相似三角形的判定教案(专业20篇)
教案是编写教学活动的重要工具,它包含了教学目标、教学内容、教学步骤等内容,可以指导教师进行教学工作。一个好的教案能够提高课堂效果,帮助学生更好地掌握知识。教案的评价标准应当与教学目标相一致,能够客观反映学生的学习情况。以下是小编为大家准备的一些精选教案,希望可以给大家带来一些新的思路和启示。
相似三角形的判定教案篇一
主要通过以下三个方面展示出学生的探究性学习:
一、尊重学生主体地位。本节课以学生的自主探索为主线,课前布置学生自己对比例线段的运用进行整理,这样不仅复习了所学知识,而且可以使学生亲身体验“实验操作-探索发现-科学论证”获得知识的过程,体验科学发现的一般规律;解决问题时,让学生自己提出探索方案,使学生的主体地位得到尊重;课后让学有余力的学生继续挖掘题目资源,用发展的.眼光看问题,从而提高学习效率,培养学生的思维能力。
二、教师主导地位的发挥。在教学中,教师是学生学习的组织者、引导者、合作者及共同研究者,要鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新。在课堂中,我着重引导学生自己小结相似三角形的性质及判定方法,同时给予肯定。在后续的例题分析中,也是通过一步步的引导,让学生自己思考、分析并得出整个解题的过程及步骤。关键时点拔,不足时补充。
三、提升学生课堂的关注点。学生体验了学习过程后,从单纯的重视知识点的记忆,复习变为有意识关注学习方法的掌握,数学思想的领悟,同时让学生关注课堂小结,进行自我体会,自我反思,在反思中成长、进步。
在《相似三角形》这一复习课中,通过学生自主探索,让学生主动学习,培养了学生积极主动的探索创新精神,学生也能掌握到了相关的知识。但是,仍有不足之处。问题的应用中,即利用相似三角形的性质或判定证明的过程中,思路仍是不够清晰,书写的过程仍是不够完整。也就是说,缺少了教师的引导分析,则学生不知向何处思考。这是大部分学生具有的情况。
相似三角形的判定教案篇二
2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.。
3.进一步培养学生类比的教学思想.。
4.通过相似性质的学习,感受图形和语言的和谐美。
先学后教,达标导学。
1.教学重点:是性质定理的.应用.。
1课时。
投影仪、胶片、常用画图工具.。
[复习提问]。
[讲解新课]。
让学生类比“全等三角形的周长相等”,得出性质定理2.。
同样,让学生类比“全等三角形的面积相等”,得出命题.。
此题学生一般不会感到有困难.。
教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.。
解:设原地块为,地块在甲图上为,在乙图上为.。
学生在运用掌握了计算时,容易出现的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如:
2.重点学习了两个性质定理的应用及注意的问题.。
教材p247中a组4、5、7.。
相似三角形的判定教案篇三
1.初步掌握三组对应边的比相等的两个三角形相似的判定方法,以及两组对应边的比相等且它们的夹角相等的两个三角形相似的判定方法。
2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的'过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性。
3.能够运用三角形相似的条件解决简单的问题。
1.重点:
掌握两种判定方法,会运用两种判定方法判定两个三角形相似。
2.难点:
(1)三角形相似的条件归纳、证明;。
(2)会准确的运用两个三角形相似的条件来判定三角形是否相似。
3.难点的突破方法。
三组对应边的比相等的两个三角形相似,教科书虽然给出了证明,但不要求学生自己证明,通过教师引导、讲解证明,使学生了解证明的方法,并复习前面所学过的有关知识,加深对判定方法的理解。
(2)判定方法。
的探究是让学生通过作图展开的,我们在教学过程中,要通过从作图方法的迁移过程,让学生进一步感受,由特殊的全等三角形到一般相似三角形,以及类比认识新事物的方法。
(3)讲判定方法。
要扣住对应二字,一般最短边与最短边,最长边与最长边是对应边。
(4)判定方法。
一定要注意区别夹角相等的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,课堂练习2就是通过让学生联想、类比全等三角形中ssa条件下三角形的不确定性,来达到加深理解判定方法2的条件的目的的。
相似三角形的判定教案篇四
2.两边对应成比例,且夹角相等。
3.三边对应成比例。
4.平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。
根据相似图形的特征来判断。(对应边成比例,对应边的夹角相等)。
(这是相似三角形判定的引理,是以下判定方法证明的基础。这个引理的证明方法需要平行线分线段成比例的证明)。
2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;。
4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似;。
5.对应角相等,对应边成比例的两个三角形叫做相似三角形(用定义证明)。
1.两个全等的三角形一定相似。
2.两个等腰直角三角形一定相似。(两个等腰三角形,如果顶角或底角相等,那么这两个等腰三角形相似。)。
3.两个等边三角形一定相似。
1.斜边与一条直角边对应成比例的两直角三角形相似。
2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
射影定理。
推论一:顶角或底角相等的两个等腰三角形相似。
推论二:腰和底对应成比例的两个等腰三角形相似。
推论三:有一个锐角相等的两个直角三角形相似。
推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
相似三角形的判定教案篇五
本章有以下几个主要内容:
一、比例线段。
(1)线段比:用同一长度单位度量两条线段a,b,把他们长度的比叫做这两条线段的比。
(2)比例线段:在四条线段a,b,c,d中,如果线段a,b的比等于线段c,d的比,那么,这四条线段叫做成比例线段。简称比例线段。
(3)比例中项:如果a:b=b:c,那么b叫做a,c的比例中项。
(4)黄金分割:把一条线段分成两条线段,如果较长线段是全线段和较短线段的比例中项,那么][这种分割叫做黄金分割。这个点叫做黄金分割点。
顶角是36度的等腰三角形叫做黄金三角形。
宽和长的比等于黄金数的矩形叫做黄金矩形。
(5)比例的性质。
基本性质:内项积等于外项积。(比例=====等积)。主要作用:计算。
合比性质,主要作用:比例的互相转化。
等比性质,在使用时注意成立的条件。
平行线等分线段------平行线分线段成比例--------平行于三角形一边的直线截其他两边(或两边延长线),所截线段对应成比例------(预备定理)平行于三角形一边的直线和其他两边(或两边延长线)相交,所截三角形与原三角形相似------相似三角形的判定:类比于全等三角形的判定。
1、定义:相似三角形对应角相等。
对应边成比例。
2、相似三角形对应线段(对应角平分线、对应中线、对应高等)的比等于相似比。
4、相似三角形面积的比等于相似比的平方。
四、图形的位似变换。
1、几何变换:平移,旋转,轴对称,相似变换。
----2、相似变换:把一个图形变成另一个图形,并保持形状不变的几何变换叫做相似变换。
----3、位似变换:两个图形不但相似,而且对应点连线过同一点的相似变换叫做位似变换。这两个图形叫做位似图形。
4、 位似变换可把图形放大或者缩小。
5、外位似(同向位似图形)位似中心在对应点连线外的位似叫外位似。这两个图形叫同向位似图形。
内位似(反向位似图形)位似中心在对应点连线上的位似叫内位似。这两个图形叫反向位似图形。
6、以原点为位似中心,相似比为k,原图形上点的坐标(x,y)则同向位似变换后对称点的坐标为(kx,ky)。
以原点为位似中心,相似比为k,原图形上点的坐标(x,y) 反向位似变换后对称点的坐标为(-kx,-ky)。
相似三角形的判定教案篇六
4、相似三角形具有传递性:如果两个三角形分别于同一个三角形相似,那么这两个三角形也相似。
5、相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。
6、全等三角形可以看做相似比为1的特殊的相似三角形,凡是全等的三角形都相似。
相似三角形的判定教案篇七
本节课的教学设计主要从以下三个方面来考虑的:
一、尊重学生主体地位。
本课以学生的自主探究为主线:课前学生自己对比例线段的运用进行整理。这样不仅复习了所学知识,而且可以使学生逐渐学会反思、总结,提高自主学习的能力;课堂上学生亲身体验“实验操作—探索发现—科学论证”获得知识(结论)的过程,体验科学发现的一般规律;解决问题时学生自己提出探索方案,学生的主体地位得到了尊重;课后学有余力的学生继续挖掘题目资源,发展的眼光看问题,观察运动中的“形异实同”,提高学习效率,培养学生思维的深刻性。
2教师发挥主导作用。
在探究式教学中教师是学生学习的组织者、引导者、合作者、共同研究者,鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新,哪怕是微小的进步或幼稚的想法都给予热情的赞扬。备课时思考得更多的是学生学法的突破,上课时教师只在关键处点拨,在不足时补充。教师与学生平等地交流,创设民主、和谐的学习氛围,促进教学相长。
3提升学生课堂关注点。
学生在体验了“实验操作——探索发现——科学论证”的学习过程后,从单纯地重视知识点的记忆、复习变为有意识关注学习方法的掌握,数学思想的领悟。如在原问题的取点中教师小结了从特殊到一般的归纳,学生在探究矩形的比值时就能意识地把解决特殊问题的策略、方法迁移到解决一般问题中去。在课堂小结中,学生也谈到了这点体会,而且还感悟了一题多解、一题多变等数学学习方法。
相似三角形的判定主要介绍了三种方法以及相似三角形的预备定理,从上下来的结果来看,不是很理想,绝大部分学生对定理的应用不是很熟练,特别对于“两边对应成比例且夹角相等”不能灵活运用,夹角也不能准确找到.我想问题的主要原因在于学生对图形的认知不深,对定理的理解不透,一味死记结论.不能理解每个量所表示的含义.我想在下一阶段中应培养他们认识图形的能力,合情推理的能力,争取这方面有所提高。
相似三角形的判定教案篇八
一、知识回顾。(小黑板出示)。
1.我们已学过了哪些判定三角形相似的方法?
二、动脑筋。
鼓励学生动手画图,认真思考书中问题,引导同学们讨论得出判定定理3:两边对应成比例且夹角相等的两个三角形相似。
指名说一说:这个定理的条件和结论各是什么?关键处是什么?
同桌完成课本上的做一做。然后指名在班上说。教师及时给予表扬和肯定。
三、出示例题2.要求学生尝试完成。不会做的自己看书,然后再做。教师行巡。
回辅导,适时指点练习中容易出现的问题。最后指名板演,集体订正。
四、出示课本78页中的b组2题作为典例分析。
要求学生凭眼睛看这两个三角形相似吗?再通过计算他们的对应边是否成比例。有一个角对应相等吗?他们相似吗?同桌讨论各自的心得。从这个例子你能得出什么结论?指名说。
五、出示b组1题作为典例分析。要求学生先自学,再试着做一做。最后师。
规范板书全过程。
六、启迪学生除这种解法外,你还能用别的方法来证明吗?鼓励学生用多种方。
法解题。
七、引导学生归纳解题所得。
八、总结整堂课内容。
九、巩固练习。完成教材第78--79页练习1、2题。
十、作业:基本训练78--79页a组1-2题。教师巡回辅导。
我的反思:。
成功之处:.
1、课前对旧知识的回顾,以防止负迁移现象,特别是做一做的设计注重了相似三角形中对应元素的训练,为潜能生设置了一个障碍,以培养学生的合理想象力。
2、整堂课体现了以学生为主体的`教学理念。教师的点拨很到位,对定理的剖析突彻,在教学过程中注重了规范板书,为学生起到了示范作用。
4、作业的设计具有层次性。做到了突出重点,突破难点。
不足之处:。
1、巡回辅导时未顾及到全局,关键是时间太紧。
2、时间分配不够合理,运用定理解题时间花的太多,导致作业不能当堂完成。
3、教师语言不够精炼,重复话较多。有待于在今后的工作中不断提高,不断改进。
相似三角形的判定教案篇九
(2)如果一个三角形的'两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.)。
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.)。
相似三角形的判定教案篇十
(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。(简叙为两角对应相等两三角形相似).
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.)(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.)。
相似三角形的判定教案篇十一
教学目标:
1、知识目标:
(1)熟记角边角公理、角角边推论的内容;
(2)能应用角边角公理及其推论证明两个三角形全等。
2、能力目标:
(1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力;
(2)通过观察几何图形,培养学生的识图能力。
3、情感目标:
(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
教学重点:学会运用角边角公理及其推论证明两个三角形全等。
教学难点:sas公理、asa公理和aas推论的综合运用。
教学用具:直尺、微机。
教学方法:探究类比法。
教学过程:
1、新课引入。
投影显示。
这样几个问题让学生议论后,他们的答案或许只是一种感觉“行或不行”。于是教师要引导学生,抓住问题的本质:“分别带去了三角形的几个元素?”学生通过观察比较就会容易地得出答案。
2、公理的获得。
问:恢复后的三角形和原三角形全等,那全等的条件是不是就是带去的元素呢?
让学生粗略地概括出角边角的公理。然后和学生一起做实验,根据三角形全等定义对公理进行验证。
公理:有两角和它们的'夹边对应相等的两个三角形全等。
应用格式:
(略)。
强调:
(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)。
所以找条件归结成两句话:已知中找,图形中看。
(3)、公理与前面公理1的区别与联系。
以上几点可运用类比公理1的模式进行学习。
3、推论的获得。
改变公理2的条件:有两角和其中一角的对边对应相等这样两个三角形是否全等呢?
学生分析讨论,教师巡视,适当参与讨论。
4、公理的应用。
(1)讲解例1。学生分析完成,教师注重完成后的总结。
将本文的word文档下载到电脑,方便收藏和打印。
相似三角形的判定教案篇十二
一、教学目标。
1.掌握相似三角形的性质定理2、3.。
2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.。
3.进一步培养学生类比的教学思想.。
4.通过相似性质的学习,感受图形和语言的和谐美。
二、教法引导。
先学后教,达标导学。
三、重点及难点。
1.教学重点:是性质定理的应用.。
2.教学难点:是相似三角形的判定与性质等有关知识的综合运用.。
四、课时安排。
1课时。
五、教具学具准备。
投影仪、胶片、常用画图工具.。
六、教学步骤。
[复习提问]。
[讲解新课]。
让学生类比“全等三角形的周长相等”,得出性质定理2.。
性质定理2:相似三角形周长的比等于相似比.。
同样,让学生类比“全等三角形的面积相等”,得出命题.。
性质定理3:相似三角形面积的`比,等于相似比的平方.。
此题学生一般不会感到有困难.。
教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.。
解:设原地块为,地块在甲图上为,在乙图上为.。
学生在运用掌握了计算时,容易出现的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如:
1.本节学习了相似三角形的性质定理2和定理3.。
2.重点学习了两个性质定理的应用及注意的问题.。
七、布置作业。
教材p247中a组4、5、7.。
八、板书设计。
相似三角形的判定教案篇十三
本节课的教学设计主要从以下三个方面来考虑的:
1、尊重学生主体地位。
课前学生自己对比例线段的运用进行整理。这样不仅复习了所学知识,而且可以使学生逐渐学会反思、总结,提高自主学习的能力;课堂上学生亲身体验“实验操作―探索发现―科学论证”获得知识(结论)的过程,体验科学发现的一般规律;解决问题时学生自己提出探索方案,学生的主体地位得到了尊重;课后学有余力的学生继续挖掘题目资源,发展的眼光看问题,观察运动中的“形异实同”,提高学习效率,培养学生思维的深刻性。
2教师发挥主导作用。
在探究式教学中教师是学生学习的组织者、引导者、合作者、共同研究者,鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新,哪怕是微小的进步或幼稚的想法都给予热情的赞扬。备课时思考得更多的是学生学法的突破,上课时教师只在关键处点拨,在不足时补充。教师与学生平等地交流,创设民主、和谐的学习氛围,促进教学相长。
3提升学生课堂关注点。
般的归纳,学生在探究矩形的比值时就能意识地把解决特殊问题的策略、方法迁移到解决一般问题中去。在课堂小结中,学生也谈到了这点体会,而且还感悟了一题多解、一题多变等数学学习方法。相似三角形的判定主要介绍了三种方法以及相似三角形的预备定理,从上下来的结果来看,不是很理想,绝大部分学生对定理的应用不是很熟练,特别对于“两边对应成比例且夹角相等”不能灵活运用,夹角也不能准确找到.我想问题的主要原因在于学生对图形的认知不深,对定理的理解不透,一味死记结论.不能理解每个量所表示的含义.我想在下一阶段中应培养他们认识图形的能力,合情推理的能力,争取这方面有所提高。
相似三角形的判定教案篇十四
1、掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。
能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。
教学后记。
教师活动学生活动。
一、定理:一个角等于60°的等腰三角形是等边三角形。
1、引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。
2、肯定学生的回答,并让学生进一步思考:有一个角是60°的`等腰三家形是等边三角形吗?组织学生交流自己的想法。渗透分类讨论的思维方法。
3、关注学生得出证明思路的过程,讲评。讲解定理:有一个角是60°的等腰三角形是等边三角形。
二、一种特殊直角三角形的性质。
1、让学生拼摆事先准备好的三角尺,提问:能拼成一个怎样的三角形?能否拼出一个等边三角形?并说明理由。
3、演示规范的证明步骤,同时引导学生意识到:通过实际操作探索出的结论还需要给予理论证明。
4、让学生准备一张正方形纸片,,按要求动手折叠。
5、讲解例题,应用定理。
6、布置学生做练习。
练习:课本随堂练习1。
三、课堂小结:
通过这节课的学习你学到了什么知识?了解了什么证明方法?
四、作业:同步练习。
1、积极地自主探索、思考等腰三角形成为等边三角形的条件。可能会从边和角两个角度给出答案。
2、积极思考,通过老师的点拨,分类讨论当这个角分别是底角和顶角的情况。
3、认真听讲,体会分类讨论的数学思维方法,理解定理。
1、积极动手操作,并很快得到结果:可以拼出等边三角形。
2、在拼摆的基础上继续探索,得出结论。并在探索的过程中得到证明的思路。
3、认真听讲,体会从探索和尝试中得到结论的过程和证明方法的步骤,掌握定理。
4、很有兴趣地折叠纸片,体会定理的应用。
5、听讲,体会定理的应用。
6、认真做练习。
(学生小结:掌握证明与等边三角形、直角三角形有关的性质定理和判定定理)。
相似三角形的判定教案篇十五
1、使学生在经历探究相似三角形判定方法的过程中,初步掌握相似三角形的判定定理,理解它的证明方法,初步会运用相似三角形的三个判定定理来解决有关问题。
2、在探究判定方法的过程中,提高学生运用类比方法,猜想命题,再加以证明的研究问题的能力以及增强用化归思想解决问题的意识。
3、通过动手实践、观察、猜想、归纳、等数学探究活动,给学生创造成功的机会,使他们爱学、乐学、会学,同时培养学生勇于探索、积极合作的精神。
重点:
难点:
自主探究与小组合作相结合。
多媒体辅助教学。
本节课我们继续研究:相似三角形的判定(二)。“你认为我们可以从哪儿入手研究呢?”引导学生类比全等三角形的判定方法进行猜想。
引导学生利用相似三角形与全等三角形的区别与联系,把上述全等三角形判定定理中比值为1改成比值为正数“k”,就可得到相似三角形的判定方法,得到猜想。利用上述思路,证明猜想,得到判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似。简记:两角对应相等,两三角形相似。判定定理2、3的证明过程由学生仿照定理1的证明完成。请二人上黑板板演。猜想证明完毕,让学生观察、对比三个定理的证明方法,在证明过程中是否有共性?证法的本质是什么?让学生深入思考,感受三个判定定理的证法本质是一样的,即:将相似三角形的判定利用平移的方法,化归为预备定理的形式,最终转化为判断两个三角形全等,区别就在于全等的证明方法不同。
相似三角形的判定教案篇十六
本节课的设计先让学生动手操作以便使学生对三角形的内角和有一定感性认识,然后再根据拼图说出结论成立的理由,由浅入深,循序渐进,学生易接受.教师引导学生对三角形的三个内角进行拼合,可以出现不同的方法,这样能让学生充分发挥白己的主动性和创新能力。
[讲授效果反思]。
组织学生进行探索或分组讨论,经过讨论找到不同的解决方法.在解决问题的过程中,关注学生在推理过程中语言使用的准确性,引导学生用规范的格式进行书写。
[师生互动反思]。
无论是例题还是习题的教学均采用“尝试一交流一讨论”的方式,充分发挥学生的主体性,教师起引导、点拨的作用。
相似三角形的判定教案篇十七
今天在县教育局的组织下,在李菊芳科长的领导下,我在永流中学顺利上完示范课《等腰三角形的性质》,并和领导,同仁们进行了评课。在大家的指导下,结合这节课的设计意图,以及学生的学习效果,我个人认为值得以后借鉴的地方有:
(一)突出重点,实现教学目标。
《等腰三角形的性质》这节课重点是让学生通过动手翻折等腰三角形纸片得出“等腰三角形的两底角相等”及“三线合一”的性质。设计理念是让学生通过折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证。使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目标。
(二)导课自然,成功引入新课。
首先用生活中的图片引入等腰三角形的基本图形,联系生活,创设问题情境,把问题作为教学的出发点,激发学生的学习兴趣。引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。从而使学生的原认知结构对新知的学习具有某种“召唤力”,既明确了本节课的主要内容,激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活。
(三)设置有梯度,学生易于接受。
在本节课的问题设置中,特别是巩固练习题的设置,由易到难,由一般到规律先一般顶角70度,到一个角是70度,再到一个角是110度,再总结出顶角的范围,底角的范围,给据学生的认知特点,易于接受。有着良好的效果,这节课,也有不足的地方:
1、在证明性质时由命题转化几何求证时应多加强已知,求证的书写过程。
2、上课的节奏有点快。在以后的教学中能多加以改正。美中不足的是性质二的`应用本节课安排的例题,习题有点少,在以后的教学中应多补充些例题及习题。
相似三角形的判定教案篇十八
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.);4如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为:两角对应相等,两个三角形相似.).直角三角形相似的判定定理:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似[2] ;(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.
两个全等的三角形全等三角形是特殊的相似三角形,相似比为1:1
任意一个顶角或底角相等的两个等腰三角形两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。
两个等边三角形两个等边三角形,三个内角都是60度,且边边相等,所以相似。
直角三角形被斜边上的高分成的两个直角三角形和原三角形由于斜边的高形成两个直角,再加上一个公共的角,所以相似。
相似三角形的判定教案篇十九
《相似三角形的判定1》是湘教版义务教育课程标准教科书九年级数学第三章《图形的相似》第四节《相似三角形的判定和性质》的内容。本节课是第二课时。
《相似三角形的判定》是在学生认识相似图形,了解相似多边形的性质的基础上进行学习的,是本章的重点内容。本课时首先利用“平行于三角形一边的直线与其他两边相交,截得的三角形与原三角形相似。”证明两个三角形相似,然后引导学生通过测量来探究得到两角分别相等的两个三角形相似,继而引导出相似三角形的判定:“两角分别相等的两个三角形相似”。通过类比的方法进一步研究三角形相似的条件,是今后进一步研究其他图形的基础。
通过这节课的教学,我有以下几点反思:成功方面:
1、绝大多数学生都能参与到数学活动中来。
5、通过学习,部分学生能运用本节课所学的知识进行相关的计算和证明;。
6、本节课基本调动了学生积极思考、主动探索的积极性。存在的不足之处是:
2、少数学生在自主探究中,不知如何观察,如何验证;。
3、少数学生在探究两角分别相等的两个三角形相似定理时,不会用学过的知识进行证明;。
4、学生做练习时不细心,出现常规错误,做题的正确率较低;。
5、由于学生基础差,配合不够默契,导致课堂气氛不活跃,教学效果一般。
相似三角形的判定教案篇二十
目标:
1、知识目标:
(1)熟记角边角公理、角角边推论的内容;
(2)能应用角边角公理及其推论证明两个三角形全等。
2、能力目标:
(1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力;
(2)通过观察几何图形,培养学生的识图能力。
3、情感目标:
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
重点:学会运用角边角公理及其推论证明两个三角形全等。
难点:sas公理、asa公理和aas推论的综合运用。
用具:直尺、微机。
方法:探究类比法。
过程:
1、新课引入。
投影显示。
这样几个问题让学生议论后,他们的答案或许只是一种感觉“行或不行”。于是要引导学生,抓住问题的本质:“分别带去了三角形的几个元素?”学生通过观察比较就会容易地得出答案.
2、公理的获得。
问:恢复后的三角形和原三角形全等,那全等的条件是不是就是带去的元素呢?
让学生粗略地概括出角边角的公理。然后和学生一起做实验,根据三角形全等定义对公理进行验证。
公理:有两角和它们的夹边对应相等的两个三角形全等。
应用格式:(略)。
强调:
(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)。
所以找条件归结成两句话:已知中找,图形中看。
(3)、公理与前面公理1的区别与联系。
以上几点可运用类比公理1的模式进行学习。
3、推论的获得。
改变公理2的条件:有两角和其中一角的对边对应相等这样两个三角形是否全等呢?
学生分析讨论,巡视,适当参与讨论。
4、公理的应用。
(1)讲解例1.学生分析完成,注重完成后的总结。
注意区别“对应边和对边”
解:(略)。
(2)讲解例2。
投影例2:
学生思考、分析,适当点拨,找学生代表口述证明思路。
证明格式:用大括号写出公理的三个条件,最后写出。
结论。
第12页。