长方体和正方体体积教学设计(模板13篇)
总结是对一段时间工作的总结和提炼,为未来的工作提供参考和借鉴。如何正确理解和解读文学作品,培养对文学的鉴赏力和审美能力。以下是总结撰写的一些技巧和要点,供您参考和借鉴。
长方体和正方体体积教学设计篇一
长方体的体积计算这一内容是在学生认识了长方体(正方体)的体积的概念,长方体(正方体)的体积:立方米、立方厘米、立方分米的基础上学习的。通过这一节课的学习,可以帮助学生在今后的生产和生活中实际测量和计算一些物体的体积,解决一些实际问题,进一步体会到知识来源于实践、用于实践的道理,学习一些研究问题的方法。并且对学生空间观念的形成有着重要的意义。听了叶老师执教的《长方体的体积》一课,深受启发。我认为主要有以下几方面的亮点:
一、重视引导学生经历知识的探究过程。
究竟长方体的体积与长、宽、高有什么定量关系呢?叶老师安排了操作活动,引导学生用小正方体摆4个不同的长方体,通过观察、分析,发现长方体体积与长、宽、高的关系,逐步归纳得出计算方法。这一过程都是学生在教师的引导下,自主探究的过程,而不是教师的简单说教。
二、重视学生能力的培养。叶老师展示出6个大小不同的长方体,引导学生观察、发现长、宽、高与体积的关系的过程,是培养学生观察能力的过程。叶老师引导学生通过观察长、宽、高与体积的关系,让学生发现规律:长方体的体积正好是它们长、宽、高的乘积的过程,也是培养学生观察能力的过程。叶老师引导学生用棱长为1厘米的小正方体摆不同的长方体的过程,是培养学生动手实践的过程。老师引导学生练习的过程,是培养学生应用所学知识解决问题的能力的过程。在这一系列的探索活动中,学生通过动眼观察、动脑思考、动手操作,发散思维能力、解决问题的能力和策略都得到了不同程度的提高。
三、重视联系学生的生活实际。脱离生活的数学,把数学知识的学习与学生身边的事物割裂开来,既不利于学生理解抽象概括的数学知识,又无法让学生体会学习数学的意义。在课后练习中“一个长方体木箱长5分米,宽和高都是0.4米,它的体积是多少立方分米?”在课程接近尾声之时,叶老师始终没有忘记让学生再次感受我们今天学习的内容是解决我们身边的一些实际问题,我们学习了它,就应该把它运用到生活中。通过联系实际,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣。
四、重视反馈纠正。反馈纠正是改善教学过程,提高教学效率的重要手段。叶老师在教学中反馈形式多种多样,随堂提问、课堂交流、布置练习等反馈及时,纠正有力。反馈面较广,反馈角度多方面,有效地防止了学生知识缺陷的积累,增强了学生学习的自信心。
可以借助多媒体课件逐一展示每个长方体,要求学生记录每个长方体的长、宽、高、体积等有关数据,这样更直观。更便于学生发现体积与长、宽、高之间的关系。
长方体和正方体体积教学设计篇二
义务教育课程标准实验教科书数学五年级下册第三单元《长方体和正方体的体积》,教材41页42页。
学生已经探索并掌握长方形、正方形以及其他一些常见多边形的特征,并直观认识长方体和正方体的基础上进行教学的。从研究平面图形到研究立体图形,是学生空间观念发展的一次飞跃。对常见平面图形特征及其周长、面积计算方法的探索,既为进一步探索长方体、正方体这样的立体图形的特征以及表面积、体积的计算方法奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。通过学习长方体和正方体,可以使学生更好地以数学的眼光观察、了解周围的世界,形成初步的空间观念;同时也能为进一步学习其它立体图形打好基础。
2.培养学生实际操作能力,同时发展他们的空间观念;
3.在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。
探索长方体体积的计算方法。
挂图,若干个1立方厘米小正方块
1立方厘米的正方体16块
一、创设情境,揭示课题
1、实物引入
上节课,我们认识了体积和体积单位,谁来说说什么是体积,体积单位有哪些呢?
根据学生回答,其他学生也动手摆。
如果再拼上一个1立方厘米的正方体,它的体积又是多少呢?(学生操作)。
再拼上一个1立方厘米的正方体,这个长方体就含有5个1立方厘米的正方体,它的体积就是5立方厘米。
2、揭示课题,可见要计量一个物体的体积,就要看这个物体含有多少个体积单位。今天我们就来学习怎样计算长方体和正方体的体积。(板书:长方体和正方体的体积)
二、猜想验证,探究新知
1、提出猜想
你能不能摆出一个长方体,并计算它的体积?出示表格。学生四人一小组,每组一张表格。
长宽 高正方体个数体积
长方体1
长方体2
长方体3
长方体4
请同学们一小组为单位,用1立方厘米的正方体摆出4个不同的长方体,观察摆出的长方体的长、宽、高,把上面的表格填写完整。
学生活动,师巡视。小组汇报?学生黑板前展示表格,并做详细汇报。 引导学生观察表格:观察表格中的数据,从中你能发现什么呢?通过观察比较,同学们有了一个大胆的猜想:长方体的体积等于它的长、宽、高的乘积。这个猜想是否正确呢?我们还要进一步研究。
(板书:)长方体的体积=长×宽×高。
2、验证猜想
用1立方厘米的正方体摆出下面的长方体,各需要多少个?先想一想,再摆一摆。
1、长4厘米,宽1厘米,高1厘米。
2、长4厘米、宽3厘米、高1厘米。
3、长4厘米、宽3厘米、高2厘米
那究竟对不对呢?让我们再来摆一摆。学生小组讨论,动手操作,师巡视。组织交流,课件出示拼摆后的图形。
你是怎么摆的?体积是多少?和我们之前的猜想一样吗?
7×4×3=84立方厘米,所以它的体积就是84立方厘米。
3、概括公式
v=abh
长、宽、高都相等的长方体就是什么图形?你能直接写出正方体的体积公式吗?把你的想法在小组里说一说。
学生汇报:
因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中长、宽、高都叫棱长,正方体的体积=棱长×棱长×棱长。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。
出示正方体,出示公式。
强调写的时候,3要写在a的右上角,并且要写的小一些。
小训练:完成例2,在练习本上完成,集体订正。
三、巩固应用
计算下面长方体和正方体的体积。
1、长9厘米、宽6厘米、高5厘米
2、长0.5米、宽2.5米、高0.8米
3、棱长6分米
四、课堂小结
这节课我们一起学习了长方体和正方体的体积计算,你都有哪些收获?
长方体和正方体体积教学设计篇三
(三)培养和发展学生的空间观念。
(二)确定长方体每一个面的长和宽。
(一)复习准备。
1.口答填空。
(1)长方体有()个面,一般都是(),相对的面的()相等;
(2)正方体有()个面,它们都是(),正方形各面的()相等;
(3)这是一个(),它的长()厘米,宽()厘米,高()厘米,它的棱长之。
(4)这是一个(),它的校长是()厘米,它的棱长之和是()厘米。
教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大方体的表面积。)。
(二)学习新课。
教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小左边的面,说它也是长方体的一个面,它的大小是它的面积。
教师:长方体有几个面?学生:6个面。
教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。再请同学拿着正方体盒子,两人一组边摸边说什么是正方体的表面积。
教师:(拿着长方体盒子)这个长方体的表面积能一眼全看到吗?想一想有什么办法能一眼全看到?学生讨论。(把六个面展开放在一个平面上。)。
教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己展开铺在课桌上。
教师:请再说一说什么是长、正方体的表面积。(学生口答。)。
教师板书:长方体或正方体6个面的总面积,叫做它的表面积。
2.长方体表面积的计算方法。
学生四人一组边操作边讨论后归纳:
请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等教师:我们再从立体图形上看一看。(用电脑动画软件或抽拉投影片演示)。
(图像要验证相对的面相等,展示每个面对应的长和宽。)。
教师:想一想,长方体的表面积如何计算?
长方体和正方体体积教学设计篇四
1、在操作中,感知出长方体的体积大小与它的长、宽、高等有关,长方体的体积。
2、能运用长、正方体的体积公式,计算长、正方体的体积。并能运用所学知识解决一些实际问题。
3、借助学生自己的动手操作、动口表述及课件的动态演示,培养学生的空间观念。
体积公式的运用及公式的推导过程。
体验公式的推导过程。
一、比较大小,复习引入。
1、比一比。出示书包、文具盒。问:谁大?谁小?
其实刚才我们在比他们的什么?体积指的是什么?
2、说出下列图形的体积是多大?你是怎么想的?(都是有棱长为1分米的正方体拼成的)。
小结:要知道一个物体的体积,只要知道这个物体含有多少个这样的体积单位。
3、出示橡皮。问:什么形状?它有体积吗?体积多大?请你估一估,猜猜它有多大?
4、揭示课题。
二、动手操作,感知认识。
还有不同的摆法吗?(学生边说,老师边演示四种不同的摆法)。
3、观察发现:通过刚才的摆,观察这些数据,你发现了什么?
三、启发探究,自主建构。
1、出示长5分米、宽3分米、高2分米的长方体。
问:要摆成这样的长方体需要多少个棱长为1分米的正方体?体积是多少立方分米?你能利用手中的学具摆一摆吗?(开始活动,发现不够摆)。
问:不够,怎么办?你能在头脑中想象,把它补充完整吗?(又开始活动)。
2、汇报交流。并演示摆的过程。
3、出示长8分米、宽4分米、高3分米的长方体。你能摆这个吗?
4、听要求摆。
(1)自己摆一个长6分米、宽3分米、高2分米的长方体,并说说它的体积。
(2)想象一个9米、宽7米、高4米的长方体,并说说它的体积。
5、思考总结。体积与长、宽、高有怎样的关系呢?并快速验证黑板上的数据。
四、解决疑难,运用拓展。
1、解决橡皮的体积。要求它的体积,需要知道什么?师提供测量数据,让学生求体积。
2、自己求数学书的体积。
3、出示:亚光纸箱厂生产一种正方体纸板箱,棱长是8分米。体积是多少立方分米?
五、全课总结。
长方体和正方体体积教学设计篇五
1、结合具体情境和实践活动,经历探索长方体、正方体体积的计算方法,掌握并能正确计算长方体、正方体的体积。
2、经历观察、操作、探索的过程,发展动手操作、抽象概括、归纳推理的能力。进一步发展空间观念。
3、运用体积计算公式解决一些简单的实际问题。
4、探究活动中体验学习数学、发现数学的乐趣,学会与人合作。
2、教学重点/难点。
教学重点:引导学生探索长方体体积的计算方法。
教学难点:理解长方体体积公式的意义。
3、教学用具。
教学课件、一个长方体拼制模型。
4、标签。
一、启发谈话,激趣引入。
二、学习“体积”、“体积单位”的概念。
2、出示差不多大的土豆和一个长方体石块,你知道它们哪个大吗?那你有什么办法?
演示书上的实验,得出:土豆占的空间小,石块占的空间大。
4、计量体积的大小,要用到什么呢?常用的体积单位有哪些?请同学们自学14页中间部分。
5、学生汇报:
(1)常用的体积单位。
(2)拿出课前做的1立方厘米、1立方分米的小正方体,说说哪边哪些物体的体积大约是1立方厘米、1立方分米。
(3)立方米是怎么规定的?老师用3根1米长的木条搭成一个互相垂直的架子,放在墙角感知1立方米的大小,并说说生活中哪些物体的体积跟1立方米差不多大。
6、摆一摆:用棱长是1厘米的正方体木块,摆成下图中不同形状的模型,你知道它们的体积是多少立方厘米?(见教材)。
得出:要计量一个物体的体积,就要看这个物体含有多少个体积单位。
2、实践:拼摆长方体,四人一组,用不少于16块小正方体拼摆长方体,并分别记下摆出的长方体的长、宽、高和体积。
3、小组合作:学生四人一小组操作并做好实验记录。
思考:
(1)每排摆几个?每层摆了几排?摆了几层?
(2)一共摆了多少个小正方体?
(3)这个图形的体积是多少?
4、汇报实验结果。
每排个数。
每层排数。
层数。
小正方体个数。
让学生观察表格中填写的各数,你发现了什么?
小正方体的个数=每排个数×每层排数×层数。
‖‖‖‖。
6、学生汇报,交流,板书。
读题,思考:求砖的体积就是求什么?这个长方体的长、宽、高分别是什么?利用公式,直接求出体积。
生:正方体是长、宽、高都相等的特殊的长方体。
2、师生共同归纳:正方体的体积=棱长×棱长×棱长。
用字母表示为:v=a×a×a=a3。
师强调:读作a的立方,表示3个a相乘。3a表示3个a相加。
3、应用公式:
例题2:一块正方体的石料,棱长是6厘米,这块石料体积是多少?课堂小结。
回顾一下,今天的学习大家有什么收获?
课后习题。
(1)。一个长方体的长是4厘米,宽是3厘米,高是2厘米,它的体积是24立方厘。
米。()。
米)()。
(3)。棱长6厘米的正方体,表面积和体积一样。
大。()。
板书。
物体所占空间的大小,叫做物体的体积。
常用的体积单位有:立方米、立方分米、立方厘米。
小正方体的个数=每排个数×每层排数×层数。
‖‖‖‖。
v=abh。
v=a×a×a=a3。
长方体和正方体体积教学设计篇六
在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。
教学及训练。
重点。
理解底面积。
仪器。
教具。
投影仪。
教学内容和过程。
教学札记。
一、创设情境。
1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。
2、填空。
(1)长、正方体的体积大小是由确定的。
(2)长方体的体积=。
(3)正方体的体积=。
二、探索研究。
1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。
结论:长方体的体积=底面积×高。
正方体的.体积=底面积×棱长。
2.思考。
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
结论:长方体(或正方体)的体积=底面积×高,用字母表示:v=sh。
三、巩固练习。
1.做第20页的“练一练”。学生独立做后,学生讲评。
首先帮助学生理解:什么是横截面?再让学生做后学生讲评。
3.做练习三的第9、10题,学生独立解答,老师个别辅导,集体订正。
四、课堂小结。
学生小结今天学习的内容。
五、课后练习。
做练习三的第11、12、13题。
长方体和正方体体积教学设计篇七
1.在具体的情境中自主探索并掌握长方体体积公式,能应用公式正确计算长方体体积,并解决一些简单的实际问题。
2.通过操作、观察、猜想和归纳等数学活动,经历体积公式的探索过程,不断积累立体图形的学习经验,增强空间观念,发展数学思维。
3.进一步体会数学与实际生活的联系,获得学习成功体验,激发数学学习兴趣。
教师准备用1cm小正方体拼摆成的长方体模型,长方体包装盒,多媒体课件;各小组准备1cm的正方体和实验记录单。
一、创设情境,导入新课
明确:要知道一个物体的体积,就要看这个物体中包含多少个体积单位。
演示:按长方体模型的长、宽、高各含有的小正方体个数,算出长方体的体积)
揭题:刚才,老师的这个长方体模型是用1立方厘米的小正方体摆成的,但生活中有很多长方体或正方体的物体是不能分割的。譬如,这个长方体的包装盒(出示),它的体积又有什么办法知道呢?这节课,我们一起来研究长方体和正方体体积的计算方法。(板书课题)
二、操作探究,发现规律
启发:在三年级,我们学过长方形面积,还记得是怎样推导长方形面积公式的吗?
学生回忆后,电脑演示推导长方形面积公式的过程。
学生可能想到长方体的体积与它的长、宽、高有关;可以把长方体分割成若干个棱长1厘米、1分米或1米的正方体,长方体中含有体积单位的个数就是它的体积。
谈话:看来,同学们的猜想确实有道理。要研究长方体的体积与它的长、宽、高到底有什么关系,我们需要一些长方体作为研究对象。下面,我们一起来摆出一些长方体。
明确活动要求:
(1)同桌合作,用若干个1cm的正方体任意摆出4个不同的长方体并编上序号。
(2)观察摆出的长方体的长、宽、高,所用小正方体的个数,以及它们的体积各是多少,完成记录表。
(3)填完表格后,同桌核对数据,并交流自己的发现。
学生按要求操作、交流,教师巡视。
组织反馈。(指名汇报收集到的数据,并以其中的一个长方体为例,说说怎样看出它的长、宽、高的厘米数的。正方体的个数又是怎样数的,摆出的长方体的体积是多少,根据表中数据,自己有什么发现。)
板书:长方体的体积=长×宽×高。
启发:同学们通过用1cm的小正方体摆长方体的活动,发现了长方体体积等于它长、宽、高的乘积。是不是所有的长方体的体积都是它长、宽、高的乘积呢?这就需要我们进一步验证。
三、再次探索,验证规律
学生可能想到用4个1cm的小正方体摆成一排正好可以得到这个长方体,它的体积是4cm;也可能用“4×1×1”算出它的体积。
根据学生的回答在长方体上画出相应的分割线,确认这个长方体的体积是4cm。(见图1)
出示4×3×1的长方体图,谈话:这个长方体的长、宽、高分别是几cm?如果不用1cm的小正方体,你能想象出这个长方体中含有多少个1cm的小正方体吗?自己先在长方体上画一画,再和同学交流。
提问:这个长方体的体积是多少?你是怎样想的?(根据学生的回答出示图2)
明确:在这个长方体中,沿着长一排可以摆4个1cm的小正方体,沿着宽可以摆3排,所以,这个长方体的体积可以用“4×3×1”来计算。
出示4×3×2的长方体图,谈话:我们再来看这个长方体,它的长、宽、高分别是几cm?你能想象出这个长方体中含有多少个1cm的小正方体吗?自己先试一试。
反馈:这个长方体的体积是多少cm?你是怎样想的?(学生的回答后,出示图3)
引导学生用示意图表示出思考过程。
四、引导概括,得出公式
揭示长方体的体积公式,指出:以后我们可以直接用公式计算长方体的体积。
板书:v=abh。
和同桌说一说你还知道了什么?
让学生口算各题的得数,并交流计算时的思考过程。
五、巩固练习,应用拓展
1.完成“试一试”。
指导测量、记录数据后独立解答。
出示正方体的包装盒,这是一个棱长12cm的正方体纸盒,它的体积是多少cm?
学生独立完成后,组织反馈。
2.完成第26页“练一练”第1题。
先让学生看图说一说每个长方体或正方体的长、宽、高(或棱长)各是多少cm,再口算出它们的体积,并数一数每个立体图形是由多少个1cm的小正方体摆成的。
3.完成练习六第2题。
出示题目,让学生自由读题。
提问:计算冷藏车的容积,为什么要从里面量?
学生独立完成计算,并组织反馈。
六、全课小结,梳理学法
七、课堂作业
练习六第1题。
长方体和正方体体积教学设计篇八
教学过程:
一、复习旧知,引入新课。
1、上节课我们已经学习了体积和体积单位,我们这节课继续研究体积。看看这个棱长1厘米的小正方体,体积是多少(棱长1厘米的小正方体,体积是1立方厘米)。
2、对以前的知识掌握得很清楚,(添一个正方体)看看,这个长方体体积是多少。
二、动手操作,展示交流。
1、小结:刚才我们用数的方法知道了这一堆物体的体积是多少。如果把这些散乱的小正方体拼成一个长方体,还可以怎么数能不能计算出来呢试试吧!(巡视,提示用尺挡着摆,合作)。
2、展示。
a,我看你俩操作能力挺强,你俩摆,你作个小解说员,告诉大家你们组是怎样摆的,大声点,让最后一排的听课老师也听清楚。其他同学可要仔细观察,看看他们摆的'对不对,看看和你们摆的一样不一样。说不好,老师教他说(每排摆个,摆了排,摆了层)。
3、展示。
4、展示。
(3)还有没有摆法你说说(只说不摆)表达很有条理,你们的数据是40立方厘米。
5、展示。
(4)还有摆法吗说说思路很清楚,我也记上、40立方厘米。
6、展示。
(5)说的很有层次40立方厘米。
7、同学们想想,除了我们这5种摆法,还有其他摆法吗的确,还有很多种摆法。(……)。
三、积极思考,总结公式。
1、同学们观察你们摆的长方体,看看这组数据是长方体的什么(长)这组数据呢(宽)这组(高)。
2、刚才我们计算出了这么多长方体的体积,你们能不能把刚才我们的算法整理成一个长方体体积公式呢(2、3个学生说说)。
四、反馈练习,巩固提高。
现在我们又掌握了一个数学工具,长方体体积公式,下边我们试试这个工具好用不好用。
1、看看,这是什么(砖)估计一下它的体积我们估计出了这么多结果,它的体积到底是多少呢谁读一读一块砖的体积是1728立方厘米,再估计,你们还会估计、吗同学们又进步了!
2、刚才我们紧张忙碌了半天,下面我们轻松一下,来一组口答(练一练1、2题,2题只列式不计算)。
3、太容易了!看看这个,自己做在练习本上这个5表示什么这个5呢。
4、小结:这节课我们把一堆1立方厘米的正方体转化成了长方体,并且找到了计算长方体体积的公式,其实这就是一种很重要的数学方法——转化。
老师给我们每个小组准备了一包沙子,你们能不能利用这节课的知识,求出沙子的体积在小组内说说想法。哪个组愿意说说办法动手试试吧!
长方体和正方体体积教学设计篇九
教学目标:
1、学生经历探索长方体与长、宽、高之间关系的过程,理解掌握长方体体积的计算方法。
2、能根据正方体与长方体的从属关系,理解掌握正方体的体积计算方法。
3、能运用长方体、正方体的体积计算公式,正确地进行简单的体积计算,并解决简单的问题。
4、经历数学学习活动,培养学生分析与解决问题的能力。
教学关键:运用教学具引导学生观察、发现长方体体积与长、宽、高之间的关系。教具准备:电脑课件、棱长1厘米的正方体块若干。
教学过程:
一、复习铺垫:
1、计算下列长方形的面积。
练习要求:
(1)学生独立计算各长方形的面积;
(2)全班反馈。
2、说一说。
教师:你认为长方形的面积与长和宽有什么关系?要计算长方形的面积需要哪些条件?通过问题回答,使学生懂得长方形面积的大小与它的长、宽有直接的关系,要计算长方形的面积必须已知它的长和宽的长度。
二、探索新知。
1、揭示课题,设疑激趣。
教师:我们已经学习过并掌握了长方体、正方体的表面积计算,今天,我们要学习长方体、正方体的体积计算。板书课题:长方体的体积。
随后,电脑课件演示,如:
比较图1、图4体会到:长、宽相等的时候,高的值越大,体积也越大;高的值越小,
体积也越小。
比较图2、图5体会到:长、高相等的时候,宽的值越大,体积也越大;宽的值越小,体积也越小。
比较图3、图6体会到:宽、高相等的时候,长的值越大,体积也越大;长的值越小,体积也越小。
教师:体积与长、宽、高存在怎样的关系呢?
从而,使学生肯定长方体体积的大小决定于它的长、宽、高的长短。
(这里课件动态演示长方体体积相关的三个条件的变化,一是长方体宽、高不变,长变;一是长方体长、宽不变,高变;一是长方体长、高不变,宽变。通过课件动画和色彩上的区别,让学生形象、直观地观察体会长方体体积大小与哪些条件有关。为进一步探索长方体体积做好铺垫。)。
2、自主探索,获取新知。
(1)请学生取4个、6个、12个正方体块,分别摆出不同的长方体,让学生观察,记录这些长方体的体积的长、宽、高。
(2)反馈,课件同步演示。
第一组:用4个小正方体拼长方体。
第一种:
体积是多少?
长是多少厘米?
宽是多少厘米?
高是多少厘米?
记录:长宽高体积。
4114。
第二种:
体积是多少?
长是多少厘米?
宽是多少厘米?
高是多少厘米?
记录:长宽高体积。
2124。
(通过课件动态演示用四个小正方体拼长方体的过程,让学生初步感知长方体体积与它的长、宽、高之间存在的内在联系。更直观、形象,易于学生理解。)。
第二组:用6个小正方体拼长方体。
第一种:
体积是多少?
长是多少厘米?
宽是多少厘米?
高是多少厘米?
记录:长宽高体积。
6116。
第二种:
体积是多少?
长是多少厘米?
宽是多少厘米?
高是多少厘米?
记录:长宽高体积。
3126。
(这组同样通过课件动态演示,使教学内容更具体、形象、直观,使学生更容易体会。)。
第三组:用12个小正方体拼长方体。
(同上)。
(通过上面三组flash动画的动态演示,使抽象的立体图形在上下、前后、左右层层拼摆的过程中,让学生很容易理解长方体体积所包含的体积单位及与长宽高之间的关系,引发了每一个学生积极的情绪体验。)。
(3)整理数据,发现规律(课件演示)。
通过观察、交流,让学生发现规律,板书如下:
4×1×1=4。
2×1×2=4。
6×1×1=6。
3×1×2=6。
12×1×1=12。
……。
从而发现:长方体所包含的体积数正好等于长方体长、宽、高的乘积。
板书:v=a×b×h或v=abh。
(以上环节通过课件的动态演示,学生经历了提出问题-----探索问题-----验证结论-----概念形成的过程,建立了对长方体体积正确的认知。同时在图形位置、数量及长、宽、高变化的过程中学生加深了对长方体体积的全面认识,从而使学生的空间观念进一步提升。)。
(4)知识迁移,归纳正方体体积计算公式。
课件演示,学生观察、交流后归纳:
v=a×a×a或v=。
三、巩固应用,加深理解。
1、用1立方厘米的小正体摆成如下的图形,他们的.体积各是多少?
(课件出示)(此题在教学中若教师用笔画图,不但耗时而且还会不标准、不美观,通过计算机课件来出示,不但快捷,而且能解决所有的这些问题,起到事半功倍的效果。)。
2、计算体积。
(课件出示)(效果同上)。
3、一个药盒长6厘米,宽和高都是3厘米。现有一个长12厘米,宽6厘米,高6厘米的。
纸箱,内侧的尺寸如图,这个纸箱中最多能放多少盒药?
(课件演示)(此题在大纸盒内摆小药盒,用实物演示具有很大的局限性,比如纸盒是不透明的,学生看不到纸箱里面的摆放过程,而这里利用课件动态演示,让学生直观形象的了解横摆、竖摆、侧摆这三种方式,从而找到解决问题的办法,同时进一步培养了学生的空间观念感。)。
四、精彩活动,拓展延伸。
我说你搭。
用体积是1立方厘米的小正方体摆长方体。
(课件操作)(此题让学生在电脑课件中用拖拽的方式进行拼搭,激发学生浓厚的学习兴趣,积极活动的参与性,不但创设了让学生独立思考、共同研究交流的学习氛围,同时让学生深深感受到学习的乐趣和成功的喜悦。)。
五、数学万花筒。
(课件演示)(把教材内容用课件的形式展现出来,既便于激发学生学习兴趣,又有利于全体学生共同研究交流。)。
长方体和正方体体积教学设计篇十
1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积,解决一些简单的实际问题。
2、在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。
3、培养学生动手操作、抽象概括、归纳推理的能力。
使学生理解长方体的体积公式的推导过程,掌握长方体体积的计算方法。
小正方体若干个教法学法合作法、讨论法。
教学环节第一次备课动态修改。
一、复习导入。
这节课我们就来学习长方体的体积的计算。(小本的字典,体积小)。
(分割成若干个小正方体,再比较,求长方体的体积就是求长方体所含有多少个这样的体积单位。)。
二、概括公式。
1、学生猜想。
一个物体的大小和什么有关呢?
(1)长、宽相等的时候,越高,体积越大。
(2)长、高相等的时候,越宽,体积越大。
(3)高、宽相等的时候,越长,体积越大。
与长、宽、高都有关系。
2、动手实践操作。
这个猜想正确吗?下面就请同学们通过实验去验证我们的猜想是否正确。
课件出示记录表。(课本29页)。
(1)提出小组合作要求。
请同学们小组合作,用你们手中的1立方厘米小正方体拼成形状不同的长方体,每拼成一种就记录下它的长、宽、高和体积各是多少,然后计算出来验证刚才的猜想是否正确。
(2)小组合作学习。
(3)小组派代表汇报。
生:把4个正方体摆成1排,每排4个,摆1层。这个长方体的长是4厘米,宽是1厘米,高是1厘米,体积是4立方厘米。
(2)引导学生把计算结果与记录表中的体积进行比较,发现长×宽×高的乘积就是长方体的体积。
板书:v=a×b×h=abh,学生齐读公式。
现在请同学们根据长方体的体积计算公式,在小组内讨论讨论:正方体体积的计算公式是什么?学生小组讨论。
教师追问:你们是怎么想的?
学生:因为正方体是特殊的长方体,当长方体的长、宽、高都相等时,长宽高也就是正方体的棱长。所以正方体的体积=棱长×棱长×棱长。
教师说明用字母表示v=a×a×a=a3。
说明:a3读作a的立方或a的三次方,表示3个a相乘。
学生齐读公式。
5、教学底面积。
三、练习。
1、出示课本30页的例一:生独自完成,集体订正。
2、课本31页做一做。
四、课堂总结。
今天你有哪些收获?还有什么疑问?
板书设计:
长方体的体积=长×宽×高正方体的体积=棱长×棱长×棱长。
v=a×b×h=abhv=a×a×a=a3。
v=s×h=shv=s×h=sh。
例1.v=abhv=a3。
=7×3×4=6×6×6。
=84cm3=216dm3。
长方体和正方体体积教学设计篇十一
知道长方体体积公式的推导过程,掌握长方体体积的计算公式。
【过程与方法】。
在观察、操作、探索的过程中,进一步发展空间观念,增强动手操作、抽象概括和归纳推理的能力。
【情感态度与价值观】。
在合作探究的学习中,体验学习数学的乐趣,增强对数学的学习兴趣。
二、教学重难点。
【重点】。
【难点】。
三、教学过程。
(一)导入新课。
1.复习回顾:物体的体积概念和单位。
2.用课件展示生活中常见的长方体,提问长方体的体积该如何计算。
(二)生成新知。
1.操作转化。
提问:长方体的体积与哪些数据有关?引导学生通过数组成几个不同形状的长方体的小正方体的个数记录、整理数据。
分组实验,教师巡视。
学生操作预设:学生数面前长方体时在数小立方体时和同组其他同学不同,教师可以引导学生按一定的顺序来数小正方体,从左往右依次数体积为1立方厘米的小正方体;学生在实验后对数据的记录不够工整,教师可以建议学生将所得数据参考教材中的方格进行填写。
学生汇报展示,总结发现:长方体的体积与长、宽、高有关。
2.操作探究,验证猜想。
学生独立思考后汇报:长方体的体积等于长乘宽乘高。
3.总结概括。
(三)巩固提高。
1.课件展示不同长、宽、高的长方体,组织同学们计算各个长方体的体积。
2.展示两个具体的长方体,比较那个长方体的体积大小。
(四)小结作业。
小结:师生共同总结本节课的收获。
作业:在生活中,找两个长方体并量出它们的长宽高,计算出它们的体积。
四、板书设计。
长方体和正方体体积教学设计篇十二
1、知识与技能目标:通过学习,让学生知道长方体和正方体的各部分名称,了解长方体、正方体的特征以及长方体、正方体之间的关系。
2、过程与方法目标:让学生经历观察,交流,归纳等认识长方体和正方体特征的过程。
3、情感态度与价值观目标:让学生积极主动参与数学活动,在总结和归纳长方体、正方体的特征以及关系的过程中获得积极的学习体验。
教学难点:建立“立体图形”的空间概念,了解长方体、正方体的关系。
(一)创设情境,导入新课。
用多媒体向学生展示一些基本图形长方形、正方形、三角形、平行四边形、梯形,询问学生:“这些图形我们统称为什么形?”在学生回答称为平面图形。
让学生拿出自己准备的盒子,观察之后告诉他们像盒子这样占有一定空间的图形,叫立体图形,今天我们我们来研究立体图形中的长方体和正方体的特征,并板书课题——长方体和正方体的认识。
(二)探究新知。
1、认识长方体的面、棱、顶点。
首先请学生拿出已准备好的长方体(学具),闭上眼睛摸一摸,想一想:“长方体是由什么围成的?两个面相交处有什么?三条棱相交处有什么?”让学生告诉我他们的发现,然后将拿出长方体,边摸边讲解:什么叫面、棱、顶点。
请学生用手中的学具四人一小组研究长方体和正方体面、棱、顶点的特征,完成表格。
给出了三组小棒,让学生判断哪组可以组成长方体。学生汇报正方体的面、棱、顶点的特征。
让学生总结前面讲到的长方体、正方体的特征,并进行对比,说一说它们相同点和不同点。
(三)多种练习,巩固新知。
(四)课堂小节。
让学生谈一谈体会,概括本节课所学知识。
长方体和正方体体积教学设计篇十三
明确:要知道一个物体的体积,就要看这个物体中包含多少个体积单位。
演示:按长方体模型的长、宽、高各含有的小正方体个数,算出长方体的体积)。
揭题:刚才,老师的这个长方体模型是用1立方厘米的小正方体摆成的,但生活中有很多长方体或正方体的物体是不能分割的。譬如,这个长方体的包装盒(出示),它的体积又有什么办法知道呢?这节课,我们一起来研究长方体和正方体体积的计算方法。(板书课题)。
二、操作探究,发现规律。
启发:在三年级,我们学过长方形面积,还记得是怎样推导长方形面积公式的吗?
谈话:看来,同学们的猜想确实有道理。要研究长方体的体积与它的长、宽、高到底有什么关系,我们需要一些长方体作为研究对象。下面,我们一起来摆出一些长方体。
明确活动要求:
(1)同桌合作,用若干个1cm3的正方体任意摆出4个不同的长方体并编上序号。
(2)观察摆出的长方体的长、宽、高,所用小正方体的个数,以及它们的体积各是多少,完成记录表。
(3)填完表格后,同桌核对数据,并交流自己的发现。
学生按要求操作、交流,教师巡视。
组织反馈。(指名汇报收集到的数据,并以其中的一个长方体为例,说说怎样看出它的长、宽、高的厘米数的。正方体的个数又是怎样数的,摆出的长方体的体积是多少,根据表中数据,自己有什么发现。)。
三、再次探索,验证规律。
学生可能想到用4个1cm3的小正方体摆成一排正好可以得到这个长方体,它的体积是4cm3;也可能用“4×1×1”算出它的体积。
根据学生的回答在长方体上画出相应的分割线,确认这个长方体的体积是4cm3。(见图1)。
出示4×3×1的长方体图,谈话:这个长方体的长、宽、高分别是几cm?如果不用1cm3的小正方体,你能想象出这个长方体中含有多少个1cm3的小正方体吗?自己先在长方体上画一画,再和同学交流。
提问:这个长方体的体积是多少?你是怎样想的?(根据学生的回答出示图2)。
明确:在这个长方体中,沿着长一排可以摆4个1cm3的小正方体,沿着宽可以摆3排,所以,这个长方体的体积可以用“4×3×1”来计算。
出示4×3×2的长方体图,谈话:我们再来看这个长方体,它的长、宽、高分别是几cm?你能想象出这个长方体中含有多少个1cm3的小正方体吗?自己先试一试。
反馈:这个长方体的体积是多少cm3?你是怎样想的?(学生的回答后,出示图3)。
四、引导概括,得出公式。
板书:v=abh。
和同桌说一说你还知道了什么?
让学生口算各题的得数,并交流计算时的思考过程。
五、巩固练习,应用拓展。
学生独立完成计算,并组织反馈。
六、全课小结,梳理学法。
七、课堂作业。
练习六第1题。