。此外,人工智能控制器无需专家的现场指导帮助,其能够根据计算机事先设置好的合理数据,正确运用反馈的信息与语言进行设定,此外设置好的参数能够进一步完成修改和扩展作业,具有快捷方便的特征。
(二)受相关因素影响较小。
电力企业在传统电气工程建设中所应用的人工控制器会受到各种不确定因素的影响,导致在工作过程中出现各种问题,不利于企业安全稳定的持续发展。而通过在电气工程自动化中应用人工智能技术,能够有效省去获取精确动态模型的步骤,适应能力较强,无需为其提供固定不变的工作环境和参数设置,总体来说受到外界的因素影响较小,能够保障各项机械设备安全可靠的运行生产。
(三)自动化控制过程中产生误差小。
由于在电气工程自动化中有效融合了人工智能技术,该项技术的运行不会过多受到外界因素的干扰,造成严重的运行故障问题,从而确保机器事先设置好的参数在实际操作过程中不会发生任何变动,从而有效避免了实际值与理论值出现很大偏差的问题,充分保障了电气工程自动化的高效控制管理。
(四)具备良好的一致性。
(五)降低企业人力物力。
成本通过在电气工程自动化控制中应用人工智能技术,能够有效减少各项电力机器设备对变压器与线路的需求,企业也无需再专门调度安排更多的工作人员对设备进行管理维护,从而最大限度降低了企业在人力和物力上的投资成本,有利于企业更好地发展。
三、人工智能在电气工程自动化中的实践应用。
(一)完善电气自动化性能,提高产品质量。
众所周知,人工智能技术最为显著的特征就是模拟人类大脑思维,设计人员通过将人工智能技术中的遗传算法有效融入到各项电器设备中,不仅仅能够完善优化各项产品的具体性能,还能够最大限度提升电子自动化性能,从而有效提高各项电气设备的工作质量和效率,充分保障了电气工程自动化控制过程的科学准确性。此外,人工智能技术在电气工程自动化领域的应用,能够降低企业人力成本的支出,推动我国电气工程高速稳定地发展进步。电力企业基于人工智能技术的辅助下,187页)能够将cad应用到任何电器产品设计工作中,从而大大缩减了各种电力产品的开发设计周期,并且拓宽了cad技术的研究应用程度,降低了设计人员的工作难度和任务量,在保障电器产品高质量的前提下,创造出更大的经济效益。
(二)实现智能化控制,提高工作效率。
人工智能技术所使用的智能化控制器,通过将人工智能与电气工程自动化控制有效结合在一起,能够最大化发挥出智能化控制器的作用。例如,智能化控制器能够科学根据下降和响应的具体时间完成对调节控制程度的合理控制,基于这种情况下,人工智能能够大大改善电气自动化控制管理的相关性能[3],为电气工程自动化建设工作打下扎实的基础。与此同时,电力企业通过引进应用先进的智能化控制器,能够实现电气工程自动化控制相关数据的实时分析调节,无需专门安排专家技术人员在现场进行指导和监督,相关工作人员在控制室通过计算机就能够实现远程控制操作,从而有效提高自动化控制管理的工作效率。
(三)改善故障诊断技术,提高诊断水平。
电力企业在电力工程自动化控制过程中,会遇到各种运行故障问题。例如,常见的发电机断电、变压器过热等事故,对于这些运行故障,传统的诊断方法是通过收集相关气体样本,并对其进行科学分析判断,最终得出发生该故障的具体结论,有针对性地采取解决措施。传统故障诊断方法除了需要维护检修人员花费较多的时间与精力,电力企业还必须安排管理人员对各项设备进行实时监控,这无疑加大了企业的人力支出成本。而通过利用人工智能诊断技术,在故障诊断过程中有效融入模糊理论、专家技术以及神经网络,能够大大提高电气设备故障的诊断效率,在第一时间发现问题并解决问题,从而降低了企业在人力成本上的支出,保障企业各项电力设备安全可靠地持续运行,满足社会对于高质量电力的需求。
四、结语。
综上所述,为了推动我国电气工程自动化的稳定持续发展,政府相关部门要加强与社会企业的联系与合作,共同大力推广应用人工智能技术,不断提高电气工程自动化技术水平。通过在各项机器设备中加入智能化控制器,从而有效实现各个控制环节的自动化,方便企业内部人员的管理和维护,充分保障产品生产的高质量,满足社会用户的各项需求,为国民经济发展贡献最大的力量。
参考文献:
人工智能的影响论文篇十二
人工智能(artificialintelligence,ai)一直都处于计算机技术的最前沿,经历了几起几落……。
----长久以来,人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,从美国的麻省理工学院(mit)、卡内基-梅隆大学(cmu)到ibm公司,再到日本的本田公司、sony公司以及国内的清华大学、中科院等科研院所,全世界的实验室都在进行着ai技术的实验。不久前,着名导演斯蒂文·斯皮尔伯格还将这一主题搬上了银幕,科幻片《人工智能》(a.i.)对许多人的头脑又一次产生了震动,引起了一些人士了解并探索人工智能领域的兴趣。
----在本期技术专题中,中国科学院计算技术研究所智能信息处理开放实验室的几位研究人员将引领我们走近人工智能这一充满挑战与机遇的领域。
----“智能”源于拉丁语legere,字面意思是采集(特别是果实)、收集、汇集,并由此进行选择,形成一个东西。intelegere是从中进行选择,进而理解、领悟和认识。正如帕梅拉·麦考达克在《机器思维》(machineswhothinks,1979)中所提出的:在复杂的机械装置与智能之间存在长期的联系。从几个世纪前出现的神话般的巨钟和机械自动机开始,人们已对机器操作的复杂性与自身的某些智能活动进行直观联系。经过几个世纪之后,新技术已使我们所建立的机器的复杂性大为提高。1936年,24岁的英国数学家图灵(turing)提出了“自动机”理论,把研究会思维的机器和计算机的工作大大向前推进了一步,他也因此被称为“人工智能之父”。
----人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学召开的会议上正式使用了“人工智能”(artificialintelligence,ai)这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语言理解、博弈、自动程序设计、专家系统、学习以及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统,例如能够求解微分方程、设计分析集成电路、合成人类自然语言,而进行情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我们的生活。我们熟知的ibm的“深蓝”在棋盘上击败了国际象棋大师卡斯帕罗夫就是比较突出的例子。
----当然,人工智能的发展也并不是一帆风顺的,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷,但是随着硬件和软件的发展,计算机的运算能力在以指数级增长,同时网络技术蓬勃兴起,确保计算机已经具备了足够的条件来运行一些要求更高的ai软件,而且现在的ai具备了更多的现实应用的基础。90年代以来,人工智能研究又出现了新的高潮。
----我们有幸采访了中国科学院计算技术研究所智能信息处理开放实验室史忠植研究员,请他和他的实验室成员引领我们走近人工智能这个让普通人感到深奥却又具有无穷魅力的领域。
----答:ai研究出现了新的高潮,这一方面是因为在人工智能理论方面有了新的进展,另一方面也是因为计算机硬件突飞猛进的发展。随着计算机速度的不断提高、存储容量的不断扩大、价格的不断降低以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。目前人工智能研究的3个热点是:智能接口、数据挖掘、主体及多主体系统。
----智能接口技术是研究如何使人们能够方便自然地与计算机交流。为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。目前,智能接口技术已经取得了显着成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化。
----数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘和知识发现的研究目前已经形成了三根强大的技术支柱:数据库、人工智能和数理统计。主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半结构化和非结构化数据中的知识发现以及网上数据挖掘等。
----主体是具有信念、愿望、意图、能力、选择、承诺等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定自主性。主体试图自治地、独立地完成任务,而且可以和环境交互,与其他主体通信,通过规划达到目标。多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。多主体系统试图用主体来模拟人的理性行为,主要应用在对现实世界和社会的模拟、机器人以及智能机械等领域。目前对主体和多主体系统的研究主要集中在主体和多主体理论、主体的体系结构和组织、主体语言、主体之间的协作和协调、通信和交互技术、多主体学习以及多主体系统应用等方面。
----答:我国开始“863计划“时,正值全世界的人工智能热潮。”863-306“主题的名称是”智能计算机系统“,其任务就是在充分发掘现有计算机潜力的基础上,分析现有计算机在应用中的缺陷和”瓶颈”,用人工智能技术克服这些问题,建立起更为和谐的人-机环境。经过十几年来的努力,我们缩短了我国人工智能技术与世界先进水平的差距,也为未来的发展奠定了技术和人才基础。
----但是也应该看到目前我国人工智能研究中还存在一些问题,其特点是:课题比较分散,应用项目偏多、基础研究比例略少、理论研究与实际应用需求结合不够紧密。选题时,容易跟着国外的选题走;立项论证时,惯于考虑国外怎么做;落实项目时,又往往顾及面面俱到,大而全;再加上受研究经费的限制,所以很多课题既没有取得理论上的突破,也没有太大的实际应用价值。
----今后,基础研究的比例应该适当提高,同时人工智能研究一定要与应用需求相结合。科学研究讲创新,而创新必须接受应用和市场的检验。因此,我们不仅要善于找到解决问题的答案,更重要的是要发现最迫切需要解决的问题和最迫切需要满足的市场需求。
----问:请您预测一下人工智能将来会向哪些方面发展?
----答:技术的发展总是超乎人们的想象,要准确地预测人工智能的未来是不可能的。但是,从目前的一些前瞻性研究可以看出未来人工智能可能会向以下几个方面发展:模糊处理、并行化、神经网络和机器情感。
----目前,人工智能的推理功能已获突破,学习及联想功能正在研究之中,下一步就是模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。人工神经网络是未来人工智能应用的新领域,未来智能计算机的构成,可能就是作为主机的冯·诺依曼型机与作为智能外围的人工神经网络的结合。研究表明:情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能在于赋予计算机情感能力。情感能力对于计算机与人的自然交往至关重要。
----人工智能一直处于计算机技术的前沿,人工智能研究的理论和发现在很大程度上将决定计算机技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的`生活、工作和教育等带来更大的影响。
----人工智能也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。
ai理论的实用性。
----在一年一度at&t实验室举行的机器人足球赛中,每支球队的“球员”都装备上了ai软件和许多感应器,它们都很清楚自己该踢什么位置,同时也明白有些情况下不能死守岗位。尽管现在的ai技术只能使它们大部分时间处于个人盘带的状态,但它们传接配合的能力正在以很快的速度改进。
----这种ai机器人组队打比赛看似无聊,但是有很强的现实意义。因为通过这类活动可以加强机器之间的协作能力。我们知道,internet是由无数台服务器和无数台路由器组成的,路由器的作用就是为各自的数据选择通道并加以传送,如果利用一些智能化的路由器很好地协作,就能分析出传输数据的最佳路径,从而可以大大减少网络堵塞。
----我国也已经在大学中开展了机器人足球赛,有很多学校组队参加,引起了大学生对人工智能研究的兴趣。
未来的ai产品。
----安放于加州劳伦斯·利佛摩尔国家实验室的asciwhite电脑,是ibm制造的世界最快的超级电脑,但其智力能力也仅为人脑的千分之一。现在,ibm正在开发能力更为强大的新超级电脑--“蓝色牛仔”(bluejean)。据其研究主任保罗·霍恩称,预计于4年后诞生的“蓝色牛仔”的智力水平将大致与人脑相当。
----麻省理工学院的ai实验室进行一个的代号为cog的项目。cog计划意图赋予机器人以人类的行为。该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。
----/报道,比利时的starlab正在制造一个人工猫脑,这个猫脑将有7500万个人造神经细胞。据称,移植了人工猫脑的小猫能够行走,还能玩球。预计它将于制作完程。
人工智能的影响论文篇十三
1950年,艾伦,麦席森,图灵发表了一篇划时代之作《制作机器会思考吗?》里面提出了测试机器是否具有智能的方法,并因此摘得“人工智能之父”的桂冠。约翰,麦卡锡在1956年的达特茅斯学术会议上,第一次提出人工智能(artificialintelligence,ai)。1997年,ibm公司“深蓝”电脑击败了人类的世界国际象棋冠军更是人工智能技术的一个完美表现。2017年7月,国务院印发了《新一代人工智能发展规划》,这是我国首个面向2030年的人工智能技术的战略发展蓝图,也表现出我国对发展人工智能技术的重视与支持,同时,人工智能人选“2017年度中国媒体十大流行语”。
人工智能是计算机科学的一个分支,可以对人的意识、思维的信息过程的模拟,人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
人工智能在会计、审计、税务等行业的广泛运用,使得传统、简单、重复性的基础会计工作岗位将面临被智能化取代,人工智能已成为促进会计行业转型发展的重要推手。近三年来,德勤、普华永道、安永、毕马威4大国际会计师事务所通过利用财务机器人进行会计、审计等工作,使得数据的准确性、工作效率、管理决策水平等明显提升,由此可见,人工智能早已潜移默化的影响到了会计工作的方方面面。
(一)会计工作效率提高了。人工智能技术与财务管理系统的对接,实现了系统自动识别票据、生成会计记账凭证、记录明细账户以及生成总账和各类报表。作业过程中系统按时间顺序记录每笔业务,对每一笔账务进行核实和验证。财务机器人还实现了信息的语音、扫描录入,财务软件可自动生成证、帐、表,这将更加高效准确地完成基础会计核算工作,提高此项工作的效率,会计人员因此节省了大量用于基础核算工作的时间,从而能将更多的精力投入在企业内部管理型的工作上,同时又提高了管理工作的效率。
(二)会计信息质量提高了。受自身能力、专业素质以及外部环境等因素的影响,会计信息数据的滞后性和人为失误在所难免。人工智能将会计模型和方法程序化,它既减少了人为失误又极大地提升了数据处理能力,工作重心逐渐转向数据的挖掘、分析等重要环节和高附加值工作中,同时,会计档案由纸质变成电子档案更便于信息系统的管理、流程化的管理和监控,避免了人工作业的失误以及造假的可能,数据信息和记录的真实性和精准度得到保证。
(三)会计职能重心转移了。人工智能虽然可以替人做一些简单、繁冗、重复性的基础会计工作,但并不能完全替代会计人员,随着人工智能与会计信息系统的不断结合,从事简单记账工作的初级会计人员将会越来越少,而中高级会计人员将会集中于行业中涉及分析、预测和统筹的领域。因而会计职能的重心将向预测、决策、规划、控制、评价等目前人工智能无法取代的管理会计的职能转移。
(四)会计人员从业压力加大了。随着人工智能被引入到会计行业中,一方面,简单的会计核算工作将被智能化财务软件逐步替代,普通核算类型工作的岗位势必减少,基层会计人员面临失业的压力:另一方面,由于财务软件能够高效完成基础财务工作,企业更需要财会人员发挥管理会计的职能,会计从业人员需要将工作重心转移到决策分析和经营管理上,使其有从财务会计到管理会计转型的压力。
人工智能的发展与应用是社会经济发展过程中的必然产物,它的到来就像一把双刃剑,虽然可以对会计行业整体工作效率与工作方式带来提升,但是人工智是不能完全代替会计人员的工作的。比如,智能化的设备无法完全替代充满人情味的服务。李开复也指出,社交能力强、应变能力强、协商能力强的人,永远不会被人工智能取代。人类的感情,想象、创造等特质也是人工智能所无法企及的。所以,对于会计从业人员而言,人工智能只是一种行业对于自身的探索以及进步,顺应这种变化,会计人员应当认清挑战,抓住机遇。
一方面,会计从业人员应调整好心态,快速适应行业的变革,重新找回自己的价值。努力提升自己的专业分析能力和管理能力,成为人工智能代替不了的高级会计工作者。比如:财务战略制定,纳税筹划,风险控制,合理避税、财务分析等。同时,向复合型人才发展。正如任正非所说,称职的cfo应随时可以接任ceo。会计人员应当开阔眼界,放大格局,不能只着眼于本职工作,还应该了解工作其他岗位的工作内容,比如销售类、生产类等部门的业务,提高自己的企业价值以及行业地位,做一名复合型人才。
另一方面,人工智能技术在财会领域的突破离不开懂会计知识的专业人员的配合,财务人员要努力学习新技能,加强计算机、信息技术的知识储备,协助人工智能会计信息系统的研发,担当人工智能会计系统的设计者和监督者。
参考文献:
[1]闰钰.企业人工智能时代下对会计行业的思考[j].商场现代化.2018(1z)。
[2]杨秀琴.浅议人工智能时代财务会计与管理会计的融合发展趋势[j].现代商业.2018(18)。
[3]李牧阳,运用给会计行业带来的问题和思考[j],中国管理信息化.2019(42)。
人工智能的影响论文篇十四
随着新型科技的持续更新,工程中逐渐应用新科技,这也是科技朝着应用式与开放式方向发展的开始。电子工程在传统工程基础上的革新,随着人工智能化发展,逐渐转换为信息化产业链接。这一智能化技术机械生产明显减少,经济效益与产量提升,我国逐渐进入到智能化阶段。
(一)发展历程。
在机械电子工程发展初期,主要体现为手工制作,生产力水平较低,资源技术等对其发展产生制约。为了提升生产效率,逐渐朝着机械工业方向发展。
在生产线阶段,机械工程已逐渐发展到流水线生产,实现标准化大批量生产,这一生产模式使劳动力得到解放,生产力水平大大提升,同时生产效率也得到提高。但是仍然存在一些不足,比如,部分生产仍就以进口为主,生产成本较大,在市场方面缺少适应力;灵活性较差,难以满足不断变化的市场需求。
在机械电子产业发展阶段中,产品生产能够适应市场的需求,对于不断变化的产品需求产业化发展能够满足。
(二)机械电子工程主要特征。
机械电子工程是复杂综合性学科,同各类学科之间都有着密切的联系。机械电子工程发展要以计算机、电子以及机械为基础,结合其他学科做出合理、科学的设计。在设计的过程中,要求每一个模块都能够实现有机结合,进而使得各个模块都能将其最大优势发挥出来。机械电子产品内部结构简单明了,并不复杂,无需复杂原件的投入,这样能在一定程度上使产品性能得到提升,进而扩大消费市场。
人工智能是一门复杂,并且综合性较强的学科,所涉及到的学科比较多。也可以说,21世纪人工智能是最伟大学科之一。人工智能实现了对人的智能模拟,并且能通过计算机使认得智能化得到进一步的延伸,人工智能这门学科有着较好的发展潜力。人工智能在发展的过程中主要经历下列几个阶段。
初步阶段。人工智能在17世纪开始发生萌芽,法国在这一阶段成功诞生世界上的第一部计算机,这一计算器只是单纯的能进行加法简单运算,但是仍就轰动世界,进而在世界范围内,对这项技术开始进一步研宄。在最初阶段,人工智能并没有明显的进展,主要是在实践的过程中积累与总结知识,这为今后人工智能发展奠定坚实的基础。
发展初始阶段。美国人在二十世纪首次提出人工智能专业用语。在这个发展阶段,人工智能主要以证明与阐释为主要体现,在这一时期对于人工智能的研宄就是首要任务。
发展起伏阶段。随着人们对于人工智能的不断深入研宄,人工智能也处于持续的发展阶段,但是在实践过程中发现,要想使人工智能模仿和人类思维同步是非常困难的。大部分对于人工智能的科学研宄仅仅是停留于简单映射层面,对于逻辑思维的研宄仍就没有突破性进展。不论怎么说,在发展的起伏阶段,人功能智能也在发展中得到了技术创新,特别是在系统方面、计算机机器人以及语言掌握方面取得了较大的成就。
起伏阶段发展以后。在这一阶段,人工智能的相关研究得到了发展,尤其是第五届国际人工智能联合会议的召开,人工智能逐渐朝着知识层面的方向发展,大部分的人工智能研都会结合相应的知识工程,在这个阶段中,人工智能发展的高度是前所未有的,在一定程度上促进了人工智能应用于实际工程中。
稳步发展阶段。随着互联网技术的快速发展,对于人工智能研宄方向发生重大转变,由原本的单一主体朝着集中统一主体的方向发展。关于人工智能在实际中的运用以及研究,受到了互联网技术的影响。网络的普及与快速发展,在一定程度上促进了信息化的发展,信息在传送方面发生率重大性变革。在人们逐渐进入信息化社会后,在信息有效处理方面人工智能的发展到了重要的作用,在模拟设计方面,机械电子工程的发展需要人工智能的大力支持。
随着我国社会经济的持续发展,社会不断的进步,对于信息人们越来越重视。在21世纪,互联网技术得到快速发展,同时信息的传递也逐渐注入新鲜血液。互联网应用的普及说明人们正朝着信息时代的方向迈进,在社会逐步信息化以后,更加需要有人工智能这一技术的支持,特别是机械电子工程发展中有着重要作用,机械电子系统本身缺少一定的稳定性,这样在机械电子工程设计方面就有着较大阻碍存在。在现代社会中,信息的处理量持续增大,并且较为复杂,有些时候需要同时对不同类型的信息进行处理,所以需要采取人工智能的.支持才能完成信息处理。人工智能主要包含模糊推理系统、神经网络系统这种两种方法。神经网络系统倾向于对人脑结构的综合分析,模糊推理系统更加重视对于语言信号的分析与理解。随着现代社会的发展,仅仅采取单一的人工智能方法,明显已经无法适应目前社会中不断变化的市场需求,所以,对于人工智能相关问题的研宂正逐渐朝着多方位、全面的人工智能方向转变。多方位全面人工智能系统通过模糊推理系统和神经网络系统相互统一的方式,扬长补短,将二者有效的结合起来,使得二者的优势得到最大程度的发挥。
智能同机械电子工程之间在相互影响的过程中,逐渐产生崭新的行业。首先通过现代科技逐渐,将人工智能融入到机械电子工程中,使机械工业发展潜力得到充分挖掘。其次随着机械电子工程发展难度的加大,对于人工智能也就提出来新的要求,这从某种程度上来推动了人工智能发展。在将机械电子工程与人工智能有效结合的基础上,促进社会生产力发展,同时也能促进有关经济产业的快速发展,这种效应将会对整个社会产生一定影响,使我国经济得到全面发展。
人工智能的影响论文篇十五
〔摘要〕人工智能飞速发展,正在改变人类生活,推动人类进步。人工智能学者从认知科学、心灵哲学以及控制论等不同视角对人工智能进行研究,但对于人工智能哲学根源的追溯与厘清较少。古希腊毕达哥拉斯主义的数论思想、亚里士多德演绎逻辑系统与分析哲学中的逻辑分析与语言分析方法以及简单性哲学原则为人工智能研究纲领、研究框架以及研究方法等奠定了基础,哲学核心问题决定了人工智能的研究进路。只有对人工智能的哲学思想源流进行追溯与探究,才能理解人工智能的理论基础,以更好地把握人工智能的发展规律并合理预测人工智能的发展趋势。
人工智能发展如火如荼,学者除了对人工智能技术本质、人工智能社会影响、发展路径及伦理问题等进行研究之外,还关注人工智能中的哲学问题。对人工智能的研究不能仅仅局限于技术层面及科学基础层面的反思,也要涉及对人工智能的哲学思考。博登指出:“在科学家族中,没有一门学科比ai与哲学的关系更密切。”〔1〕3人工智能与哲学紧密联系,特别是心灵哲学与语言哲学,认知科学与认知心理学等学科也为人工智能发展奠定了科学基础。迄今为止,对于人工智能哲学的研究还没有形成完整的理论体系,学者多从哲学视角对人工智能中的问题进行探讨,从哲学思想源流挖掘人工智能基础的著述不多。笔者尝试从人工智能的数论基础、逻辑学、分析哲学基础以及简单性原则等视角分析人工智能的哲学思想根源。
人工智能先驱西蒙与纽维尔作为人工智能符号主义(symbolicism)学派的代表,他们的研究着眼于计算机程序的逻辑结构、符号操作系统以及编程语言,这与古希腊哲学家毕达哥拉斯学派的“数论”思想一脉相承。在毕达哥拉斯看来,数是万物的本原,万物皆数。“按照普罗克洛在《欧几里德〈几何原理〉注释》中,‘数学’这个词也是毕达哥拉斯学派首先使用的”〔2〕268。毕达哥拉斯将科学研究的基础建构在数学的基础之上。毕达哥拉斯哲学思想的核心即“数”是万物的本原。按照毕达哥拉斯的数论思想,与其说水、火、土等都是万物的本原,不如用一个简单词“数”来解释万物的存在。
“数是万物的本原”包含着万物之中存在着某种数量关系的含义,不管是天体结构、音阶音律以及建筑結构等万物都存在数量关系。毕达哥拉斯学派认为数是宇宙的元素,科学研究就是寻找纷繁复杂现象之后的数量关系。例如,物理学是研究事物运动方面的数量关系,几何学是研究事物点、线、面、体之间的数量关系等。他们将事物的本质归结为数的规律,认为事物的本质就是数。按照亚里士多德“四因说”来看,毕达哥拉斯的“数”既是构成事物的形式因,又是构成事物的质料因。质料因指的是构成事物的原始质料,就好比建造房屋用的砖木石瓦,形式因即构成事物的样式和原型,就好比造房屋的图纸或建筑师头脑里的房屋原型。这样的思想家(毕达哥拉斯主义学派)认为数既是事物的质料、同时又是形成事物的变化和它们的不变状态的形式”〔3〕21-22。因此,数对于事物来说,既是质料因又是形式因。
毕达哥拉斯的哲学思想还表现在数的和谐论。他认为万物包括宇宙在内都由数构成,并且万物可以还原为数;他还认为宇宙是和谐的,并把和谐的宇宙称为“科斯摩斯”。科斯摩斯原意就是“秩序”的意思,认为世界存在内在秩序与内在规律,人类可以通过数量之间的关系找到世界的既定秩序。
毕达哥拉斯的“万物皆数,数之和谐”思想既具有本体论含义,也具有方法论意味。他的哲学思想影响了古希腊科学的发展,亚里士多德的逻辑学体系、欧几里德的几何学体系、托勒密的天文学体系、盖伦的医学体系这四大古希腊的科学成就皆受毕达哥拉斯主义哲学思想的影响。不但如此,毕达哥拉斯的哲学思想还影响了西方整个自然科学的发展。达芬奇、哥白尼、开普勒、伽利略、牛顿等人都自称是“毕达哥拉斯主义者”。达芬奇认为天体是一架服从确定自然法则的机器,自然界有确定的规律;15-16世纪带有毕达哥拉斯主义成分的新柏拉图主义者把自然事物的行为解释成数学结构;哥白尼日心说体系的理论基础也是依据毕达哥拉斯主义哲学理论来构造行星运动简单、和谐的天体几何学模型;开普勒认为自己是毕达哥拉斯主义者,他的目标就是追求造物主心中数的和谐;伽利略也是毕达哥拉斯主义的追随者,他认为“自然之书是用数学语言书写的”,自然的真理存在于数学事实中。毕达哥拉斯的数论思想还影响了莱布尼兹。莱布尼茨有一个梦想,就是给出一套理想符号系统或语言和确定的语言变换或演算规则,把日常问题转变成理想语言,利用演算规则清楚地求解问题的答案。在此基础上,莱布尼兹提出“通用机”的天才设想。莱布尼茨尝试发明人工智能通用机,他设计出一种二进制计算法,用二进制数代替原来的十进制数,二进制数即“1”和“0”。莱布尼兹虽然制作出了简单机器,但其只能进行简单的算术计算,还不是莱布尼兹设想的能够进行复杂数据处理的通用机。尽管如此,莱布尼兹思想还是影响了整个计算机系统的发展。
图灵与冯·诺依曼的人工智能机器也受毕达哥拉斯主义数论的影响,他们运用数的和谐以及数量关系的计算尝试让“莱布尼兹之梦”在现实生活中得以实现。图灵通过基本的数学运算将数学运算符号化为运算符,并用一个无限长纸带来表述计算过程,制造出了图灵机,这就是莱布尼茨所说的“通用机”。图灵认为人脑类似通用机,图灵提出一台计算机在多大程度上可以模仿人的活动,进而提出“机器能否思维”这个哲学问题。图灵坚持通过特定算法程序,把可计算的数量关系都转化为由一台图灵机来计算。冯·诺依曼指导发明第一台基于运算器与存储器的计算机,他为图灵通用机设计出一个物理模型——edvac,edvac可以执行加、减、乘、除等数学操作。与图灵一样,冯·诺依曼把人脑与机器类比,机器通过存储器储存数据,通过数学规则设计出把思维当成数据的程序,通过简单、和谐的数字制造出能进行复杂数字处理的机器。不管是图灵的通用机还是冯·诺依曼的edvac都是为了解决“莱布尼兹之梦”,其哲学思想均根源于毕达哥拉斯的“数论”哲学思想。除了图灵与莱布尼茨,纽维尔与西蒙等符号主义人工智能先驱也认为,不管是人类智能还是机器智能都是根据确定的或者规范的规则来进行符号操作的。不但如此,基于认知模拟的强人工智能也把心理状态作为计算状态,所谓认知就是计算,这是对基于数论的计算主义教条的信仰,人类智能类似于信息处理系统。联结主义人工智能不同于符号主义人工智能,它否认智能行为来自于在形式规则下对符号进行操作的观点,“符号主义人工智能中的信息处理包括明确的应用和形式规则,但是联结主义人工智能没有这样的规则”〔4〕1366-1367。与符号主义人工智能不同,联结主义人工智能的工作原理是寻找神经网络及其间的联结机制及学习算法。虽然联结主义与符号主义人工智能有区别,但联结主义人工智能与符号主义人工智能的共同假设都是把认知看作信息处理,且信息处理都具有可计算性。可见,毕达哥拉斯的“万物皆数,数之和谐”思想为符号主义人工智能与联结主义人工智能的发展奠定了基础。
除了毕达哥拉斯的数论思想,古希腊亚里士多德的演绎逻辑系统也是人工智能的哲学思想源泉。人工智能符號主义学派也称为逻辑主义学派,可见逻辑思想在人工智能发展中的重要地位与作用。即使是深受胡塞尔后期的现象学、海德格尔的存在现象学和梅洛-庞蒂的知觉现象学影响的人工智能专家德雷福斯,也肯定演绎逻辑以及形式系统在人工智能发展中的作用。在德雷福斯看来,符号主义人工智能的基础是逻辑学,是哲学中的理性主义。人工智能的主要设想是可以运用计算机的逻辑运算来模拟人类思考的过程。图灵尝试依靠逻辑发明通用机,“我希望数字计算机能够最终激起人们对符号逻辑的极大兴趣……人与这些机器进行交流的语言……构成一种符号逻辑”〔5〕288。马丁·戴维斯直接把符号主义学派的源头追溯到亚里士多德,“把逻辑推理简化为形式的努力可以追溯到亚里士多德”〔6〕200。亚里士多德是逻辑学的创始人,他认为逻辑学是获得真正知识的重要工具,逻辑学是哲学的基础。亚里士多德注重演绎推理,特别重视三段论推理,他认为三段论推理是一切思维运动的基本形式。三段论是一种典型的演绎推理模式,它由普遍性公理和推理规则经过严密的逻辑论证得出必然性结论。图灵的通用机以及符号主义人工智能的根本基础,都可以归结为逻辑或者演绎推理。
集逻辑分析方法与语言分析方法于一体的分析哲学也是人工智能的思想源泉,分析哲学把逻辑学看作一切学科的基础,数学的基础也是逻辑学,数学也要用逻辑符号来表示。分析哲学产生于20世纪初,代表人物是石里克与卡尔纳普等人,其理论来源于英国的经验论者休谟、法国的实证主义者孔德、英国的逻辑主义者密尔和哲学家与心理学家马赫等人的观点。弗雷格的《算术基础》、罗素与怀特海合著的《数学原理》、石里克的《普通认识论》以及维特根斯坦的《逻辑哲学论》是分析哲学的代表著作。分析哲学的基本观点是:哲学的任务是对知识进行分析,强调通过对语言的逻辑分析来消除形而上学问题,认为一切综合命题都以经验为基础等。分析哲学家认为一切科学研究必须从经验出发,哲学的主要任务是运用现代数理逻辑和语言分析把复杂的概念分析为简单的概念,分析哲学家想通过对语言的逻辑分析澄清语句、语词的意义,通过语义上升,抛弃含混、模糊、有歧义的自然语言,把自然语言的语句转换成逻辑命题,通过分析逻辑命题的意义清除伪哲学问题,达到拒斥形而上学的目的。分析哲学注重逻辑分析与语言分析,强调语言分析的重要性,分析哲学把科学的任务界定为发现真理,而逻辑的任务在于识别真理的规律。罗素立足于把哲学建成严密的科学,哲学像科学一样可以获得真理性的知识。在罗素看来,哲学和科学只有程度之分,没有本质区别。哲学问题都是逻辑问题,逻辑问题就是科学问题。对科学问题进行分析还原之后,如果这个问题是逻辑问题,则它是哲学问题,否则就不是哲学问题。因此,逻辑是哲学的基础。通过逻辑分析进行还原涉及语言,那么,所有哲学问题命题都是语言表达式,语言结构是逻辑结构,是科学命题的真正的逻辑形式。
罗素的逻辑原子论从本体论角度坚持奥卡姆剃刀的最小化原则,从语言角度上坚持思维经济原则,语言表述坚持最小词汇量原则。“如无必要,勿增实体”。罗素从逻辑学角度坚持逻辑前提或者公理最小化原则,“宁可构造,勿要推论”。根据公理与推理规则建构的逻辑学公理系统影响了图灵、冯·诺依曼及其以后的人工智能专家。冯·诺依曼致力于为新机器设计逻辑方案,戈德斯坦把冯·诺依曼看成将逻辑应用于计算机的第一人,“据我所知,冯·诺依曼是一个清楚地懂得计算机本质上执行的是逻辑功能的人”〔7〕69。冯·诺依曼在edvac的报告中也提到,不但从数学的观点,而且从工程史和逻辑学家的观点来探讨大规模计算的机器。在人工智能哲学先驱德雷福斯看来,自从古希腊人发明了逻辑与几何,就把一切推理归结为计算。人工智能中符号主义的基础是逻辑学,是哲学中的理性主义、还原论传统。他们把计算机看成操作思想符号的系统,试图用计算机来表达对世界的形式表述。心灵与计算机都是物理符号系统。在德雷福斯看来,“伽利略发现人们可以忽略的品质和技术上的考虑,从而能找到一种用来描写物质运动的纯形式化系统,同样我们可以设想,一位研究人类行为的伽利略可能会把所有语义上的考虑(对意义的依赖),变成为句法(形式化)操作技巧”〔8〕76。人工智能的代表人物数理逻辑学家皮茨与生理学家麦卡洛克撰写了《神经活动中内在观念的逻辑运算》,他们的思想受到罗素与怀特海《数学原理》的启发,坚持把一切数学还原为逻辑,甚至神经网络也可以用逻辑来表达。德雷福斯认为人工智能的发展建立在四种假设之上,即生物学假设、心理学假设、本体论假设以及认识论假设。其中认识论假设指的是一切知识都可被形式化,可以被编码成数字形式;本体论假设指的是存在一组在逻辑上相互独立的事实,知识可以被编入计算机程序。纽维尔认为:“人工智能科学家把计算机看成操作符号的机器,他们认为,重要的是每一样东西都可以经编码成为符号,数字也不例外。”〔9〕196在符号主义者看来,符号是人类认识外部世界的基本单元。人工智能的逻辑学派将人的认识对象通过数学逻辑的方式抽象为符号,利用计算机的程序符号来模拟人认知世界的过程。符号主义学派主要依靠计算机的逻辑符号来模拟人的认知过程。人工智能的重量级人物纽维尔与西蒙构造了第一个真正意义的人工智能程序,称之为“逻辑专家”,可见人工智能专家受逻辑学思想影响之深,“任何表现出一般智能的系统,都可以证明是一个物理符号系统”〔10〕41。西蒙与纽维尔认为,作为一般的智能行为,物理符号系统具有的计算手段既是必要的也是充分的。纽维尔与西蒙把其理论来源追溯到分析哲学家弗雷格、罗素与怀特海,“该假设的起源要追溯到弗雷格、怀特海与罗素就形式化逻辑提出的方案:以逻辑方式获取基本的概念式数学观念,把证明和演绎观念置于可靠的根基上”〔11〕。德雷福斯认为,真正的专家解决问题是诉诸直觉与整体性,在此基础上对人工智能的认识论假设与本体论假设进行批判,但他同意专家系统必须使用某种类型的概论度量的逻辑标准,“认知模拟的先驱者们——已经继承了霍布斯推理就是计算的主张,笛卡尔的心理表述、莱布尼兹的‘普遍文字’的思想——所有知识都可以在一组初始概念中得到表示”〔11〕。正如德雷福斯所言,“人工智能就是试图找到主体(人或计算机)中的哲学本原元素和逻辑关系”〔12〕。可见,人工智能与逻辑学特别是分析哲学紧密相关,逻辑学与分析哲学是人工智能的一个重要思想来源。
古希腊先哲用简单的物质元素探索世界的本原。例如,泰勒斯把世界的本原归结为水,赫拉克利特把世界的本原归结为火,德谟克利特把世界的本原归结为原子,认为世界由不可分的原子构成。他认为,万事万物都可以还原为不可分最小微粒——原子,世界是由原子构成的。复杂的事物由简单的事物构成,万事万物都由不可分的基本粒子构成。世界由最基本的粒子构成,复杂对象由基本粒子构成,基本粒子决定了宇宙的性质。
简单性哲学原则不但用简单元素追溯世界的本原,还致力于用力学解释自然现象。不管是物理规律、化学规律、生物规律,甚至是社会规律都可以用力学解释。哥白尼的日心说体系之所以取得科学界的支持也不是因为其解释力强,而是因为其遵循了简单性原则,从而取代了托勒密繁琐的本轮-均轮模型。牛顿的力学三定律就立足于简单性原则,用力来解释所有运动。按照简单性哲学原则,人与动物都是由简单的粒子构成,人与动物没有根本区别,人与机器也没有本质区别,甚至可以说“人就是机器”。1747年,拉·梅特里发表了《人是机器》这一哲学巨著,提出“人是动物,因而也是机器,不过是更复杂的机器罢了”〔14〕69。笛卡尔把人体看作是与机械相类似,用机械的旋涡来解释天体运动问题,他认为宇宙是一架机器,机械运动是唯一的运动规律。牛顿、开普勒、伽利略等都力图建立严密的力学体系来正确描述宏观物理运动,甚至是天体运动。爱因斯坦试图用公理化方法把自然界描绘成物质在时空中运动的统一体,德国物理学家海森堡也认为简单性原则可以作为科学假说可接受性的标准。
不仅自然界的规律可以用力学表示,而且社会关系也可以用力学表示。孔德提出社会动力学和社会静力学概念,社会动力学又称为社会物理学,立足于运用力学规律分析社会关系。1950年,斯宾塞出版《社会静力学》,把事物的基本规律看作“力的恒久性规律”(thelawofpersistenceofforce)。“人是机器”的观点启发人工智能先驱开始了构造具有人类智能机器的探索。
主体与客体的关系在哲学史上占居重要地位,是哲学研究中的核心問题,也是哲学史上诸多学派的思想源头。古希腊米利都学派的泰勒斯探索万物本源的时候就开始关注主体如何认识客体,关注主体与客体的关系,普罗泰戈拉提出的命题“人是万物的尺度”包括了主客二分思维的萌芽,笛卡尔的精神和物质相互独立的二元论思想暗含着主体和客体截然二分的思想。人们一般认为,只有人类才能成为主体,人之外的世界是客体。那主客二分的标准是什么呢?人之所以为主体的标准又是什么呢?有的学者认为只有主体才具有意向性,客体不具有意向性,客体只是主体认识的对象。主体一般具有独立意识或者个体经验。哲学意义的认识论指的是个体对知识和知识获得所持有的信念,主要包括知识结构、知识本质、知识来源和知识判断的信念等内容,主体与客体的关系问题是哲学的核心问题。认识论中的可知论与不可知论是研究主体之外的客体是否可知,唯心主义与唯物主义的区分以及各种不同的哲学流派的分野都基于主体与客体截然二分的哲学基础,哲学史上,各大流派都曾经把主客关系作为研究的切入点。
人工智能是赋予机器智能,让机器可以模拟或者代替人类的某种智能。人工智能基于不同的哲学理念有不同的研究进路,人工智能发展史上不同思想的对立也是基于对于主体与客体关系的哲学思考。一般来讲,人工智能可分为三种进路,即符号主义进路、联结主义进路以及行为主义进路。人工智能符号主义进路把人类的认知过程看成符号计算过程,人类认知是物理符号系统,人工智能先驱德雷福斯(s)认为,人工智能研究者其实与炼金术师一样,也是对一些符号进行不同的处理。因此,在人工智能的符号主义看来,人与机器没有本质区别,人类的心智同样可以还原成符号计算。德雷福斯在《计算机不能做什么:人工智能的极限》中提出,人工智能机器是基于生物学假设、心理学假设、认识论假设以及本体论假设基础之上的。“生物学假设:在某一运算水平上,大脑与计算机一样,以离散的运算方式加工信息;心理学假设:大脑被看作一种按照形式规则加工信息单位的装置;认识论假设:一切知识都可被形式化,可以被编码成数字形式;本体论假设:存在是一组在逻辑上相互独立的事实,知识可以被编入计算机程序”〔17〕156。从德雷福斯关于人工智能的四个假设中我们可以看出,人工智能与人类一样都是对信息加工和处理的工具,从这个意义上讲,主体与客体之间没有本质的区别。主体与客体不能截然二分,之所以对主体和客体进行区分,表明人类对于自身的认知规律和智能结构没有真正揭示。
人工智能的联结主义进路,又称为仿生学派或生理学派,认为人工智能源于仿生学,特别是对人脑模型的研究,其主要原理为神经网络及神经网络间的连接机制与学习算法。联结主义起初是用软件模拟神经网络,后来发展到用硬件模拟神经网络。其理论假设是人与机器如果具有同样的结构应该具有同样的功能,可以通过研究人脑的物理结构从而制造出类似人脑的机器。在联结主义看来,人与机器结构相同,人脑与计算机程序运行模式相同,则功能相同。纽维尔(allennewell)认为,智能的计算机程序可以被用来模拟人类的思维过程。联结主义失败的原因是人脑的结构并不像人工智能研究者们在电脑上模拟一样,人类的大脑是将物理事实与知觉过程所连接的客观事实,而不只是对信息进行加工的一台机器。人与机器不同,机器不具有人类的精神状态和意识。人类的精神状态和意识是否由人脑结构决定呢?人类精神状态和意识是先验存在还是后天习得仍然是认知科学研究的难题。因此,通过神经网络让机器模拟人类智能行不通。通过对人工智能的符号主义和联结主义的分析我们发现,主体与客体区别的必要性得以彰显,人的主体性地位不能动摇。
人工智能的行为主义进路,又称为人工智能的进化主义或控制论学派,其原理为维纳和麦克洛克等学者的控制论思想及感知-动作型控制系统。研究重点是模拟人在控制过程中的智能行为和作用,如对自适应、自组织和自学习等的研究。人工智能行为主义学派的代表布鲁克斯(rodneybrooks)研制的“六足机器人”实质上是一个基于感知-动作模式模拟昆虫行为的控制系统,能够适应外界的环境,但这样的机器人也不具有人类的感知与认知能力,主体与客体之间还是可以严格区分。人工智能的目标从技术层面来讲是制造出对人类有益的智能机器,从哲学层面来讲,就是利用人工智能概念和模型,通过机器模拟人类智能来推动哲学核心思想主客二分问题的研究,借此解决哲学上的身心问题、意识难题等问题。哲学的核心问题与人工智能的研究是相互促进的。
综上所述,人工智能技术的发展有其哲学根源,根源于数是万物本源思想、万物皆数思想以及数的简单、和谐思想,还根源于亚里士多德的逻辑思想以及分析哲学的逻辑分析研究方法。在众多哲学思想中,简单性原则是人工智能的哲学思想源泉。人工智能就是计算机用逻辑方法把思维还原为简单数字来模拟人脑的过程。人工智能发展是思维的革命,人工智能涉及信息与计算的本体地位和方法论问题,人工智能的发展迫使哲学家们对思维的存在形式进行深入研究,从而把形而上的论证变成可操作的过程。人工智能的目标是通过计算机实现机器模仿人类智能,人工智能的发展直接指向哲学的中心问题。例如,意向性问题、形式化问题、身心问题等。对于人工智能的哲学基础溯源有利于推动哲学的进步与发展,也可以拓展对于传统哲学问题的研究。只有对人工智能的哲学思想基础进行追溯与探源,才能为人工智能工作者提供思想源泉,从而更好地理解与把握人工智能的理论基础、发现人工智能的发展规律以及预测人工智能的发展趋势、把握人工智能的发展方向。
参考文献:
〔1〕玛格丽特·博登.人工智能哲学〔m〕.刘西瑞,王汉琦,译.上海:上海译文出版社,2001.
〔2〕汪子嵩,等.希腊哲学史〔m〕.北京:人民出版社,2004.
〔3〕亚里士多德.形而上学〔m〕.李真,译.上海:上海人民出版社,1995.〔4〕安东尼·梅耶斯.爱思唯尔科学哲学手册〔m〕.张培富,等译.北京:北京師范大学出版社,2015.
〔5〕〔m〕.northholland,amsterdam:macmillanmagazinesltd,1992.
〔6〕davis,soflogic:mathematiciansandtheoriginofthecomputer〔m〕.newyork:&,2001.
人工智能的影响论文篇十六
以前我们谈科技进步,谈网络应用,总说是一把双刃剑,有利有弊。现在,面对日益发达的人工智能,我想说:现在,摆在我们面前的任务是把它变成一把单刃的剑。
把人工智能变成一把双刃剑,需要我们以正确的态度去面对。就像一局险胜阿尔法狗的李世石一样,他说:人机大战并没有让我感受到失败的痛苦,反而让我更好地理解了象棋,这让我很开心。连续输三局的天才棋手柯洁说:阿尔法狗让我更好地理解围棋的奥秘。面对人工智能的快速发展,我们应该有更积极的态度和更清晰的认识。不能一味的夸。人工智能有多优秀,多无敌,不能一味贬低人类来看人类。我们需要知道的是,阿尔法狗只是一台机器,是人类创造的玩具。他没有头脑,没有情感,甚至没有——的智商。只是我们在研发过程中输入的一堆冷冰冰的代码,不需要自大,也不需要妄自菲薄。我们和人工智能是平等的,有时候它们可以成为我们的工具。
要把人工智能变成一把单刃剑,我们需要了解它。俗话说知己知彼百战不殆。网上有人说,如果人工智能获得了人类的意识,那么他们就会反过来奴役人类。未来将是人工智能的世界,让人恐慌。首先,人类还没有能够让一台机器拥有意识,很多人还没有意识到意识的起源。做出这种无用的猜测,没有实际意义。现在我们能做的就是找出它的运行规律,了解它的优缺点。掌握使用人工智能的方法。带上她神秘的面纱,而不是看着他的面纱漫天要价。
要把人工智能变成一把单刃剑,最重要的是扬长避短。是的,任何事情都有两面性。就像之前关于学生是否应该使用手机的争论一样,在自律性差的人手里,手机是用不好的,而在头脑清醒、自律性强的人手里,才能充分发挥自己的优势。而且不会让劣势影响自己,人工智能也是一样。现在要注意的是提高自己应用人工智能的能力。让这些过于智能的机器在我们手里得到合理的利用,让它们的缺点得到融化,优势得到彰显。只有这样,人工智能才能得到它的天赋,并充分利用它们。
问:如何让人工智能成为一把双刃剑?回答:以正确的态度面对他,以积极的方式认识他,然后扬长避短,是运用人工智能的好方法。
人工智能的影响论文篇十七
图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。文章简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。
1图像识别技术的引入。
图像识别是人工智能科技的一个重要领域。图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。图像识别,顾名思义,就是对图像做出各种处理、分析,最终识别我们所要研究的目标。今天所指的图像识别并不仅仅是用人类的肉眼,而是借助计算机技术进行识别。虽然人类的识别能力很强大,但是对于高速发展的社会,人类自身识别能力已经满足不了我们的需求,于是就产生了基于计算机的图像识别技术。这就像人类研究生物细胞,完全靠肉眼观察细胞是不现实的,这样自然就产生了显微镜等用于精确观测的仪器。通常一个领域有固有技术无法解决的需求时,就会产生相应的新技术。图像识别技术也是如此,此技术的产生就是为了让计算机代替人类去处理大量的物理信息,解决人类无法识别或者识别率特别低的信息。
1.1图像识别技术原理。
其实,图像识别技术背后的原理并不是很难,只是其要处理的信息比较繁琐。计算机的任何处理技术都不是凭空产生的,它都是学者们从生活实践中得到启发而利用程序将其模拟实现的。计算机的图像识别技术和人类的图像识别在原理上并没有本质的区别,只是机器缺少人类在感觉与视觉差上的影响罢了。人类的图像识别也不单单是凭借整个图像存储在脑海中的记忆来识别的,我们识别图像都是依靠图像所具有的本身特征而先将这些图像分了类,然后通过各个类别所具有的特征将图像识别出来的,只是很多时候我们没有意识到这一点。当看到一张图片时,我们的大脑会迅速感应到是否见过此图片或与其相似的图片。其实在“看到”与“感应到”的中间经历了一个迅速识别过程,这个识别的过程和搜索有些类似。在这个过程中,我们的大脑会根据存储记忆中已经分好的类别进行识别,查看是否有与该图像具有相同或类似特征的存储记忆,从而识别出是否见过该图像。机器的图像识别技术也是如此,通过分类并提取重要特征而排除多余的信息来识别图像。机器所提取出的这些特征有时会非常明显,有时又是很普通,这在很大的程度上影响了机器识别的速率。总之,在计算机的视觉识别中,图像的内容通常是用图像特征进行描述。
1.2模式识别。
模式识别是人工智能和信息科学的重要组成部分。模式识别是指对表示事物或现象的不同形式的信息做分析和处理从而得到一个对事物或现象做出描述、辨认和分类等的过程。
计算机的图像识别技术就是模拟人类的图像识别过程。在图像识别的过程中进行模式识别是必不可少的。模式识别原本是人类的一项基本智能。但随着计算机的发展和人工智能的兴起,人类本身的模式识别已经满足不了生活的需要,于是人类就希望用计算机来代替或扩展人类的部分脑力劳动。这样计算机的模式识别就产生了。简单地说,模式识别就是对数据进行分类,它是一门与数学紧密结合的科学,其中所用的思想大部分是概率与统计。模式识别主要分为三种:统计模式识别、句法模式识别、模糊模式识别。
2图像识别技术的过程。
既然计算机的图像识别技术与人类的图像识别原理相同,那它们的过程也是大同小异的。图像识别技术的过程分以下几步:信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。
信息的获取是指通过传感器,将光或声音等信息转化为电信息。也就是获取研究对象的基本信息并通过某种方法将其转变为机器能够认识的信息。
预处理主要是指图像处理中的去噪、平滑、变换等的操作,从而加强图像的重要特征。
特征抽取和选择是指在模式识别中,需要进行特征的抽取和选择。简单的理解就是我们所研究的图像是各式各样的,如果要利用某种方法将它们区分开,就要通过这些图像所具有的本身特征来识别,而获取这些特征的过程就是特征抽取。在特征抽取中所得到的特征也许对此次识别并不都是有用的,这个时候就要提取有用的特征,这就是特征的选择。特征抽取和选择在图像识别过程中是非常关键的技术之一,所以对这一步的理解是图像识别的重点。
分类器设计是指通过训练而得到一种识别规则,通过此识别规则可以得到一种特征分类,使图像识别技术能够得到高识别率。分类决策是指在特征空间中对被识别对象进行分类,从而更好地识别所研究的对象具体属于哪一类。
3图像识别技术的分析。
随着计算机技术的迅速发展和科技的不断进步,图像识别技术已经在众多领域中得到了应用。20xx年2月15日新浪科技发布一条新闻:“微软最近公布了一篇关于图像识别的研究论文,在一项图像识别的基准测试中,电脑系统识别能力已经超越了人类。人类在归类数据库imagenet中的图像识别错误率为5.1%,而微软研究小组的这个深度学习系统可以达到4.94%的错误率。”从这则新闻中我们可以看出图像识别技术在图像识别方面已经有要超越人类的图像识别能力的趋势。这也说明未来图像识别技术有更大的研究意义与潜力。而且,计算机在很多方面确实具有人类所无法超越的优势,也正是因为这样,图像识别技术才能为人类社会带来更多的应用。
3.1神经网络的图像识别技术。
神经网络图像识别技术是一种比较新型的图像识别技术,是在传统的图像识别方法和基础上融合神经网络算法的一种图像识别方法。这里的神经网络是指人工神经网络,也就是说这种神经网络并不是动物本身所具有的真正的神经网络,而是人类模仿动物神经网络后人工生成的。在神经网络图像识别技术中,遗传算法与bp网络相融合的神经网络图像识别模型是非常经典的,在很多领域都有它的应用。在图像识别系统中利用神经网络系统,一般会先提取图像的特征,再利用图像所具有的特征映射到神经网络进行图像识别分类。以汽车拍照自动识别技术为例,当汽车通过的时候,汽车自身具有的检测设备会有所感应。此时检测设备就会启用图像采集装置来获取汽车正反面的图像。获取了图像后必须将图像上传到计算机进行保存以便识别。最后车牌定位模块就会提取车牌信息,对车牌上的字符进行识别并显示最终的结果。在对车牌上的字符进行识别的过程中就用到了基于模板匹配算法和基于人工神经网络算法。
3.2非线性降维的图像识别技术。
计算机的图像识别技术是一个异常高维的识别技术。不管图像本身的分辨率如何,其产生的数据经常是多维性的,这给计算机的识别带来了非常大的困难。想让计算机具有高效地识别能力,最直接有效的方法就是降维。降维分为线性降维和非线性降维。例如主成分分析(pca)和线性奇异分析(lda)等就是常见的线性降维方法,它们的特点是简单、易于理解。但是通过线性降维处理的是整体的数据集合,所求的是整个数据集合的最优低维投影。经过验证,这种线性的降维策略计算复杂度高而且占用相对较多的时间和空间,因此就产生了基于非线性降维的图像识别技术,它是一种极其有效的非线性特征提取方法。此技术可以发现图像的非线性结构而且可以在不破坏其本征结构的基础上对其进行降维,使计算机的图像识别在尽量低的维度上进行,这样就提高了识别速率。例如人脸图像识别系统所需的维数通常很高,其复杂度之高对计算机来说无疑是巨大的“灾难”。由于在高维度空间中人脸图像的不均匀分布,使得人类可以通过非线性降维技术来得到分布紧凑的人脸图像,从而提高人脸识别技术的高效性。
3.3图像识别技术的应用及前景。
计算机的图像识别技术在公共安全、生物、工业、农业、交通、医疗等很多领域都有应用。例如交通方面的车牌识别系统;公共安全方面的人脸识别技术、指纹识别技术;农业方面的种子识别技术、食品品质检测技术;医学方面的心电图识别技术等。随着计算机技术的不断发展,图像识别技术也在不断地优化,其算法也在不断地改进。图像是人类获取和交换信息的主要来源,因此与图像相关的图像识别技术必定也是未来的研究重点。以后计算机的图像识别技术很有可能在更多的领域崭露头角,它的应用前景也是不可限量的,人类的生活也将更加离不开图像识别技术。
4总结。
图像识别技术虽然是刚兴起的技术,但其应用已是相当广泛。并且,图像识别技术也在不断地成长,随着科技的不断进步,人类对图像识别技术的认识也会更加深刻。未来图像识别技术将会更加强大,更加智能地出现在我们的生活中,为人类社会的更多领域带来重大的应用。在21世纪这个信息化的时代,我们无法想象离开了图像识别技术以后我们的生活会变成什么样。图像识别技术是人类现在以及未来生活必不可少的一项技术。