函数的性质教案范文(19篇)
编写教案需要教师具备一定的专业知识和教学经验。教案的课堂组织要活跃有序,注重学生的参与和互动。教案的完善离不开教师们的共同探索,以下是一些教案的实际应用案例,供大家参考。
函数的性质教案篇一
1.本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。
2.对教材的分析。
(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
(3)难点:探索并掌握反比例函数的主要性质。
函数的性质教案篇二
即vt=;。
当矩形面积s一定时,长a与宽b成反比例,即ab=。
从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:
(s是常数)。
(s是常数)。
一般地,函数(k是常数,)叫做反比例函数.
如上例,当路程s是常数时,时间t就是v的反比例函数.当矩形面积s是常数时,长a是宽b的反比例函数.
在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供。
2、列表、描点画出反比例函数的图象。
例1、画出反比例函数与的图象。
解:列表。
一般地反比例函数(k是常数,)的图象由两条曲线组成,叫做双曲线.
3、观察图象,归纳、总结出反比例函数的性质。
前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习.
显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)。
(1)的图象在第一、三象限.可以扩展到k0时的情形,即k0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限.
的讨论与此类似.
抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程.
(2)函数的图象,在每一个象限内,y随x的增大而减小;。
从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k0时,函数的图象,在每一个象限内,y随x的增大而减小.
同样可以推出的图象的性质.
(3)函数的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出,.如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出图象的性质.
4、小结:
本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中.
5、布置作业习题13.81-4。
函数的性质教案篇三
(师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.
反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.
(提问):什么是指数函数?指数函数存在反函数吗?
(学生):是指数函数,它是存在反函数的.
(师):求反函数的步骤。
(由一个学生口答求反函数的过程):
由得.又的值域为,
所求反函数为.
(师):那么我们今天就是研究指数函数的反函数-----对数函数.
(二)新课。
1.(板书)定义:函数的反函数叫做对数函数.
(教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流)。
(学生)对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故有着相同的限制条件.
(在此基础上,我们将一起来研究对数函数的图像与性质.)。
(提问)用什么方法来画函数图像?
(学生1)利用互为反函数的.两个函数图像之间的关系,利用图像变换法画图.
(学生2)用列表描点法也是可以的。
请学生从中上述方法中选出一种,大家最终确定用图像变换法画图.
(师)由于指数函数的图像按和分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况和,并分别以和为例画图.
函数的性质教案篇四
函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数在生产、生活实践中都有许多应用.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识.
2、教学目标的确定及依据。
根据教学大纲要求,结合教材,考虑到学生已有的.认知结构心理特征,我制定了如下的教学目标:
(2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、
分析、归纳等逻辑思维能力.
学的精确和美妙之处,调动学生学习数学的积极性.
3、教学重点与难点。
函数的性质教案篇五
本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,因而在教学上采取教师逐步引导,学生自主合作的方式,从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.
在教学中一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地以反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.
函数的性质教案篇六
知识与技能:
1、进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2、体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3、培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教师画图中要规范,为学生树立一个可以学习的模板。
激发诱导,探索交流,讲练结合三位一体的教学方式。
教师画图,学生模仿。
三角板,小黑板。
学生动手、动眼,、动耳、采用自主,合作、探究的学习方法。
1、什么叫做反比例函数;
(一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k0)的形式,那么称y是x的反比例函数。)。
(1)k为常数,k0。
(2)从y=中可知x作为分母,所以x不能为零。
y=kx+by=kx。
k0一、二、三一、三。
b0一、三、四。
k0一、二、四二、四。
b0二、三、四。
可以。
问题3:画图象的步骤有哪些呢?
(1)列表。
(2)描点。
(3)连线。
(教学片断:
师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。
生:我知道反比例函数来源于生活,生活中的许多问题都属于反比例函数问题,例如,在匀速运动中当路程一定时,且路程不等于零,则速度与时间成反比例函数关系。
师:现在给大家几分钟的时间探讨一下反比例函数图象该怎么画?
学生思考、交流、回答。
提问:你能画出的图象吗?
学生动手画图,相互观摩。
(1)列表(取值的特殊与有效性)。
x-8-4-2-1-1/21/21248。
(2)描点(描点的准确)。
(3)连线(注意光滑曲线)。
议一议。
(1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。
(2)如果在列表时所选取的数值不同,那么图象的形状是否相同?
(3)连接时能否连成折线?为什么必须用光滑的曲线连接各点?
(4)曲线的发展趋势如何?
曲线无限接近坐标轴但不与坐标轴相交。
学生先分四人小组进行讨论,而后小组汇报。
做一做。
学生动手画图,相互观摩。
想一想。
观察和的图象,它们有什么相同点和不同点?
学生小组讨论,弄清上述两个图象的异同点。
相同点:(1)图象分别都是由两支曲线组成(2)都不与坐标轴相交(3)都是轴对称图形(y=x、y=-x)和中心对称图形(对称中心(0,0)即坐标原点)。
不同点:第一个图象位于一、三象限;第二个图象位于二、四象限。
反比例函数y=有下列性质:反比例函数的图象y=是由两支曲线组成的。
(1)当k0时,两支曲线分别位于第___、___象限。
(2)当k0时,两支曲线分别位于第___、___象限。
(1)已知函数的图象分布在第二、四象限内,则的取值范围是_________。
(2)若ab0,则函数与在同一坐标系内的图象大致可能是下图中的()。
(a)(b)(c)(d)。
(3)画和的图象。
在同一坐标系中作出函数y=2/x与函数y=x-1的图象,并利用图象求它们的交点坐标。
(2)习题5、2、1。
复习上节主要内容。
(5分钟)。
由于初中学生属于义务教育阶段,没有经过入学选拔,所以两极分化比较严重,上面提出的问题带有一定的开放性,面向各层次的学生,使不同层次的学生都有一定的问题可答,从而激发起不同层次学生的学习积极性。
数学教学重要目的之一是使学生学会学习,利用这个问题可以使学生学会寻找研究的方向,会提出研究的课题,提高学习的能力。
数学学习活动是学生对自己头脑中已有知识的重新建构,所以利用学生头脑中已有的一次函数图象与性质,及研究一次函数图象与性质的方法,创设问题情境,可以激发学习研究的热情,点燃学生思维的火花,并使学生知道如何研究新问题,使学生在探究过程中实现知识的迁移,形成新的认知结构。
(12分钟)。
引导学生正确画出反比例函数图象,并能归纳反比例函数图象的有关性质。
在画第一个图象时,教师要在黑板上用三角板一步一步的示范,在重要地方再重点强调,直到整个图象的完成。只有以身示范,同学学习才有样可依,有了正确标准的样板,学生学习也变得容易。这样可以培养学生严谨与严密的做题步骤以及做题的规范性。
注:
(1)x取绝对值相等符号相反的数值。
(2)x取值要尽可能多,而且有代表性。
(3)连线时用光滑曲线从小到大依次连接。
(4)图象不与坐标轴相交。
在此学生若是回答图象是轴对称图象或者中心对称图象都要予以肯定,这些内容留给学生课下探讨,并鼓励提出问题的学生继续探索不要放弃。
(3分钟)。
此时图象由学生仿照第一个在下边自己独立画出,并且监督学生,在有学生画的不对的地方及时指出,并使其改正后鼓励。最后在黑板上画出正确的图象,使学生自己画的图象与黑板对比。
(5分钟)。
(4分钟)。
培养学生归纳,语言表达能力。
此中注意分类讨论思想的应用。
(2分钟)。
与新课较接近的简化检测可以再次回顾所学内容,以及内容重点。这类题多为口算或口答,题目简单不过所学内容可以全部体现。
(5分钟)。
这类练习要求动笔计算或者画图,有一定难度,可以深化所学内容。
(4分钟)。
此题既是对函数图象画法的复习又是对方程求解的深化。其中蕴含了数形结合思想。
(1分钟)。
本节课通过学生自主探索,合作交流,自主画图,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成。培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合以及分类讨论的数学思想方法。
由于此节课是动手画图,限于器材以及教学设备,图象显示不能用几何画板和投影仪,不过一笔一笔的教学生一个范例,既可给学生思考也可有学习的空间。
在由图象获取性质的时候有一些不足,以后教课时要注意引导,使学生较快获得有效信息,从而归纳出要得到的性质和结论。在这节课要多强调光滑曲线以及画法。
函数的性质教案篇七
(1)指数函数和的图像要尽量准确(关键点的位置,图像的变化趋势等).
(2)画出直线.
(3)的图像在翻折时先将特殊点对称点找到,变化趋势由靠近轴对称为逐渐靠近轴,而的图像在翻折时可提示学生分两段翻折,在左侧的先翻,然后再翻在右侧的部分.
学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出。
和的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:
教师画完图后再利用电脑将和的图像画在同一坐标系内,如图:
然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)。
(1)定义域:
(2)值域:
由以上两条可说明图像位于轴的右侧.
(3)图像恒过(1,0)。
(4)奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于轴对称.
(5)单调性:与有关.当时,在上是增函数.即图像是上升的。
当时,在上是减函数,即图像是下降的.
之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:
当时,有;当时,有.
学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.
最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)。
对图像和性质有了一定的了解后,一起来看看它们的应用.
(三).简单应用。
例1.求下列函数的定义域:
(1)(2)(3)。
先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.
2.利用单调性比较大小。
例2.比较下列各组数的大小。
(1)与;(2)与;。
(3)与;(4)与.
让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.
三.拓展练习。
练习:若,求的取值范围.
四.小结及作业。
函数的性质教案篇八
教法:本节课选用引导学生观察,发现法和探索实践归纳法。本节课的难点是发现正比例函数性质,因此我通过教师引导,启发调动学生的积极性,让学生在课堂上多活动(画、图、交流、展示)、多观察(图象),主动参与到整个教学活动中来,最后发现其性质。
学法指导:教师引导学生观察、发现、归纳的学习方法。
函数的性质教案篇九
对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.
函数的性质教案篇十
这节课讲的课题是对数函数及其性质。对数函数及其性质是人教版a版数学必修一的内容。
通过这节课的教学,我主要有以下三点收获:
授课的致用性:
大家往往固有的潜意识是数学枯燥无味,如果将来不搞科学研究,学之无用。本人要利用一切可以利用的数学课告诉大家,基础数学是提高国民基本科学常识的必备武器。那么,对数函数的学习则是对历史文物研究的基础知识。当下的国民,生活质量稳步提高,假日旅游已经成为常态,我们将来的国民不能再是只是游玩,而是懂道的欣赏。
碳14的对数公式。
则是今天导课的重要兴趣吸引点。
信息技术的应用。
多媒体教学已经成为常态教学手段,几何画板的动态展示已经为学生展示了直观的对数函数底数真数改变的图像变化。当然辅助教学手段是在学生的导学案上有习题和绘图两种手动跟进。
作业布置的探索性尝试。
(1)上百度,知乎查阅考古年代的推断方法及碳14的相关应用.
(2)周末看一部考古相关的电影或纪录片。通过这种作业布置方式的尝试,让学生体会教改绝对不是一句空话,普通教师已经在行动。
当然,本节课还是有很多没有想到。也有三点。
1、内容的繁多性。
总是认为本节课内容简单,要多讲一点,把可能的题型都要讲到,犯了大多数教龄多年的通病———经验式授课。导致本节课结束时有些许的时间紧张。
2、师生互动的简单重复。
发挥学生的主观能动性一直是我们追求的,所以师生互动是很重要的一个展示环节。但是我们还只是简单的小组交流,板书展示。还是得开动脑筋,多些互动样式。
3、授课中的德育环节。
其实本节课教学中我还是在导课过程,以及作业布置中体现出了德育的部分情节。但是还是远远不够,不能因为数学课的特殊性就可以忽略德育。润物细无声,潜移默化的影响才是为人师应该具备的素养。培养品德高尚的社会主义新人是目标,我辈仍需努力。
函数的性质教案篇十一
即:一角的正弦大于另一个角的余弦。
2、若,则,。
3、的图象的对称中心为(),对称轴方程为。
4、的图象的对称中心为(),对称轴方程为。
5、及的图象的对称中心为()。
6、常用三角公式:。
有理公式:;。
降次公式:,;。
万能公式:,,(其中)。
7、辅助角公式:,其中。辅助角的位置由坐标决定,即角的终边过点。
8、时,。
9、。
其中为内切圆半径,为外接圆半径。
特别地:直角中,设c为斜边,则内切圆半径,外接圆半径。
10、的图象的图象(时,向左平移个单位,时,向右平移个单位)。
11、解题时,条件中若有出现,则可设,。
则。
12、等腰三角形中,若且,则。
13、若等边三角形的边长为,则其中线长为,面积为。
14、;。
函数的性质教案篇十二
1、图象关于原点对称。
2、满足f(-x)=-f(x)。
3、关于原点对称的`区间上单调性一致。
4、如果奇函数在x=0上有定义,那么有f(0)=0。
5、定义域关于原点对称(奇偶函数共有的)。
1、图象关于y轴对称。
2、满足f(-x)=f(x)。
3、关于原点对称的区间上单调性相反。
4、如果一个函数既是奇函数有是偶函数,那么有f(x)=0。
5、定义域关于原点对称(奇偶函数共有的)。
函数的性质教案篇十三
在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的.变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。
函数的性质教案篇十四
1.使学生掌握平行四边形的概念,理解两条平行线间的距离的概念.。
2.掌握平行四边形的性质定理1、2.。
3.并能运用这些知识进行有关的证明或计算.。
(二)能力训练点。
1.知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想.。
2.通过推导平行四边形的性质定理的过程,培养学生的推导、论证能力和逻辑思维能力.。
(三)德育渗透点。
通过要求学生书写规范,培养学生科学严谨的学风.。
(四)美育渗透点。
通过学习,渗透几何方法美和几何语言美及图形内在美和结构美。
二、学法引导。
阅读、思考、讲解、分析、转化。
三、重点・难点・疑点及解决办法。
1.教学重点:平行四边形性质定理的应用。
四、课时安排。
2课时。
五、教具学具准备。
教具(做两个全等的.三角形),投影仪,投影胶片,小黑板,常用画图工具。
六、师生互动活动设计。
第一课时。
七、教学步骤。
函数的性质教案篇十五
学生能理解函数的概念,掌握常见的函数(sum,average,max,min等)。学生能够根据所学函数知识判别计算得到的数据的正确性。
学生能够使用函数(sum,average,max,min等)计算所给数据的和、平均值、最大最小值。学生通过自主探究学会新函数的使用。并且能够根据实际工作生活中的需求选择和正确使用函数,并能够对计算的数据结果合理利用。
学生自主学习意识得到提高,在任务的完成过程中体会到成功的喜悦,并在具体的任务中感受环境保护的重要性及艰巨性。
sum函数的插入和使用。
函数的格式、函数参数正确使用以及修改。
任务驱动,观察分析,通过实践掌握,发现问题,协作学习。
excel文件《2000年全国各省固体废弃物情况》、统计表格一张。
1、展示投影片,创设数据处理环境。
2、以环境污染中的固体废弃物数据为素材来进行教学。
3、展示《2000年全国各省固体废弃物情况》工作簿中的《固体废弃物数量状况》工作表,要求根据已学知识计算各省各类废弃物的总量。
函数名表示函数的计算关系。
=sum(起始单元格:结束单元格)。
4、问:求某一种废弃物的全国总量用公式法和自动求和哪个方便?
注意参数的正确性。
1、简单描述函数:函数是一些预定义了的计算关系,可将参数按特定的顺序或结构进行计算。
在公式中计算关系是我们自己定义的,而函数给我们提供了大量的已定义好的计算关系,我们只需要根据不同的处理目的去选择、提供参数去套用就可以了。
2、使用函数sum计算各废弃物的全国总计。(强调计算范围的正确性)。
3、通过介绍average函数学习函数的输入。
函数的输入与一般的公式没有什么不同,用户可以直接在“=”后键入函数及其参数。例如我们选定一个单元格后,直接键入“=average(d3:d13)”就可以在该单元格中创建一个统计函数,统计出该表格中比去年同期增长%的平均数。
(参数的格式要严格;符号要用英文符号,以避免出错。)。
有的同学开始瞪眼睛了,不大好用吧?
因为这种方法要求我们对函数的使用比较熟悉,如果我们对需要使用的函数名称、参数格式等不是非常有把握,则建议使用“插入函数”对话框来输入函数。
用相同任务演示操作过程。
4、引出max和min函数。
探索任务:利用提示应用max和min函数计算各废弃物的最大和最小值。
5、引出countif函数。
探索任务:利用countif函数按要求计算并体会函数的不同格式。
1、教师小结比较。
2、根据得到的数据引发出怎样的思考。
四、 。
1、废弃物数量大危害大,各个省都在想各种办法进行处理,把对环境的污染降到最低。
2、研究任务:运用表格数据,计算各省废弃物处理率的最大,最小值,以及废弃物处理率大于90%,小于70%的省份个数,并对应计算各省处理的废弃物量和剩余的废弃物量及全国总数。
1、分析存在问题,表扬练习完成比较好的同学,强调鼓励大家探究学习的精神。
2、把结果进行记录,上缴或在课后进行分析比较,写出一小论文。
1、让学生体会到固体废弃物数量的巨大。
2、处理真实数据引发学生兴趣。
通过比较得到两种方法的优劣。
学生的计算结果在现实中的运用,真正体现信息技术课是收集,分析数据,的工具。
通过类比学习,提高学生的自学能力和分析问题能力。
实际数据,引发思考。
学生应用课堂所学知识。
学生带着任务离开教室,课程之间整合,学生环境保护知识得到加强。
观看投影。
学生用公式法和自动求和两种方法计算各省废弃物总量。
回答可用自动求和。
动手操作。
计算各类废气物的全国各省平均。
练习。
练习。
用自己计算所得数据对现实进行分析。
应用所学知识。
练习并记录数据。
函数的性质教案篇十六
美国学者波斯纳(posner)指出:“没有反思的经验是狭隘的经验,至多只能成为肤浅的知识。如果教师满足于获得经验而不对经验进行深入的思考,那么他的教学水平的发展将大受限制,甚至会出现滑波。”我通过自己第一次参加晋中市优质课大赛―――《对数函数图像及性质》的教学,从这节课的数学教学观、教学设计以及教学过程三个方面进行深刻的反思,提出了一些粗浅的观点和见解,希望各位老师不吝赐教。
一、反思数学教学观。
我的数学教学基本观点是:创设丰富的情境,激发学生的学习兴趣;以学生为中心,加强数学活动过程的教学,留有探索与思考的余地;营造一种合作交流的课堂气氛,引导学生主体参与,还学生学习主动权,自我挖掘其创造潜能。
1.在本课的教学中,通过创设恐龙在地球上的出现时间、存在时间、灭亡时间的情境,引出可以估算出出土文物或古遗址的年代的公式,引导学生研究对数函数,一方面体现了“数学源于现实,寓于现实,用于现实”,另一方面使学生产生强烈的探索欲望。
2.本节课基本上做到让学生经历数学化的过程,在数学活动中学习数学。据评课教师记录,引导学生自主研究对数函数的图象和性质花了二十分钟,基本上做到了“让学生用自己的方式重新构造知识”。
3.本节学生主体参与度还可提高,由于要按时完成课时任务,学生发现的几种比较大小的方法没有充分展示与肯定,使所有参与者都有成就感。
4.根据这节课的教学实践并结合学生学习的特点,我的数学教学观还要增加一条:以人为本,充分肯定和鼓励学生,让学生体会到创造的乐趣,领悟数学的本质。
二、反思教学设计。
1.对教学目标的反思:将“会利用对数函数的性质比较两个数的大小”改为“会利用对数函数的性质比较两个对数的大小”更具体,“培养学生观察、分析推理、归纳概括能力”可改为“逐步提高观察、分析推理、归纳概括的能力”用词更准确。
2.对学生已有内容的反思:由于“影响学习最重要的因素是学生已有的内容,弄清这一点后,进行相应的教学”,上课后再来反思学生已有内容,有如下几点:指数式与对数式转换比较娴熟,指数函数的'性质还记忆犹新。能动地使用计算器,这一点课前未充分估计到。教学设计考虑到了学生知识的个体差异与认知差异。
3.对教学内容组织及教学设计环节的反思:本课在教学设计上对教学内容进行了重组,整体上把握教材,将教材中的两个例题进行了优化重组和取舍,做到了内容上的整体性。
三、反思教学过程。
1.对合作关系的反思:在这节课的课堂教学中,师生关系是平等的,学生有很多发言的机会。也暴露了不少思维过程的问题和语言表达方面的问题,充分展示了知识的发生过程。从学生的作图到性质的探究与变式练习,基本上都是学生自主完成的,学生主动参与。如比较两个对数的大小,学生一共想出了用计算器,转化为指数式比较,利用函数的图象,利用对数函数单调性等四种办法。教师因势利导,充分利用了图象法引导学生回到利用对数函数的单调性比较两对数式的大小。特别是指数和真数在同一区间,由学生自主发现该对数与0的大小关系,这一个片断评课教师认为比较精彩,在此要感谢晋中市教研室老师的真诚建议。另外,我觉得至少有一点值得肯定:知识、方法的归纳是教师带领学生归纳,还是让学生在实践后提炼,也值得教师精心设计。在上课过程中,由于我考虑到是公开课,担心无法完成教学任务,转化为考虑两个指数式的大小比较,我没有让学生充分展示,下来自认为这是本节课的一大失误,以后的教学中要尽可能多地拓展学生的发展空间。这节课给我的启示是:要给学生机会,不要低估他们的创新潜能。总之,教学不仅仅是告诉学生一个结果,而应该让他们看看老师的思考过程等等。
2.对课堂提问的反思:这一节课的课堂提问相对较多,基本上是在学生学习的过程上,让她们自己展示探究的内容和习题的解法,充分发挥学生的能动性。但是思维活跃的同学回答问题积极,其余的同学则反应平淡。
3.对时间结构的反思:基本上按课时完成教学任务,教学目标基本上实现。在以后的教学设计中,我要更充分地考虑学生可能出现的思维过程,让出充足的时间与空间给学生自主学习与自主探索。在平等的师生关系上和民主的课堂教学氛围之中给所有学生有暴露自己思想的时间和空间。
4.对课后练习题的反思:课后作业情况比较满意,教材中习题的提问中,同学们基本上都回答正确。看到这一点,我感到很欣慰。
以后课堂教学应注意改进的方面有:提出问题以后,留给学生充分的独立思考时间多些,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问;学生口述的时间过多,书写时间少,以后进一步加强学生书写能力的训练;还有根据学生的状况,对例习题进行修缮,对于学力一般的学生,删去部分习题。采用分层练习,满足了不同层次学生的学习需要。
毋庸置疑,继续推进新课改将是我国基础教育改革坚定不移的方向,但改革从来不是一蹴而就的。因此,数学教学中不但要鼓励教师不断反思自己的教学行为,让数学课远离虚伪的美丽,真正体现新课改理念,还要鼓励学生自觉改变学习方式,不断反思自己的学习,提高学习效率。
函数的性质教案篇十七
(学生2)用列表描点法也是可以的。
请学生从中上述方法中选出一种,大家最终确定用图像变换法画图.。
具体操作时,要求学生做到:
(1)指数函数和的图像要尽量准确(关键点的位置,图像的变化趋势等).。
(2)画出直线.。
学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出。
和的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:
教师画完图后再利用电脑将和的图像画在同一坐标系内,如图:
然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)。
3.性质。
(1)定义域:
(2)值域:
由以上两条可说明图像位于轴的右侧.。
(3)图像恒过(1,0)。
(4)奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于轴对称.。
(5)单调性:与有关.当时,在上是增函数.即图像是上升的。
当时,在上是减函数,即图像是下降的.。
之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:
当时,有;当时,有.。
最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)。
对图像和性质有了一定的了解后,一起来看看它们的应用.。
(三).简单应用。
例1.求下列函数的定义域:
(1)(2)(3)。
先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.。
2.利用单调性比较大小。
例2.比较下列各组数的大小。
(1)与;(2)与;
(3)与;(4)与.。
三.拓展练习。
练习:若,求的取值范围.。
四.小结及作业。
案例反思:
函数的性质教案篇十八
正比例函数在线性规划问题中体现的力量也是无穷的。
比如斜率问题就取决于k值,当k越大,则该函数图像与x轴的夹角越大,反之亦然。
还有,y=kx是y=k/x的图像的对称轴。
1.单调性。
当k0时,图像经过第二、四象限,从左往右下降,y随x的增大而减小(单调递减),为减函数。
2.对称性。
对称点:关于原点成中心对称。
对称轴:自身所在直线;自身所在直线的垂直平分线。
函数的性质教案篇十九
本节课在备课组全体老师集体备课后,课堂教学设计完成得很好,课件的制作精美实用,学案的设计适当充分。各人再根据具体班级的情况去修改某些细节。
本节课在学习了指数函数及其性质以后,学生通过类比学习的方法很容易进入学习探究的状态,因此我还是采用了知识迁移及类比的学习方法进行本节课的设计。
回顾了指数函数的概念及性质以后,通过把指数式写成对数式的小练习,学生很轻松的完成把指数函数式写成对数函数式。进而引出课题。学生自主阅读课本70页内容后完成学案的第一部分,基本上能够理解对数函数的概念。并且很自觉的主动动手画图,观察图形得出性质,在性质的分析环节中,给予简单的提示(如,从图形观察特征,并用数学符号语言描述等),学生基本上能够运用类比指数函数的性质,说出对数函数的定义域、值域、单调性、过定点、函数值的变化情况等,性质的应用的设计我只采用了比较大小及求定义域两个例题及练习。学生完成得还不错,但在时间上还应多给予学生独立思考的时间。还需加强习题的变式能力。