圆柱的表面积教案(专业20篇)
教案是教师在备课阶段制定的一份详细教学计划,它对于课堂教学起到了重要的指导作用。教案的编写要充分考虑时间的合理安排和控制。通过阅读这些教案范例,可以帮助大家更好地理解教学设计的要点和方法。
圆柱的表面积教案篇一
1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。
2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。
圆柱的表面积教案篇二
师:圆柱是由平面和曲面围成的立体图形。圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?(学生回答后课件动画闪烁各部分名称)。
设疑:长方体6个面的总面积,叫做它的表面积。什么是圆柱体的表面积呢?(学生回答,教师板书:侧面积+底面积×2=表面积)。
要求圆柱的表面积,首先应该计算出它的底面积和侧面积。
圆柱的底面是圆形,怎样计算它的面积吗?(s=3.14r2)需要知道什么条件?现场测量茶叶桶的底面直径。(注意方法指导:量出底面最长的线段即直径的长度。课件动画展示测量方法)。
学生口答算式和结果。
(三)教学圆柱体侧面积的计算。
1、引导探究圆柱体侧面积的计算方法。
(1)设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?
(2)学生动手操作。(剪圆柱形纸筒)。
(3)汇报交流研究结果。(随着学生回答课件展示)。
百度图片:
小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。
师:(课件呈现圆柱茶叶罐侧面包装图片)。
求圆柱体茶叶罐的侧面包装纸的面积实际是求圆柱的什么?(侧面积)再次测量茶叶桶的高,并把结果记录下来,独立计算。
1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?
2、学生根据数据进行计算。
3、汇报计算方法及结果,强调单位的使用。
小结:求茶叶桶的表面积是为工人师傅下材料提供了基本数据,但是在准备材料时往往会比计算结果多一些,因为在具体操作时,尤其是在剪圆的时候会产生浪费现象,这是不可避免的。
(一)(多媒体出示圆柱形的油漆桶,无盖水桶、烟筒实物图)引导学生观察思考:计算制作这些物体所用的铁皮的面积,各是求哪些面的总面积?通过回答让学生感知圆柱表面积在实际生活中应用的意义。
(二)根据要求练习。
1、一个圆柱形油桶,底面直径是8分米,高是12分米,它的占地面积有多大?(只列式不计算)。
2、一台压路机的滚筒宽1.2米,直径为8分米。如果它滚动1周,压路的面积是多少平方米?(只列式不计算)(课件呈现压路机压路情景)。
3、做一个无盖的圆柱形铁皮水桶,高是5分米。底面直径4分米,至少需要多大面积的铁皮?(结果保留整数)。
根据学生的计算结果,教学用“进一法”取近似值。
小结:计算圆柱的表面积要具体情况具体分析。要学会运用所学的知识合理灵活地解决生活中的实际问题。
(三)操作练习。
测量:借助工具测量出需要的数据(取整厘米数),并做好记录。
计算:根据量得的数据,列出相应的算式并算出结果。
1、本节课你有何收获?
2、教师小结:在解答实际问题前一定要先进行分析,看它们求的是哪部分面积,再选择解答的方法。求用料多少,一般采用进一法取近似值,以保证原材料够用。
圆柱的表面积教案篇三
1、圆柱底面周长是20厘米,高是10厘米。
2、圆柱底面直径径是6厘米,高是3分米。
3、圆柱底面半径是3厘米,高是10厘米。
二、选择题:
1、甲乙两人分别用一张长12。56厘米、宽9。42厘米的长方形纸用两种不同的方法卷成一个圆柱体,(接头处不重合),那么卷成的圆柱体1。
a高一定相等。
b侧面积一定相等。
c侧面积和高都相等。
d侧面积和高都不相等。
2、把一个棱长是2分米的正方体削成一个最大的圆柱体,它的侧面积是()平方分米。
a。6。28b。12。56c。18。84d。25。12。
3、冬天护林工人给圆柱形的树干的下端涂防蛀涂料,那么粉刷树干的面积是指()。
a。底面积b。侧面积c。表面积d。体积。
三、综合练习。
2、是一个圆柱形状的'蛋糕盒,底面直径是20厘米,高是12厘米。
(1)做这样一个蛋糕盒需要多少硬纸板?
四、拓展练习:
思考:如果圆柱的底面周长和高相等,侧面展开是什么形状的?
圆柱的表面积教案篇四
2.掌握圆柱侧面积和表面积的计算方法。
(二)能力目标。
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
教学重点。
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点。
能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备。
1.教师、学生每人用硬纸做一个圆柱体模型。
2.投影片。
教学过程:
生:我想对老师们说,我们一定会好好表现的,不会让你们失望。
生:我们的课堂将比赛场更精彩……。
师:我坚信你们一定不会让老师失望的。
一、引入新课:
生:圆柱是由平面和曲面围成的立体图形。
生:我还知道圆柱各部分的名称……。
生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。
课件演示这一过程。
师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)。
师:你还想知道什么呢?
生:还想知道怎么求它的表面积......
二、探究新知。
指名学生摸其表面积,并追问:怎样求它的表面积?
学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)。
师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)。
小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。
师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。
课件展示其变化过程。
师生小结:(教师板书)侧面积=底面周长×高。
(评价:在体育赛场上你们是我的骄傲,在课堂上你们更是我的自豪)。
师:让我们用热烈的掌声庆祝一下我们的成功。(掌声……)。
投影呈现例一:一个圆柱,底面直径是0、4米,高是1、8米,求它的侧面积。
(1)学生独立解答。
(2)投影呈现学生的解答,并让其讲清自己的解题思路。
师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?
生:底面周长和高。
师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。
师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)。
教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)。
指名学生说解题思路,
师:这说明要计算圆柱的表面积需要抓出哪两个量?
生:底面积和侧面积。
3、反馈练习:(略)。
师:想一想,应该先求什么?再求什么?请大家动手试一试。
4实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)。
三、全课小结:这节课你有什么收获?
你有没有想提醒同学们注意的地方?
生:要注意单位,还要注意所要求得圆柱有几个底面……。
最后,你们猜猜听课的老师对你们的表现是否满意?你觉得自己的表现如何?(生:略)。
圆柱的表面积教案篇五
(1)请同学们拿出圆柱来看一看,想一想圆柱的表而包括哪几个部分,然后告诉大家。指名学生拿出圆柞,边指边说明它的表面包括哪几个部分。
(2)教师演示。
出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。
(3)得出公式。
2.教学例2。
出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。
3.组织练习。
做练一练第1题。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么?指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。
4.教学例3。
出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。强调不用四舍五入法及其理由,说明用进一法,并让学生说明结果的近似值,板书订正。
5.组织练习。
(1)下面的数用进一法保留整数,各是多少?(口答)。
162.329.43.842.6。
(2)做练一练第2题。让学生做在练习本上。指名口答前两步各求什么,怎样算的。(老师板书算式)提问:第三步要怎样算,为什么只加一个底面积。
圆柱的表面积教案篇六
这节课学习子什么内容?你学到了些什么?指出:求圆柱表面积在实际应用中,要注意题里的实际情况,弄清什么时候要侧面积加两个底面积,什么时候要侧面积加一个底面积,什么时候只要求侧面积,然后计算结果。另外,在求需要材料取近似数时,一般要用进一法。
圆柱的表面积教案篇七
2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。
3、理解和掌握圆柱侧面积、表面积的计算方法,能正确计算圆柱的侧面积、表面积。
4、培养合作意识和主动探求知识的学习品质,培养学生的创新精神和实践能力。
圆柱的表面积教案篇八
2.计算下面圆柱的侧面积(口头列式):
(1)底面周长4.2厘米,高2厘米。
(2)底面直径3厘米,高4厘米。
(3)底面半径1厘米,高3.5厘米。
4.引入新课。
我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢?这节课就学习圆柱的表面积计算,(板书课题)。
圆柱的表面积教案篇九
结合教学用具和学生已有认知,探索圆柱表面积的计算方法,能正确计算圆柱的表面积和侧面积,并根据公式解决实际问题。
通过想象、操作等活动,知道圆柱侧面展开图是长方形的同时,熟记表面积的计算公式,发展空间观念。
能根据具体情境,借助圆柱表面积的计算方法解决生活中的一些实际问题,体会数学与实际生活的密切联系。
圆柱表面积的计算方法以及在生活中的应用。
(一)导入新课。
师:在前面的学习中,我们已经认识了圆柱,并且知道了生活中有很多物体的形状是圆柱。大家来看,这个圆柱形状的物体。它的制作需要一定的材料(出示一个茶叶盒)请同学们想一想,要“制作这样一个茶叶盒需要多少材料”,实际上是在求圆柱的什么?(边演示边讲解)。
(二)生成原理。
师生活动:要求“制作茶叶盒所需的材料”实际上是求圆柱的侧面积和两个底面面积(边演示边说),我们把圆柱侧面的面积叫做圆柱的侧面积,把圆柱底面的面积叫做圆柱的底面积,圆柱的侧面积加上两个底面的面积叫做圆柱的表面积。
(2)创疑激趣。
(3)小组合作交流。
师:请同学们想一想,我们能不能把圆柱的侧面转化成所学过的图形来求侧面积?
小组汇报:圆柱的侧面积就等于长方形的面积,长方形的长等于圆柱底面的周长,宽等于圆柱的高,因此圆柱的侧面积也就等于圆柱的底面周长乘以高。
师:我们已经会求圆柱的侧面积,那圆柱的表面积呢?(让学生回答,教师板书求表面积的算式,并板书课题“圆柱的表面积”)。
师生活动:用字母表示侧面积和底面积的话,该如何表示圆柱的表面积。
(三)深化原理。
圆柱的表面积是圆柱的侧面积加上两个底面面积之和。如果圆柱只有一个底面,它的表面积则是侧面积和一个底面积之和。如水桶。
(四)应用原理。
(五)课堂小结。
生:测量、确定笔筒的大小。
师:如何确定?
生:确定底面半径,还有笔筒的高。
师:课后利用所学知识给自己设计一个笔筒,并做一下“做一做”。
圆柱的表面积教案篇十
数学来源于生活,生活中处处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极性参与的有效方法。在第一环节中,教师就创设了“可比克”情景,要求商标纸的面积就是求圆柱的侧面积,如何求一个曲面的面积?导入新课。激发了学生求知的愿望。再有就是练习的设计,也是从生活实际出发,解决生活中求圆柱侧面积的问题(如,压路机前轮压过的.路面的面积大小;油漆圆柱状的柱子需要多少油漆?……)。
2、重视学习过程的实践性。
创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。本节课的第二环节让学生在动手操作中发现圆柱侧面展开的情形,在实践中推出圆柱的侧面积的计算,使学生在学习知识的过程中学会学习,同时,情感上得到满足。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。
3、重视练习设计的层次性和多样性。
当学生推导出圆柱的侧面积公式后,先后设计了已知底面周长和高求侧面积、已知直径和高求侧面积及已知半径和高求侧面积的梯度练习,使学生的应用能力不断提高。在巩固阶段,我又设计了判断、填表等形式多样的练习,加深学生对本节课内容的理解。在解决生活实际问题中,处处从生活入手,紧密联系生活实际,增强学生的学习兴趣,提高学生解决实际问题的能力。
不足之处:
1.课前的导入,可以不用教具,用和学生一样的“可比克”,和学生更加贴近。
2.限制学生思维的发展。在让学生思考长方形的长与宽和圆柱的关系时,可让学生充分思考,在这里我让学生很明显可以感受到教师的暗示,让他们要注意研究的方向。束缚了学生的思维。对于学生思维的训练教师要有长远的培养计划。
圆柱的表面积教案篇十一
1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质和实践能力。
教学重难点。
教学难点:圆柱体侧面积计算方法的推导。
教学工具。
ppt课件。
教学过程。
一、检查复习,引入新课(复习圆柱体的特征)。
1、复习圆的周长与面积公式、长方形的面积公式。
2、师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。
引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。
二、引导探究,学习新知。
(一)教学圆柱表面积的意义。
设疑:长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?
板书:底面积×2+侧面积=表面积。
要求圆柱的表面积,首先应该计算它的底面积和侧面积。
(二)根据条件,计算圆柱的底面积。
圆柱的底面是圆形,同学们会求它的面积吗?
(多媒体逐一出示圆柱及条件,求它的底面积,并记录结果。)。
条件:(厘米)r=3d=4c=31.4。
底面积(平方厘米)28.2612.5678.5。
(三)教学圆柱体侧面积的计算。
1、引导探究圆柱体侧面积的计算方法。
(2)小组合作探究。(剪圆柱形纸筒)。
(3)汇报交流研究结果,多媒体课件展示。
(4)小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。
2、计算圆柱体的侧面积。
多媒体回到前面三个圆柱,逐一给出三个圆柱的高,求它的侧面积。并把结果记录下来。
条件(厘米)h=5h=8h=10。
侧面积(平方厘米)94.2100.4862.8。
1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?
2、学生根据数据进行计算?
3、汇报计算方法及结果,媒体出示结果进行验证。
表面积(平方厘米)150.72125.669.08。
(五)小结:圆柱表面积的意义及计算方法。
三、练习巩固,灵活运用。
1.求下面圆柱的侧面积。
(1)底面周长是1.6m,高是0.7m。
(2)底面半径是3.2dm,高是5dm。
四、总结反思,畅谈收获。
这个课你收获了什么?
板书。
长方形的面积=长×宽。
圆柱的表面积教案篇十二
3.会正确计算圆柱的侧面积和表面积。
教学重点。
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点。
能灵活运用表面积、侧面积的有关知识解决实际问题。
教学过程。
一、复习准备。
(一)口答下列各题(只列式不计算)。
1.圆的半径是5厘米,周长是多少?面积是多少?
2.圆的直径是3分米,周长是多少?面积是多少?
(二)长方形的面积计算公式是什么?
(三)回忆圆柱体的特征。
二、探究新知。
1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系。
2.小结:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高。
(二)教学例1.
1.出示例1。
例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)。
2.学生独立解答。
教师板书:3.140.51.8。
=1.75l.8。
2.83(平方米)。
答:它的侧面积约是2.83平方米。
3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积。
1.教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积。
圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。
(四)教学例2.
1.出示例2。
例2.一个圆柱的高是15厘米,底面半径是5厘米,它的.表面积是多少?
2.学生独立解答。
侧面积:23.14515=471(平方厘米)。
底面积:3.14=78.5(平方厘米)。
表面积:471+78.52=628(平方厘米)。
答:它的表面积是628平方厘米。
3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积。
(五)教学例3.
1.出示例3。
例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)。
2.教师提问:解答这道题应注意什么?
这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的一个没有盖的圆柱形铁皮水桶,计算时就是用侧面积加上一个底面积。
3.学生解答,教师板书。
水桶的侧面积:3.142024=1507.2(平方厘米)。
水桶的底面积:3.14。
=3.14。
=3.14100。
=314(平方厘米)。
需要铁皮:1507.2+314=1821.21900(平方厘米)。
答:做这个水桶要用1900平方厘米。
4.教师说明:这里不能用四舍五入法取近似值。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。
5.四舍五入法与进一法有什么不同。
(1)四舍五入法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去。
(2)进一法看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一。
三、课堂小结。
归纳:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。
四、巩固练习。
(一)求出下面各圆柱的侧面积。
1.底面周长是1.6米,高是0.7米。
2.底面半径是3.2分米,高是5分米。
(二)计算下面各圆柱的表面积。(单位:厘米)。
(三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积。(有盖和无盖两种)。
五、课后作业。
(二)一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?
圆柱的表面积教案篇十三
教学目标:
1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学媒体:
教学重点:
教学过程:
一、猜测面积大小,激发情趣导入。
1、用你们手上的a4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)。
3、复习:圆柱的侧面积=底面周长×高。
刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。
二、组织动手实践,探究圆柱表面积。
1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)。
生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。
3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?
生:计算的方法。
圆柱的表面积=侧面积+两个底面的面积(板书)。
4、那现在你们就算算这两个圆柱的表面积是多少?
生:(不知所措)没有数字怎么算啊?
师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?
生1:我想知道圆柱体的底面半径和高。
生2:我想知道圆柱体的底面直径和高。
生3:我想知道圆柱体的底面周长和高。
………。
师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。
5、汇报展示:
情况一:半径:31.4÷3.14÷2=5(cm)。
底面积:3.14×5×5=78.5(平方厘米)。
侧面积:31.4×18.84=591.576(平方厘米)。
表面积:591.576+78.5×2=748.576(平方厘米)。
情况二:半径:18.84÷3.14÷2=3(cm)。
底面积:3.14×3×3=28.26(平方厘米)。
侧面积:31.4×18.84=591.576(平方厘米)。
表面积:591.576+28.26×2=648.096(平方厘米)。
师:通过我们计算验证了我们刚才的判断是正确的。
接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?
生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。
生2:这样做挺麻烦的有没有更简单一点的方法呢?
6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)。
教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。
问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)。
用字母表示:s=c×(h+r)。
我们用这个方法来验证一下我们的例2看是不是比原来简单?
汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)。
圆柱的表面积教案篇十四
教学目标:
2、进一步掌握圆柱表面积的计算方法,能根据实际情况正确计算,培养学生解决简单的实际问题。
3、进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。
教学重点。
教学难点。
对策:
加强数学问题与生活问题的沟通与转化。
教学预设:
1、提问:上节课我们学习了圆柱的侧面积和表面积。(板书课题:圆柱的侧面积和表面积)。
2、怎样求圆柱的侧面积?(板书:圆柱的侧面积=底面周长乘高)。
如果底面周长没有直接告诉我们,还可以告诉我们什么条件也能求侧面积?怎样求?
3、怎样求圆柱的表面积?(板书:圆柱的表面积=侧面积+2个底面积)。
告诉我们什么条件可以求圆柱的表面积?怎样求?
还可以告诉我们什么条件也能求表面积?怎样求?
(以上整理中,根据师生问答,补充数据,学生口头列式,不计算)。
二、解决实际问题。
1、第24页上第5题:读题后,请学生独立思考,指名板演,集体练习,评析校对,理解解题思路。理解只要计算一个底面积。
2、第24页上第6题:读题后,请学生独立思考,指名板演,集体练习,评析校对,理解解题思路。理解只要计算一个底面积。
3、第24页上第7题:读题后请学生独立思考并解答。解答后交流解题思路,教师根据学生回答将算式板书于黑板上,集体分析校对。提醒学生注意其中的单位变化情况。
4、第24页上第8、9题:学生先独立完成在作业本上。再指名分析交流解题思路,说明想法。引导学生学习将生活问题转化为数学问题。
5、补充:填空:
给一块边长是6.28分米的正方形铁皮配上一个底面,做成一个圆柱形铁皮水桶。
(1)6.28÷3.14÷2求的是( )。
(2)12×3.14求的是( )。
(3)6.28×6.28求的是( )。
(4)6.28×6.28+12×3.14求的是( )。
(如学生有困难可用粉笔操作演示)。
三、全课总结。
四、课堂作业:(见补充习题)。
课前思考:
本课时是圆柱侧面积与表面积的练习课,教材安排了较多的练习,选取了通风管、灯笼、无盖水桶、博士帽、花柱等学生生活中常见的物体,通过解决“制作一个通分管或灯笼需要多少材料”等实际问题,学生们进一步了解了圆柱侧面积或表面积计算在实际生活中的运用。课堂上,需要注意的是,有些问题教材提供了插图,这样更便于学生思考该计算圆柱的侧面积还是两个底面加上侧面积或是一个底面加上侧面积。如果没有插图,也要培养学生读题时要认真分析所求面积是指哪一部分面积,再思考如何列算式计算。也就是说要让学生通过整理题中的信息将生活问题转化为数学问题来思考。
如何提高计算正确率应该成为我们要思考的一个问题,课上可以结合个别题目进行一些计算方法的指导,也可以组织学生交流自己计算中积累的一些经验。
课前思考:
本节课主要是运用圆柱表面积的计算方法去解决一些生活中的实际问题。在实际解决问题的过程中就需要学生灵活判断,到底要求的是圆柱的表面积还是侧面积,要求的是哪几个面的面积。解决这些生活中的问题,有的只需要计算侧面积,有的需要计算一个侧面积与一个底面积的和,在做题的时候,一定要让学生认真审题。
第7题要具体指导学生理解“博士帽”的结构,要使学生认识到每顶博士帽都是由一个无底无盖的圆柱和一个边长30厘米的正方形组成的。
补充的填空题正好可以锻炼学生的表达能力,因为班级中很多学生都是只会做不会说。以后我也可以尝试多让学生做一些这样的练习。
课前思考:
《练习六》的后面部分是对表面积生活应用的全面开花,学生在练习中能充分感受不同的应用表面积的实际问题,开阔眼界。
第8题的计算结果是494.55朵,花柱上的花的朵数不可能是小数,实际教学时我想使用的四舍五入法,觉得多一朵还是少一朵,应根据实际空隙的大小来定,也就是得数小数部分的大小来定,如果超过一朵花的一半就补一朵花,反之就把周围的花松开一点就行了。
课后反思:
今天这节主要让学生计算关于圆柱表面积和侧面积的实际问题,从昨天的回家作业的正确率来看,计算的确是学生存在的一个大问题。练习第8题的计算结果是494.55朵,学生引起了很大的争议,有一些学生认为应该取495朵,一些学生认为应该取494朵,我的想法是是否两种都可以呢?想请教各位老师。
总得来说,一部分基础知识薄弱的学生,他的计算能力和正确都非常低,尤其是遇到一些稍微复杂点的数字。现在的情况是尽管我布置的作业量不多,但是学生交作业的速度很慢,有部分学生一直要拖到放学后。我想这样的教学效果肯定不行,提高学生的计算能力不是一朝一夕的事,这也有赖于学生的基础。
课后反思:
在运用圆柱表面积的知识解决实际问题的过程中,有很多情况是比较复杂的。比如说:算水池抹水泥的面积有时不带盖;有时算包装纸只需要计算侧面积,风管、烟囱也是这样;有时算一个完整的圆柱体的表面积该给底面积乘2的学生们又忘记了。再加上有的题目数据太大,学生计算起来困难太多。有的学生是列式时侧面积和底面积理解分析的不正确。
由于学生本来计算能力就差,这节课的计算量又大,因此,关于圆柱表面积的练习课表现出了很多的问题。除了及时发现,及时帮助学生以外,也要注重在练习的类型上下了一些工夫,以帮助学生度过学习上的难关。
课后反思:
最近有少数学生在课外作业时经常使用计算器,逼得我只好让他们完成每次的作业时要将草稿纸夹进作业本。在第21页的教材上,标注了一行小字,内容是今后涉及到圆柱、圆锥的有关计算时,可以使用计算器。但我们现在每次的测试是不允许使用计算器的。所以作为教师,我们只有想办法让学生学会一些必要的计算技巧,更为重要的是培养学生养成良好的计算习惯。
今天的练习课上,教材中提供的这些生活中的实际问题的计算都比较繁琐。另外,有些题目对于最后结果还有不同的要求,在计算时也需要及时提醒学生看清题目要求。如第6题要求得数保留整十平方分米,对于一些学生来说他们还不明白这个要求,这样也常会给计算造成错误。又如,第7题的最后结果的单位名称是平方分米,而题中所提供的数据的单位名称是平方厘米,如果没有仔细读题的学生又会出现错误。第8题的计算结果是一个小数,而联系生活实际花的朵数不可能是小数,并且在取近似值时应该采用“进一法”。所以在计算中,我们要留意不同的计算要求,给予学生一些方法上的指导。
课后反思:
由于今天的计算比较复杂,所以教学任务只完成了教材上的教学内容。从课堂反映情况看,学生对圆柱表面积的计算方法进一步熟练,但还需进一步巩固,第二,由于在上学期长正方体的表面积学习中,注意将生活问题转化成数学问题后再解答,所以今天练习六的习题,我也同样紧扣这样几个问题问:题中告诉我们什么?要求什么?求这个问题实质就是求什么?怎样求?按这样的思路考虑问题,学生理解比较到位。
与大家有同样的感觉,计算的正确率不高,且题中还有单位变化、取近似数等要求,计算难度更大了。
与同组老师商量,还得增加一节巩固练习后再上体积计算。
圆柱的表面积教案篇十五
2、填空:
(1)圆柱的( )面积加上( )的面积,就是圆柱的表面积。
(2)把一个底面积是15.7平方厘米的圆柱,切成两个同样大小的圆柱,表面积增加了( )平方厘米。
(3)计算做一个圆柱形的茶叶筒要用多少铁皮,要计算圆柱的( 。
)。
(4)计算做一个圆柱形的烟囱要用多少铁皮,要计算圆柱的( 。
)。
(5)计算做一个没有盖的圆柱形水桶要用多少铁皮,要计算圆柱的( )。
(6)一个圆柱,它的高是8厘米,侧面积是200.96平方厘米,它的底面积是( )。
(1)底面半径是2分米,高是7.3分米。
(2)底面周长是18.84米,高是5米。
4、选择正确答案的序号填在括号里。
a、底面积 b、底面周长 c、底面半径。
(2)把一个直径为4厘米,高为5厘米的圆柱,沿底面直径切割成两个半圆柱,表面积增加了多少平方厘米?算式是( )。
a、3.14×4×5×2 b、4×5 c、4×5×2。
5、一个圆柱形无盖的水桶,底面的直径是0.6米,高是40厘米,做这样一个水桶,需要多少平方米的铁皮?(得数保留整数)。
班别: 姓名: 学号: 。
1、一个圆柱高9分米,侧面积226.08平方分米,它的底面积是多少平方分米?
6、一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶至少要用铁皮多少平方厘米?(接口处不计,得数保留整百平方厘米)。
8、一个盛奶粉的圆柱形铁罐,底面周长是31.4厘米,高是1.3分米,做一个这样的铁罐至少需用铁皮多少平方厘米?(接口处不计,得数保留整十平方厘米)。
9、一个圆柱的侧面积是12.56平方米,底面半径是4分米,它的高是多少分米?
10、一个无盖的圆柱形铁皮水桶,底面直径是0.4米,高是0.8米,要在水桶里、外两面都漆防锈漆,油漆的面积大约是多少平方米?(得数保留一位小数)。
圆柱的表面积教案篇十六
2、填空:
(1)圆柱的( )面积加上( )的面积,就是圆柱的表面积。
(2)把一个底面积是15.7平方厘米的圆柱,切成两个同样大小的圆柱,表面积增加了( )平方厘米。
(3)计算做一个圆柱形的茶叶筒要用多少铁皮,要计算圆柱的( )。
(4)计算做一个圆柱形的烟囱要用多少铁皮,要计算圆柱的( )。
(5)计算做一个没有盖的圆柱形水桶要用多少铁皮,要计算圆柱的( )。
(6)一个圆柱,它的高是8厘米,侧面积是200.96平方厘米,它的底面积是( )。
(7)把一个圆柱体的侧面展开,得到一个长31.4厘米,宽10厘米的长方形,这个圆柱体的侧面积是平方厘米,表面积是()平方厘米。
(10)做一个圆柱体,侧面积是9.42平方厘米,高是3厘米,它的底面半径是( )厘米,表面积是平方厘米。
(11)把一根直径是20厘米,长是2米的圆柱形木材锯成同样的3段,表面积增加了( )立方厘米。
4、选择正确答案的序号填在括号里。
a、底面积 b、底面周长 c、底面半径。
(2)把一个直径为4厘米,高为5厘米的圆柱,沿底面直径切割成两个半圆柱,表面积增加了多少平方厘米?算式是( )。
a、3.14×4×5×2 b、4×5 c、4×5×2。
5、一个圆柱形无盖的水桶,底面的直径是0.6米,高是40厘米,做这样一个水桶,需要多少平方米的铁皮?(得数保留整数)。
圆柱的表面积教案篇十七
2、填空:
(1)底面半径是2分米,高是7.3分米。
(2)底面周长是 18.84米 ,高是 5米 。
4、选择正确答案的序号填在括号里。
a、底面积 b、底面周长 c、底面半径。
16、一个无盖的圆柱形铁皮水桶,底面直径是 0.4米 ,高是 0.8米 ,要在水桶里、外两面都漆防锈漆,油漆的面积大约是多少平方米?(得数保留一位小数)。
圆柱的表面积教案篇十八
九年义务教育六年制小学数学第12册33~34页例1、例2、例3的“做一做”及练习七的第2~5题。
1、知识目标:理解圆柱的侧面积和表面积的含义;掌握圆柱的侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积。
2、能力目标:能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
3、德育目标:渗透事物之间联系的辩证唯物主义观点,使学生感悟到数学知识内在联系的逻辑之美,增强审美意识。
:理解求表面积、侧面积的计算方法,并能正确进行计算。
:能灵活运用表面积、侧面积的有关知识解决实际问题。
本课是在学生认识了圆柱,学习了圆、长方形等几何图形的基础上进行的。通过学习可以发展学生的观念,提高学生解决实际问题的能力。并为以后学习圆柱的体积计算打下良好的基础。本节课由于学生缺乏空间想象能力,计算繁琐,易使学生感到枯燥无味。因此,我在教学中充分调动学生的积极主动性,让学生在自主动手操作中发现问题,自主探索解决问题的途径以解决所遇到的数学问题。
遵循学生的认知规律,组织合理有效的教学程序。
(1)抓住关键,动手操作,突破难点。
圆柱的表面积等于侧面积加两个底面积的和,圆柱的底面是两个相等的圆。对于圆面积的计算是学生已有的知识,学生以前学过的面都是“平面”而圆柱的侧面却是个“曲面”。怎么样才能求出这个“曲面”的面积就成了圆柱表面积教学过程中的难点。于是让圆柱的侧面“由曲变直”,使新知识在一定的条件下统一起来就成了一个关键性的问题。通过教具演示,把侧面展开可以使侧面“由曲变直”,但学生缺乏这方面的生活经验,接受起来思维障碍较大。所以我反其道而行之,采用实验法,让学生卷一卷、分一分,把一张长方形的纸卷成一个尽可能粗的圆柱形的纸筒。使学生在操作的过程中感知:在一定的条件下,平面也可以“由直变曲”,那么反过来曲面当然也可以“由曲变直”。又经过引导学生观察、比较,讨论长方形纸的长和宽与用它卷成的圆柱形纸筒的底面周长和高的关系,学生认识圆柱的侧面已经水到渠成,得到圆柱的侧面积等于底面周长乘以高。
这样抓住新旧知识内在联系,安排学生动手操作,引导学生在发现问题后及时动脑思考,不仅激发学生兴趣,同时也促进了学生思维能力的发展。
(2)及时练习,巩固提高,形成能力。
学生的能力主要表现在获取知识和应用知识的过程中。求圆柱。
侧面积,由于已知条件的不同,有多种不同的计算方法,但用圆柱的底面周长乘以高是最直接的方法,通过练习处理好新知识与旧知识的结合,解决好已有技能在新情况下的运用,将对培养学生分析综合的能力,减轻学生的记忆负担起重要作用。因此,我在引导学生推导出圆柱侧面积的计算方法之后,及时安排了练习,使学生通过练习牢固掌握求圆柱侧面积的基本方法。对于题中没有直接告诉底面周长的,并没有一一进行方法的指导,只需把基本方法加以推广,知道如果没有直接告诉底面周长时,应用已知底面直径(或半径)求周长的方法,先求出底面周长,然后再求侧面积就可以了。这样就提高了学生运用基本数学知识灵活解决实际问题的能力,并减轻了学生学习中不必要的记忆负担。这一点既减轻学生过重负担又提高课堂教学效率。
(3)通过讨论,多向交流,培养独立思考能力。
为提高课堂教学效率,培养学生能力,我在教学中注意研究如。
何引导学生独立钻研问题。对于课本上的例题,可以提供给学生作为讨论和思考的材料,都尽量让学生独立去探讨。因此,教学时提出了“除了侧面外圆柱还有几个面?”“什么叫做圆柱的表面积?”“怎么样求圆柱的表面积?”等三个问题让学生分组讨论,进行独立的探索。在“怎么样求圆柱的表面积?”这个问题时,有的同学得出圆柱的表面积等于侧面积加上两个底面积;有的同学则会联系圆的面积公式推导过程,把圆柱的两个底面分成若干个小扇形后拼成一个与侧面同长的长方形,然后与侧面再拼成一个大长方形,那么整个圆柱的表面积=底面周长×(圆柱的高+底面半径),用字母表示即s=2лr×(h+r)。这样学生不仅亲自参与了对新知的探索使知识掌握得更加牢固,还对旧知进行再创造并萌发了创新意识,培养了学生的创新思维和创新能力。
(4)联系生活,迁移知识,感悟生活数学乐趣。
小学数学的教学内容绝大多数可以联系学生的生活实际,教师应找准每节教材内容与学生生活实际的“切入点”,调动学生学习数学的兴趣和参与的积极性。所以在教完例2后,我让学生举例说出日常生活中,哪些物体是没有两个底面的圆柱体。出示例3让学生认真审题,并说水桶有几个面,再计算出用了多少材料,学生计算完后,要求得数保留整百平方厘米。启发学生看书发现新问题,讨论计算使用材料取近似值时,要用“四舍五入”法还是用“进一法”。从而使学生理解“进一法”的意义。接着出示拓展延伸练习:制作一个高1.5米,直径0.2米的圆柱形烟囱,需要多少平方米铁皮?最后让每一位学生小组合作制作一个圆柱体水桶并评选出最佳作品展示。
课堂小结后,我提出“大家想一想,还有什么办法能求出计算圆柱体的表面积?”(例如,可以把圆柱切开,拼成近似的长方体,由长方体的表面积计算公式推导出圆柱的表面积计算公式)这个问题让学生知道了解决问题的方法是多种的,也有利于挖掘优生的潜能,还能为求圆柱的体积埋下伏笔。
总而言之,这节课充分调动了学生的手、眼、口、脑,借助学具让学生动手去实践,动脑去想,发现问题,解决问题。
圆柱的表面积教案篇十九
教学内容:
小学数学第十二册教材p33~p34。
教学目标:
1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学媒体:
圆柱形物体、学具、多媒体课件。
教学重点:
教学过程:
一、猜测面积大小,激发情趣导入。
1、用你们手上的a4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)。
2、这两个圆柱谁的侧面积谁大?为什么?
3、复习:圆柱的侧面积=底面周长×高。
刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。
二、组织动手实践,探究圆柱表面积。
1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)。
2、你们觉得这两个圆柱谁的表面积大?为什么?
生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。
3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?
生:计算的方法。
圆柱的表面积=侧面积+两个底面的面积(板书)。
4、那现在你们就算算这两个圆柱的表面积是多少?
生:(不知所措)没有数字怎么算啊?
师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?
生1:我想知道圆柱体的底面半径和高。
生2:我想知道圆柱体的底面直径和高。
生3:我想知道圆柱体的底面周长和高。
师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。
5、汇报展示:
情况一:半径:31.4÷3.14÷2=5(cm)。
底面积:3.14×5×5=78.5(平方厘米)。
侧面积:31.4×18.84=591.576(平方厘米)。
表面积:591.576+78.5×2=748.576(平方厘米)。
情况二:半径:18.84÷3.14÷2=3(cm)。
底面积:3.14×3×3=28.26(平方厘米)。
侧面积:31.4×18.84=591.576(平方厘米)。
表面积:591.576+28.26×2=648.096(平方厘米)。
师:通过我们计算验证了我们刚才的判断是正确的。
接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?
生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。
生2:这样做挺麻烦的有没有更简单一点的方法呢?
6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)。
教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。
问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)。
所以圆柱体表面积=长方形面积=底面周长×(高+半径)。
用字母表示:s=c×(h+r)。
我们用这个方法来验证一下我们的例2看是不是比原来简单?
汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)。
那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。
本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。
三、分组闯关练习。
1、多媒体出示题目。
第一关(填空)。
沿圆柱体的高剪开,侧面展开后会得到一个形,长是圆柱的(),宽是圆柱的(),因此圆柱的侧面积=()×()。
第二关。
一个圆柱的底面直径是2分米,高是45分米,它的侧面积是()平方分米,它的底面积是()平方分米,它的表面积是()平方分米。
第三关(用你喜欢的方法完成下面各题)。
一个圆柱,它的底面半径是2厘米,它的高是15厘米,求它的表面积?
2、汇报结果,给予评价。
我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。
四、质疑(同学们还有什么疑问吗?)。
五、反馈小结:
教学反思。
1、自主探究,体验学习乐趣。
以解决问题为主线,打破了“例题――习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。
2、合作交流,加深对知识的理解深度。
给学生提供一个合作交流的平台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。
圆柱的表面积教案篇二十
这节课虽留有许多缺憾,与传统的教学相比,做题少了些,在计算方面,没达到较多的训练,能影响到作业及今后考试的正确率,但我感到十分成功,我为学生课堂上的生命涌动而兴奋不已,主要有以下几点体会。
一、教学目标提升了。过去我仅满足于把学生“教会”,学生始终是被动的接受。课堂上学生厌烦,老师急燥,都苦不堪言。在新课程理念指引下,我把促进学生的“发展”,做为我贯穿课堂始终的目标。充分调动学生的主动性,激发学生的探索欲望,学生由被动变为主动。不断体验到自己的智力成果带来的乐趣。
二、学生在体验中,更好的理解了数学,不断闪现出创新的火花。课前,布置学生做圆柱体,我考虑到学生已有这方面的生活经验,并不难。但要做成一个标准的圆柱体,确实要动一定的脑筋。通过动手操作,学生其实已经初步感受到圆柱体,由2个相同的圆和一个长方形围成。更难能可贵的是一些学生在做中,发现圆柱底圆周长与长方形长相等。个别没做成功的孩子,在交流活动中,也能体验到失败的原因。促进空间观念的发展。
三、我也体验到了怎么教数学。
(1)只有深入理解课程标准,认真领会新课程理念,才能在实践过程中指导教学。
(2)立足发展学生的能力,设计课堂教学的策略。
(3)树立正确的教学观,不因考试而教学,教学应以开发学生智能为使命。
四、不足改进。在进行计算圆柱表面积练习时,应大胆让学生运用计算器,提高课堂教学效率。过去总担心一旦用计算器会降低学生的计算能力,会影响今后的考试,计算器只教不用。这节课由于圆柱的表面积计算繁杂,占用较多时间且正确率不高,不能及时有效的反馈学生掌握的情况。所以应根据教学情况,让学生运用计算器来解决计算问题。