数学必修教案(优秀17篇)
教案是一份教师为指导和实施教学而编写的教学设计和安排的书面材料。它包含了教学目标、教学内容、教学方法、教学过程以及评价方式等内容,是教师教学的重要依据之一。每一份教案都应该根据不同的课程和学生特点进行个性化设计,以达到教育教学的最佳效果。选择合适的教学方法和教学资源,激发学生的学习兴趣和主动性。以下是小编为大家整理的教案范例,希望能为大家提供一些参考。
数学必修教案篇一
1.把握写景抒情散文情景交融的特点,提高对情景交融意境的鉴赏能力。
2.学习作者运用语言的技巧:比喻、通感的巧妙运用,动词、叠词的精心选用。
3.训练整体感知、揣摩语言的能力。
过程与方法。
1.本文语言精美,写景状物传神,应加强朗读训练,让学生自然地受到感染,体会文章的韵味。
2.理解关键语句,提高对作者在文中表达的思想感情的领悟能力。
情感态度与价值观。
1.引导学生关注社会,追求理想。
2.培养学生健康的审美情趣。教学重点体味作品写景语言精练、优美的特点及其表达效果。教学难点品味、领悟课文情景交融,“景语”“情语”浑然一体的写作特点。
教学方法诵读法、感知法、品味法。
教具准备课文录音带、多媒体课件。
教学时间安排二个课时。
第一课时。
一、导语设计。
李白在《月下独酌》里说:“花间一壶酒,独酌无相亲。举杯邀明月,对影成三人。”——在这里,“月”成了诗人排遣内心深处孤独寂寞的一种载体。
二、文本解读。
(一)知识积累。
1、朱自清的生平和创作。朱自清,原名自华,字佩弦,号秋实。祖籍浙江绍兴,1898年生于江苏东海。1903年随家定居扬州。1916年中学毕业后,考入北京大学预科班,次年更名“自清”,考入本科哲学系。毕业后在江苏、浙江等地的中学任教。上大学时,朱自清开始创作新诗,1923年发表的长诗《毁灭》,震动了当时的诗坛。1924年出版诗与散文集《踪迹》,1925年任清华大学教授,创作转向散文,同时开始研究古典。1928年出版散文集《背影》,成了著名的散文家。1948年8月病逝于北京。他是诗人、散文家、学者,又是民主战士、爱国知识分子。毛泽东称他“表现了我们民族的英雄气概”。著作有《朱自清全集》。
3、借助注解和词典读懂《采莲赋》。
(二)信息筛选播放录音(或教师朗读)。
1、学生边听边思考如何划分层次,并归纳大意。
明确:全文分三部分:
第一部分(1):月夜漫步荷塘的缘由。(点明题旨)。
第二部分(2-6):荷塘月色的恬静迷人。(主体)。
第三部分(7-10):荷塘月色的美景引动乡思。(偏重抒情)。
(三)合作探究。
师生共同解析第四段,看作者是怎样从多角度来描摹荷塘美景的?明确:先写满眼茂密的荷叶,次写多姿多态的荷花、荷香,最后写叶子和花的一丝颤动以及流水。层次井然,形象精确。——这是按观察的角度,视线由近及远、由上而下的空间顺序来写的。以上是顺序特点,细分析,还可以看出作者的匠心:a.抓静态与动态的结合,把荷塘写“活”。而且,作者笔下的景物都是“动”的,“静”不过是“动”的瞬间表现,扬静而情动。
b.抓可见与可想的结合,写出了散文的神韵。所谓“可想”,是指由“可见”引起的合理联想,把不可见的景物写得很有风采。
(四)能力提升。
学生自己阅读第五段,合作讨论作者在这里是如何描写月色的。
明确:作者把荷叶和荷花放在月光下面,一个“泻”字,给人一种乳白色而又鲜艳欲滴的实感;一个“浮”字又表现出月光下荷叶、荷花那种缥缈轻柔的姿容。文章似乎仍在写荷叶、荷花,其实不然,作者是通过写叶、花的安谧、恬静,衬托出月色的朦胧柔和。又如文章写“黑影”和“倩影”,也是写月色,因为影是月光照射在物体上产生的。树影明暗掩映,错落有致,反衬月光轻盈荡漾。月色本是难以描摹的',所以作者透过不同的景物,从不同的角度去写月色,使难状之景如在眼前。
(五)分析鉴赏。
1、第五段“酣眠”“小睡”各指什么?有无深层含义?
明确:“酣眠”比喻朗照,“小睡”比喻被一层淡淡的云遮住的月光。至于它的深层含义应该联系作者的心态来看,他不希望过于激烈的行为,他喜欢一种平和的心态,正如我们前面分析的那样,他做不到投笔从戎,他要寻找安宁平和的生活。对景物的喜好折射出作者的心态。
2、课文第五段,写月光用“泻”不用“照”“铺”,其好处是什么?(解答这个问题,不妨请学生把“照”和“铺”字代入句中读一遍,学生就知道了。
明确:“泻”是承上面比喻句“如流水一般”而来的,“泻”字有向下倾的势态。“照”字和“铺”字就没有这个效果。
3、作者为什么会由光和影联想到名曲?
明确:这是使用通感的修辞手法,光与影是视觉形象,作者却用听觉形象来比喻,这就是通感的一种,其相似点就是和谐。第四段写荷花的缕缕清香,微风传送,像远方飘来歌声一样动人心怀,这幽雅淡远的感受也只有在月夜独处时才会有,这也是通感,把嗅觉形象转化为听觉形象,它们之间的相似点就是似有似无、时断时续、捉摸不定。
三、课堂小结。
所谓“意境”,指的是外界的人事景物(客观)与人的思想感情(主观)相融合而形成的一种天人合一、情景交融的境界。这种天人合一、情景交融越是天衣无缝、水乳交融,散文就越具有美感。《荷塘月色》做到了这一点,所以它具有一种意境美。
四、作业设计。
背诵第四、五、六段。
第二课时。
一、导语设计。
二、文本解读。
(一)合作探究指导学生理解“通感”的特点及其作用。明确:通感:就是人的各种感觉之间的交流、沟通、转移。钱钟书先生说过,“在日常经验里,视觉、听觉、触觉、嗅觉、味觉往往可以彼此打通或交通,眼、耳、舌、鼻、身,各个官能的领域可以不分界限。颜色似乎会有温度,声音似乎会有形象,冷暖似乎会有重量,气味似乎会有锋芒……”(《通感》。)例如:“微风过处,送来缕缕清香,仿佛远处高楼上渺茫的歌声似的。”
a.本体——花香(嗅觉)喻体——渺茫的歌声(听觉)b.作用:把花香的特点写清了,生动形象。
c.相似点:立于微风中嗅馨香(时有时无)——听远处高楼传来的歌声(时断时续)再如:“但光与影有着和谐的旋律,如梵婀玲上奏着的名曲。”
(二)能力提升。
1、文章抒情的语句主要有哪些?
明确:第一段:这几天心里颇不宁静。
第二段:没有月光的晚上,这路上阴森森的,有些怕人。今晚却很好,虽然月光也还是淡淡的。
第三段:我也像超出了平常的自己,到了另一世界里。我爱热闹,也爱冷静;爱群居,也爱独处……便觉是个自由的人。……我且受用这无边的荷香月色好了。
第六段:但热闹是它们的,我什么也没有。
第八段:这真是有趣的事,可惜我们现在早已无福消受了。
第十段:这令我到底惦着江南了。
2、作者的思想感情在文中是怎样变化的?
明确:因为这几天心里颇不宁静,忽然想起日日走过的荷塘,在满月的光里,总该另有一番样子,于是就想去看看,沿荷塘的路平常是有些怕人的,但今晚却很好,我可以享受这无边的荷香月色。荷塘月色的确很美,月光下的荷塘美景清幽淡雅,荷塘上的迷人月色朦胧和谐,令人心醉。荷塘四周非常幽静,只有树上的蝉声和水里的蛙声最热闹,而我什么也没有。忽然又想起采莲的事情来了,那真是有趣的事,可惜我们现在早已无福消受了。采莲令我惦着江南了,这样想着回到了家里。有人把这篇文章所表现的思想感情概括为“淡淡的喜悦,淡淡的哀愁”,是很贴切的,但作者的感情底色是“不宁静”。
(三)分析鉴赏。
1、第六段写“热闹是它们的,我什么也没有”,作者为什么会如此伤感?
明确:作者想寻找美景,使自己宁静,平息自己矛盾的心情而不得,当然伤感。
2、第七段采莲与文章主体有什么关系?为什么会想起采莲的事情?
明确:以采莲的热闹衬托自己的孤寂,且荷莲同物,作者又是扬州人,对江南习俗很了解。
明确:一方面有照应文章开头的作用,但主要目的还是以静写动,以静来反衬自己心里的极不宁静。心里的不宁静,是社会现实的剧烈动荡在作者心中引起的波澜。全篇充满着动与静的对立统一:社会的动荡与荷塘一隅的寂静,内心的动荡与内心的宁静形成对立统一,文章开头心里不宁静,在月夜荷塘幽美的景色的感染下趋于心静,走出荷塘又回到不宁静的现实中来,也形成对立、转化。
三、课堂小结。
这篇作品获得人们特别赞赏的原因,就在于它写景特别工细。朱自清在表现月色下的荷塘和荷塘上的月色这两个组成部分的时候,还进一步作更精细的分解剖析,把这两个部分再分解剖析成许多更小的部分,然后逐一描写并且从景物观赏者的视觉、嗅觉、听觉,以及景物的静态、动态等角度,写出它们的种种性状,从而把景物表现得格外细腻。
四、作业设计。
研究性学习参考论题。请你就以下论题中的一个或另拟论题,从网络上寻找有关资料,写出你的研究结果。
1、走近朱自清。
2、朱自清为什么“不宁静”?
3、谈《荷塘月色》的写景艺术。
4、谈《荷塘月色》的感情线索。
数学必修教案篇二
教学目标。
熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。
掌握两角和与差的正、余弦公式,能用公式解决相关问题。
教学重难点。
熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。
教学过程。
复习。
两角差的余弦公式。
用-b代替b看看有什么结果?
数学必修教案篇三
3.通过参与编题解题,激发学生学习的爱好.
教学重点是通项公式的熟悉;教学难点是对公式的灵活运用.
实物投影仪,多媒体软件,电脑.
研探式.
一.复习提问
等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.
二.主体设计
通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求).找学生试举一例如:“已知等差数列中,首项,公差,求.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.
1.方程思想的运用
(1)已知等差数列中,首项,公差,则-397是该数列的第x项.
(2)已知等差数列中,首项,则公差
(3)已知等差数列中,公差,则首项
这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.
2.基本量方法的使用
(1)已知等差数列中,求的值.
(2)已知等差数列中,求.
若学生的题目只有这两种类型,教师可以小结(请出题者、解题者概括):因为已知条件可以化为关于和的二元方程组,所以这些等差数列是确定的,由和写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于和的二元方程组,以求得和,和称作基本量.
教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于和的二元方程,这是一个和的`制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).
如:已知等差数列中,…
由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题(3)已知等差数列中,求;;;;….
类似的还有
(4)已知等差数列中,求的值.
以上属于对数列的项进行定量的研究,有无定性的判定?引出
3.研究等差数列的单调性
4.研究项的符号
这是为研究等差数列前项和的最值所做的预备工作.可配备的题目如
(1)已知数列的通项公式为,问数列从第几项开始小于0?
(2)等差数列从第x项起以后每项均为负数.
三.小结
1.用方程思想熟悉等差数列通项公式;
2.用函数思想解决等差数列问题.
四.板书设计
等差数列通项公式1.方程思想的运用
2.基本量方法的使用
3.研究等差数列的单调性
4.研究项的符号
数学必修教案篇四
1. 阅读课本 练习止.
2. 回答问题
(1)课本内容分成几个层次?每个层次的中心内容是什么?
(2)层次间的联系是什么?
(3)对数函数的定义是什么?
(4)对数函数与指数函数有什么关系?
3. 完成 练习
4. 小结.
二、方法指导
1. 在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.
一、提问题
1. 对数函数的自变量和函数分别在指数函数中是什么?
2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?
3.是否所有的函数都有反函数?试举例说明.
二、变题目
1. 试求下列函数的反函数:
(1) ; (2) ;
(3) ; (4) .
2. 求下列函数的定义域:
(1) ; (2) ; (3) .
3. 已知 则 = ; 的定义域为 .
1.对数函数的'有关概念
(1)把函数 叫做对数函数, 叫做对数函数的底数;
(2)以10为底数的对数函数 为常用对数函数;
(3)以无理数 为底数的对数函数 为自然对数函数.
2. 反函数的概念
在指数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ;在对数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ,像这样的两个函数叫做互为反函数.
3. 与对数函数有关的定义域的求法:
4. 举例说明如何求反函数.
一、课外作业: 习题3-5 a组 1,2,3, b组1,
二、课外思考:
1. 求定义域: .
2. 求使函数 的函数值恒为负值的 的取值范围.
数学必修教案篇五
教学目标。
理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.
教学重难点。
1.教学重点:两角和、差正弦和正切公式的推导过程及运用;。
2.教学难点:两角和与差正弦、余弦和正切公式的灵活运用.
教学过程。
数学必修教案篇六
一)、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二)、适当多做题,养成良好的解题习惯。
要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三)、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
数学必修教案篇七
掌握三角函数模型应用基本步骤:。
(1)根据图象建立解析式;。
(2)根据解析式作出图象;。
(3)将实际问题抽象为与三角函数有关的简单函数模型.
教学重难点。
利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。
教学过程。
一、练习讲解:《习案》作业十三的第3、4题。
(精确到0.001).
米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?
本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。
练习:教材p65面3题。
三、小结:1、三角函数模型应用基本步骤:。
(1)根据图象建立解析式;。
(2)根据解析式作出图象;。
(3)将实际问题抽象为与三角函数有关的简单函数模型.
2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.
四、作业《习案》作业十四及十五。
将本文的word文档下载到电脑,方便收藏和打印。
数学必修教案篇八
要学好数学,最关键的是要有一个好的基础。只有打牢数学基础,才能够把高中数学好,同样只有打好基础,才能够数学取得高分。打好基础是最关键的!比如:建一栋大楼,如果地基不稳,不管大楼有多么豪华,都只是华而不实。
想学好数学,对数学感兴趣。
其实学好数学最好的办法就是发自内心由衷的想要学习,渴望学习,才能体会到从学习中所收获的乐趣。自己的成就感提升,对于学习数学的积极性也就提高了,觉得数学并没有那么难,就愿意去多接触了。
多做题反复做,有题感。
其实学好数学办法就是要大量做题,反复去做,题做多了就知道哪些方面需要自己去加强学习,还有就是同样做数学题做多了就会有题感。有些题,它的类型都是一样的,题做多了之后,即使你不会做,你也会找到一些解题的思路和技巧。
数学必修教案篇九
引用:本文《高中化学必修二教案(人教版)》来源于师库网,由师库网博客摘录整理,以下是的详细内容:开发利用金属矿物和海水...《基本营养物质》教案化学反应的速率和限度化学能与热能化学与资源综合利用、环...最简单的有机化合物dd...《生活中两种常见的'有机...来自石油和煤的两种基本...引用:师库网温馨提示本篇内容来源于师库网,旨在用于课件制作交流,非盈利性质,仅供参考,针对本文的问题如需了解更详细,可留言或者联系客服tags:教案、课件、师库网、教案网、课件网
数学必修教案篇十
1.要读好课本。
有些“自我感觉良好”的学生,常轻视课本中基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海,到正规作业或考试中不是演算出错就是中途“卡壳”。因此,同学们应从高一开始,增强自己从课本入手进行研究的意识。
2.要记好笔记。
首先,在课堂教学中培养好的听课习惯是很重要的。当然听是主要的,听能使注意力集中,要把老师讲的关键性部分听懂、听会。听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。科学的记笔记可以提高45分钟课堂效益。
3.要做好作业。
在课堂、课外练习中培养良好的作业习惯也很有必要.在作业中不但做得整齐、清洁,培养一种美感,还要有条理,这是培养逻辑能力的一条有效途径,必须独立完成。同时可以培养一种独立思考和解题正确的责任感。在作业时要提倡效率,应该十分钟完成的作业,不拖到半小时完成,疲疲惫惫的作业习惯使思维松散、精力不集中,这对培养数学能力是有害而无益的。
4.要写好总结。
一个人不断接受新知识,不断遭遇挫折产生疑问,不断地总结,才有不断地提高。“不会总结的同学,他的能力就不会提高,挫折经验是成功的基石。”自然界适者生存的生物进化过程便是最好的例证。学习要经常总结规律,目的就是为了更一步的发展。
通过与老师、同学平时的接触交流,逐步总结出一般性的学习步骤,它包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。坚持“两先两后一小结”(先预习后听课,先复习后做作业,写好每个单元的总结)的学习习惯。
1.课前预习教材。课前可以把教材上第二天老师要讲的内容看一下,看看哪些能看懂,哪些不懂。这样老师在讲课的时候我们就能带着问题去听,把自己没看懂的问题听懂。
2.上课专心听讲。这是很重要的,很多同学以为自己什么都弄懂了,就自己做自己的题目。其实即使是自己看懂了的,也可以看看老师也没有另外的理解方法,老师的方法是不是比自己好。听老师有时候讲比自己看更好。
小编推荐:高一数学怎么学才能学好。
3.课后认真复习。刚学的知识,还没完全被消化吸收成为自己的知识,如果不及时复习,就很容易忘记。所以,课后一定要抽出一些时间,及时对所学进行巩固。
4.通过习题巩固。数学是理科,需要通过一定量的习题来巩固,量变积累到了一定量才能质变嘛。这个并非要各位打题海战术,只要求各位做到熟练为止。
5.错题反复研究。自己准备一个错题本,把考试时候做错的题目记录下来,写上做错的原因,反复研究,避免再次出错。
数学必修教案篇十一
教学目标。
1、理解平面向量的坐标的概念;。
2、掌握平面向量的坐标运算;。
3、会根据向量的坐标,判断向量是否共线.
教学重难点。
教学重点:平面向量的坐标运算。
教学难点:向量的坐标表示的理解及运算的准确性.
教学过程。
平面向量基本定理:。
什么叫平面的一组基底?
平面的基底有多少组?
引入:。
1.平面内建立了直角坐标系,点a可以用什么来。
表示?
2.平面向量是否也有类似的表示呢?
数学必修教案篇十二
3、情感态度与价值观目标:感受代数与几何问题的相互转换。体会品面直角坐标系在解决实际问题的作用,培养数学学习兴趣。
重点:理解平面直角坐标中点与数的一一对应关系;
难点:根据坐标描出点的位置,以及坐标轴上的点的坐标特点。
教师准备四张大的纸质坐标格子。
一、温故知新,导入新课。
游戏导入:上一节课我们学习了有序数对,大家学习积极性很高,今天老师先考考你们, 看你们掌握了多少。
我们将教室里的座位分为八列七排。a排b号记做有序数对(a,b),同学们先找准自己的数对号。听老师报数对,若是你自己的数对号,就快速站起来。反应太慢和站错了都算失败,扣一分;反之加一分。最后以组为单位,比比哪组得分最高。
我们可以发现,通过教室平面内的有序数对,可以唯一的确定与之对应的同学。
二、新课教学
课本例子:我们知道数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。例如点a数轴上的坐标是-4,点b数轴上的坐标是2;我们说坐标是3.5的点,也可以在数轴上唯一确定。
学生活动:小a说可以像教室座位一样给任意点编一个横排纵排的号,小
b说我们可以每个点列一个数轴・・・
教师活动:引导学生思考,怎么才能用同一标准,方便的确定每一点的位置?
结合横纵排编号以及数轴,我们可以综合考虑,引出一个横纵的数轴?
得出结论:我们可以在平面内画两条相互垂直、原点重合的数轴,组成平面直角坐标系,水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上为正方向;两坐标轴的交点为平面直角坐标系的原点。
那有了这样的平面直角坐标系,平面内的点就可以用之前学的有序数对来表示了。例如:由a分别向x轴和y轴作垂线。垂足m在x轴上的`坐标是3,垂足n在y轴上的坐标是4,我们说a的坐标是3,纵坐标是4,有序数对(3,4)就叫做a的坐标,记作a(3,4)
教师提问2:同学们按照这种做法,在坐标纸上标出b、c、d的坐标。
教师活动:走下讲台,关注学生的汇坐标过程方法,指出学生出现问题的地方,并予以改正。
教师提问3:在横纵坐标轴上各标一点e、f,问:坐标原点以及这两点的坐标是什么?
教师活动:引导学生思考归纳坐标轴上的点的坐标的特点。
得出结论:原点的坐标是(0,0),x轴上的点的坐标的纵坐标为0;y轴上的点的坐标的横坐标为0。
三、课程巩固
师生互动:与学生一起回忆平面直角坐标系的各部分的意义,平面内的点怎么对应坐标,以及坐标轴上的点的坐标特点。
“练一练”:
在黑板上贴出四张事先准备好的纸质坐标格子,在上面标出任意的abcdefg等点,每组我点一个按坐标序列对,对应的同学上黑板,来描出各点的坐标。对一个加一分,错一个扣一分,得分相同的看用时,时间短者胜,过程中下面的学生不能提示,提示一次扣2分。比赛看哪组学生代表得分最多。
(1,2)、(3,4)、(5,6)、(7,8)四位同学上黑板来描点。
教师活动:规范课堂气氛,公平的评判,对于表现好的小组代表予以表扬,表现稍逊的学生不要气馁,给予鼓励,争取下一次可以获胜。
四、小结作业:
思考平面直角坐标系中坐标与点的对应关系,如何由坐标值确定点的位置。下节课我们会探讨这个问题。
平面直角坐标系:平面内画两条相互垂直、原点重合的数轴组成
水平的数轴称为x轴或横轴,习惯上取向右为正方向;
竖直的数轴称为y轴或纵轴,取向上为正方向;
两坐标轴的交点为平面直角坐标系的原点。
数学必修教案篇十三
2.教学重点。
函数单调性的概念,判断和证明简单函数的单调性.。
3.教学难点。
函数单调性概念的生成,证明单调性的代数推理论证.。
1.教学有利因素。
2.教学不利因素。
1.理解函数单调性的相关概念.掌握证明简单函数单调性的方法.。
为达成课堂教学目标,突出重点,突破难点,我们主要采取以下形式组织学习材料:
(一)创设情境,引入课题。
问题1:观察下列函数图象,请你说说这些函数有什么变化趋势?
设函数的定义域为,区间.在区间上,若函数的图象(从左向右)总是上升的,即随的增大而增大,则称函数在区间上是递增的,区间称为函数的单调增区间(学生类比定义“递减”,接着推出下图,让学生准确回答单调性.)。
(二)引导探索,生成概念。
问题2:(1)下图是函数的图象(以为例),它在定义域r上是递增的吗?
(2)函数在区间上有何单调性?
预设:学生会不置可否,或者凭感觉猜测,可追问判定依据.。
问题3:(1)如何用数学符号描述函数图象的“上升”特征,即“随的增大而增大”?
(2)已知,若有.能保证函数在区间上递增吗?
拖动“拖动点”改变函数在区间上的图象,可以递增,可以先增后减,也可以先减后增.。
(3)已知,若有,能保证函数在区间上递增吗?
拖动“拖动点”,观察函数在区间上的图象变化.。
(4)已知,若有。
能保证函数在区间上递增吗?
设计说明:可先请持赞同观点的同学说明理由,再请持反对意见的学生画出反驳,然后追问:无数个也不能保证函数递增,那该怎么办呢?若学生回答全部取完或任取,追问“总不能一个一个验证吧?”
问题4:如何用数学语言准确刻画函数在区间上递增呢?
问题5:请你试着用数学语言定义函数在区间上是递减的.。
(三)学以致用,理解感悟。
判断题:你认为下列说法是否正确,请说明理由.(举例或者画图)。
(1)设函数的定义域为,若对任意,都有,则在区间上递增;
(2)设函数的定义域为r,若对任意,且,都有,则是递增的;
(3)反比例函数的单调递减区间是.。
例题:判断并证明函数的单调性.。
数学必修教案篇十四
教学目标。
3.让学生深刻理解向量在处理平面几何问题中的优越性.
教学重难点。
教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”.
教学难点:如何将几何等实际问题化归为向量问题.
教学过程。
由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题,下面我们通过几个具体实例,说明向量方法在平面几何中的运用。
思考:
运用向量方法解决平面几何问题可以分哪几个步骤?
运用向量方法解决平面几何问题可以分哪几个步骤?
“三步曲”:
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;。
(3)把运算结果“翻译”成几何关系.
数学必修教案篇十五
1. 掌握数轴的三要素,能正确画出数轴。
2、会用数轴上的点表示有理数;;会求一个有理数的相反数;能利用数轴比较有理数的大小。
【过程与方法】 经历从现实情景抽象出数轴的过程,体会数学与现实生活的联系
【情感态度与价值观】 感受数形结合的思想方法;
【教学重点】会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来。
【教学难点】利用数轴比较有理数的大小。
(一)创设情境,引入课题
(1)(出示投影1)问题:三个温度计所表示的温度是多少?
学生回答.
(2)在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.
这种表示数的图形就是今天我们要学的内容―数轴(板书课题)
(二)得出定义,揭示内涵
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(教师示范画数轴,边说边画):
(1)画直线,取原点
(2)标正方向
(3)选取单位长度,标数(强调:负数从0向左写起)。
概念:规定了原点、正方向和单位长度的直线叫做数轴。
(三)强化概念,深入理解
1、下列图形哪些是数轴,哪些不是,为什么?
学生回答,相互纠正,理解数轴三要素,巩固数轴概念。
2、学生自己在练习本上画一个数轴。教师在黑板上画
(四)动手练习,归纳总结
1、在数轴上的点表示有理数。
一个学生在黑板上完成,其他同学在自己所画数轴上完成。
明确“任何一个有理数都可以用数轴上的一个点来表示”
2.指出数轴上a,b,c,d各点分别表示什么数。@师愿教育
3、通过数轴比较有理数的大小。观察类比温度计回答问题
(1)在数轴上表示的两个数,(右 ) 边的数总比 ( 左)边的数大;
(2)正数都(大于 )0,负数都(小于)0;正数(大于)一切负数。
例1、比较下列各数的.大小: -1.5 , 0.6, -3, -2
巩固所学知识
(五)、归纳小结,强化思想
师生总结本课内容。
1、数轴的概念,数轴的三要素
2、数轴上两个不同的点所表示的两个有理数大小关系
3、所有的有理数都可以用数轴上的点来表示
师:你感到自己今天的表现怎样?
习题2.2 1、2、3
选作第4题
数学必修教案篇十六
1、了解函数的单调性和奇偶性的概念,把握有关证实和判定的基本方法。
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念。
(2)能从数和形两个角度熟悉单调性和奇偶性。
(3)能借助图象判定一些函数的单调性,能利用定义证实某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程。
2、通过函数单调性的证实,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从非凡到一般的数学思想。
3、通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度。
数学必修教案篇十七
1.古人见面常用的礼仪是拜礼和揖礼。前者主要以叩头跪拜为主,后者则以拱手示意为主。
2.座次:坐西向东为尊,其次是坐北朝南,再次是坐南朝北,最卑是坐东朝西。3.银河:又叫银汉、天汉、星汉、河汉、云汉、星河。
4.五岳:东岳泰山、西岳华山、南岳衡山、北岳恒山、中岳嵩山。
5.五湖:太湖、鄱阳湖、青草湖、丹阳湖、洞庭湖。
6.趋:从长者尊者前面走过,要小步快走,以示敬意,叫“趋”。
7.三吴:吴兴郡、吴郡、会稽郡。
8.三楚:西楚、东楚、南楚。
9.古人纪年:干支纪年和帝王纪年。干支纪年是十天干和十二地支依次两两相配而成得一种纪年方法。帝王纪年是按照帝王即位的年次或年号来纪年(明清两代)的方法。
10.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸。
11.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥。
12.古人纪月:序数纪月和特殊称谓纪月。每季用孟、仲、季区分。用朔(初一)、望(十五)、晦(月末)等名称标识日期。
夜半丙夜三更23-1鸡鸣丁夜四更1-3平日戊夜五更3-5。
14.名:古代婴儿出生几个月后,一般由父亲命名。
15.字:是20岁举行加冠仪式后才起的,标志着成人。字是对名的解释和补充,对名有表述、阐释作用,因此又叫“表字”。有的字与名相近相成,也有的相反相成。
16.号:是一种固定的别名,又叫“别号”。
17.谥号:古代帝王、诸侯、高官大臣、贵族及其他有地位的人死后,根据其生前的品德来定的,带有或褒或贬或同情的称号。
18.古人自称名,称人称字,这是基本的礼貌。
19.《周易》把礼仪分为五类:
吉礼:有关祭祀的,包括祭祀自然、神、祖先。凶礼:有关丧葬的,包括凭吊各种天灾人祸。
军礼:有关军事活动的。宾礼:有关外交活动的,包括朝、聘、会、盟等国事活动。
嘉礼:有关个人成长和交往以及王位承袭的,包括冠礼、婚礼、宴饮之礼、养老礼等。
侯晓旭。