小学数学比的应用教案(汇总18篇)
教案是教师在备课过程中制定的一种教学计划,能够系统地组织教学活动。教案应该符合现代教育理念和教学规范,注重培养学生的综合素养。小编为大家整理了一些教案的编写要点和技巧,希望对大家的教学工作有所帮助。
小学数学比的应用教案篇一
教学分析:
按比例分配的练习。
学情分析:
已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。
教学目标:
能运用比的意*决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。
教学策略:
练习、反思、总结。
教学准备:
小黑板。
教学过程:
一、基本练习。
(一)六1班男生和女生的比是3:2。
1.男生人数是女生人数的()。
2.女生人数是男生人数的(),女生人数和男生人数的比是().
3.男生人数占全班人数的(),男生人数和全班人数的比是().
4.全班人数是男生人数的(),全班人数和男生人数的比是().
5.女生人数占全班人数的(),女生人数和全班人数的比是().
6.全班人数是女生人数的(),全班人数和女生人数的比是().
把250按2比3分配,部分数各是多少。
二、变式练习。
1、被减数是36,减数与差的比是4比5,减数是多少?差是多少?
教学反思:
提高练习的灵活度,以及练习的形式。
小学数学比的应用教案篇二
《比的应用》小学数学六年级上册的内容,是在学生理解了比的意义、比的化简、比与分数的联系、以及掌握用分数乘、除法解决简单问题的基础上,把比的知识应用于解决相关的实际问题的一个课例。比的应用又称按比例分配,按比例分配有按正比例分配和反比例分配两种,由于按反比例分配的实际应用并不广泛,而且可以转化为按正比例分配来解答,因此教材只教学按正比例分配。按比分配是“平均分”问题的发展,平均分是按比分配的特例。研究比的应用,也为以后学习“比例”、“比例尺”的知识奠定基础。
教材有两部分内容:分一分和算一算。分一分:创设一个给两个班的小朋友分橘子的情境,鼓励学生通过实际操作,在交流不同分法的过程中体会到1:1分配的不合理性,产生按比分配的需要,同时体会按比分配在生活当中的实际应用;算一算:在有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解题策略解决实际问题。
【学生分析】。
学生在二年级上册学习了除法的意义,了解了“平均分”,即按1:1分,学生在五年级上册学过分数的意义、分数与除法的关系,本单元学习了比的意义和比的化简。由于比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识具有明显的、可供利用的内在联系,这些对于学生学习比的应用奠定了良好的知识基础。
比的知识在生活中有着很广泛的应用,因此,学生也有一定的经验基础。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。
【教学目标】。
3、使学生在探索未知、寻求成果的过程中品味学习的乐趣,并养成积极、主动的探究精神。
【教具准备】。
课前准备:学生查找有关事物各组成部分比的资料。
课上准备:小红旗。
【教学重点】理解按比分配的实际意义,并能运用比的意义解决按照一定的比进行分配的实际问题。
【教学难点】理解按比分配的实际意义,沟通比与分数之间的联系。
【教学过程】。
一.情境引入。
老师有140个橘子,要分给幼儿园两个班的小朋友,你觉得怎样分才算合理呢?(平均分,这样才公平。)。
3、3:2表示什么意思?
[设计意图]使学生体会按比分的必要性以及初步沟通按比分与平均分的关系。
二、问题解决活动1:合作研究怎样按3:2这个“比”来分配。
为了研究方便,老师给大家提供了一些小旗代替橘子。
(一)合作研究。
1.合作要求:两个同学一组分工合作,每分一次,就详细记录下当次分给大班和小班小旗的面数,直到分完为止。(提示:记录时,不累计上次分得的小旗面数)。
大班小班。
第一次。
第二次。
第三次。
第四次。
第五次。
大班分得面小旗。
小班分得面小旗。
2.学生合作研究。
3.教师组织反馈交流。
老师在巡视的过程中,收集约三种不同的分法,分步展示在黑板上。
四人一组交流讨论要求。
(2)观察、比较这几种分法,你能发现什么?
插问:你觉得分一次至少需要多少面小旗?为什么?
学生可能出现的方法预设:
分法1:每次分给大班3面,分给小班2面。
表扬:认真有耐心,十二次。
分法2:根据比的基本性质分,分的次数明显减少。
表扬:很会动脑筋,在分的过程中及时进行了调整。
分法3:先按人数分给大班30面,分给小班20面,余下的再按比分。
表扬:很会联系实际情况,这种分法在实际生活中非常实用。
(二)验证。
1.问题:大班和小班分得面数的比是不是3:2?你是怎么知道的?
大班小班。
分得小旗的总面数。
人数。
平均每人分到小旗的面数。
30:20=3:2=36:24。
2.师生一起小结:
(1)平均每人分到的小旗同样多吗?
(2)把这些小旗按大班和小班的人数比来分配是合理的分法吗?
[设计意图]正式打通人数比与小旗面数比之间的关系,深化比的意义。使学生初步体会按比分的本质:即每个“单位”分到同样多。
(三)当我们知道总数的情况下的按比分配。
1.问题:如果有180面小旗,你打算怎样按3:2进行分配?你能想到几种方法?
2.四人一组交流,说说你想到的方法:
方法1:按比逐次分配。
方法3:把比转化成分数,利用分数的意义求出大班和小班分到的小国旗的面数。
三、巩固练习。
同学们表现得太出色了,能再帮老师一个忙好吗?好啊。
四、总结。
今天的学习,你有哪些收获和感受?
1、通过这节课的学习你对比有了哪些新的认识?
2、把一些事物按一定的比分的时候,可以用哪些策略?
3、你在生活中还能找到比的应用的例子吗?
比的应用教学设计来自本站。
小学数学比的应用教案篇三
教学目标:
(1)知识目标:使学生理解按比例分配的意义。
(2)能力目标:使学生灵活掌握按比例分配应用题的数量关系和解答方法。
(3)情感目标:在教学中渗透事物是相互联系的辩证唯物主义思想。
教学重点:分析理解按比例分配应用题的数量关系。
教学难点:掌握按比例分配应用题的解答方法。
教具准备:多媒体课件。
教学过程:
一、学前准备。
60÷100=3/5。
40÷100=2/5。
这里的3/5和2/5是什么意思?
2、60:40=3:2。
你发现了什么?
二、探究新知。
1、导入新课。
在日常生活中,我们有时需要把一些数量按照一定的比来分配,你能举出这样的例子吗?
2、教学例题2。
(1)学生独立思考,相互说说:要分配什么?3:2是什么意思?
(2)探究问题解决的方法。
(3)交流。
(4)用分数怎么解答?
总面积平均分成的份数:3+2=5。
播种大豆的面积:100×3/5=60(公顷)。
播种玉米的面积:100×2/5=40(公顷)。
(5)用归一方法怎么解答?
3、归纳小结:按比例分配的应用题有什么特点?怎样解答?
4、学习例题3。
(1)小组尝试解答检验。
(2)全班交流、反馈。
三个班的总人数:47+45+48=140(人)。
一班应栽的棵数:280×=()棵。
二班应栽的棵数:280×()=()棵。
三班应栽的棵数:280×()=()棵。
(3)例题2和例题3有什么相同点和不同点。
三、巩固练习与检测。
2、一个三角形的三个内角的度数比是2:3:7,求这个三角形的各个内角的度数。
3、教材53页的2、3题。
四、小结(略)。
五、作业:练习十三的第一、二、五题。
小学数学比的应用教案篇四
教学目标:
2、培养学生应用所学数学知识解决实际问题的能力;使学生真正成为课堂的主人;
3、通过实例使学生感受到数学来源于生活,生活离不开数学。
教学重点:
1、正确理解按比例分配的意义。
2、掌握按比例分配应用题的特征和解题方法。
教学难点:能正确、熟练地解答按比例分配的实际问题。
教学过程:
一、课前组织复习旧知。
同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某兴趣小组男生和女生的人数比是5:4,从这组比中,你能推断出什么信息呢?”(课件出示题目)。
学生自由发言,预设推断如下:
1、全班人数是9份,男生占其中的5份,女生占其中的4份。
2、以全班为单位“1”,男生是全班的,女生是全班的。
3、以男生为单位“1”,女生是男生的,全班是男生的。
4、以女生为单位“1”,男生是女生的,全班是女生的。
5、女生比男生少(或20%)。
6、男生比女生多(或25%)。
追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)。
二、探索方法,建立模型。
1.理解题意。
(1)什么是稀释液?怎样配置的?
(2)什么是按比例分配?
2.自主探究,合作学习。
自学数学书p49例题2,思考:
(1)你从例题2中得哪些信息?
(2)1:4表示什么?你从中得到哪些信息?
(3)你能用画图的方法给同位讲解吗?
(4)方法一先求什么?再求什么?方法二先求什么?再求什么的?
3.小组展讲。
小结:方法一把各部分数的比看作份数关系,先求每一份,然后再求各部分的量;方法二把各部分的比转化成分别占总数的几分之几,根据分数乘法的意义,直接求总数的几分之几是多少。
三、巩固练习。
2.填空。
3.一个长方形的周长是28cm,长与宽的比是5:2,长与宽各是多少cm?
小学数学比的应用教案篇五
能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,感受比在生活中的广泛应用,提高解决问题的能力。
1、理解按一定比例来分配一个数量的意义。
2、根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地用乘法求各部分量。
cai课件。
一、创设情境:
2、请同学们想一想:你认为怎么分合理?说一说你的分法。
二、探究新知:
1、出示题目:这筐橘子按3:2应该怎样分?
(1)小组合作(用小棒代替橘子,实际操作)。
(2)记录分配的过程。
(3)各小组汇报:自己的分法。
大班小班。
3个2个。
6个4个。
30个20个。
…………。
2、出示题目:如果有140个橘子,按照3:2又应该怎样分?
(1)小组合作。
(2)交流、展示。
(3)比较不同的方法,找找他们的共同点。
方法一:
大班小班。
30个20个。
30个20个。
…………。
方法二:画图。
140个。
方法三:列式。
3+2=5。
3
5
140×=84(个)。
2
5
140×=56(个)。
答:大班分84个,小班分56个,比较合理。
(还会出现用整数方法来列式计算的。)。
3、小结:解决生活中的实际问题时,同学们要认真分析数量关系,可以选用多种方法解答。
三、巩固新知。
完成课本第55页:
1、独立试做:试一试。
2、独立试做练一练的1题、2题,3题抢答,并说明理由。
四、知识拓展:
数学故事。(共同探讨方法)。
阿凡提分马的故事,可能有的学生以前听过,可以让学生自己把故事讲出来。教学时,教师可以引导学生算出三个人分得的马:老大6匹,老二3匹,老三2匹。教师还可以进一步引导学生认识到12+14+16并不等于1。
练习。
1、小红和小薇投篮数之比是3:5,小薇比小红多投了6个,小红投了多少个?
2、药粉和药水的比是1:30,如果药水有60千克,那么药粉有多少千克?
1、一种药水中药粉和水的质量比是1:50,用2千克药粉配置这。
样的药水,需要用水多少千克?
2、打一篇文章,小丽用了3小时,小红只用了2小时,问小丽。
和小红的速度之比是多少?
五、总结:1、学生看书总结本节所学内容。
2、提出自己还有些疑惑的问题。
3+2=5。
3
5
140×=84(个)。
2
5
140×=56(个)。
答:大班分84个,小班56个,比较合理。
提供现实生活情境,使学生体会到数学与生活的联系,激发学生的学习兴趣,引导学生分析问题中的数学信息。
这一过程要给学生提供充分的体验时间,在实际操作中,学生会不断调整一次分配的数量,不断的产生新的解题的策略,理解按一定的比例来分配的意义。
培养学生独立思考问题、解决问题的能力。在这一过程中,学生和老师都能及时的发现不懂的,理解不好的问题,便于及时处理。
【】。
能运用比的意义,解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力,感受比在生活中的广泛应用。有的同学在课后提出了这样一些问题:
郑琪键:怎样才能知道哪个是比的前项,哪个是比的后项?
张晋:有时总数除以被分成的份数除不尽怎么办?
姚楠:如果题目求比需要接方程怎么办?
在学习练习三时有必要集体解决以上一些问题。
小学数学比的应用教案篇六
【教材分析】《比的应用》是在学生理解了比的意义、比的化简、比与分数的联系、以及掌握用分数乘、除法解决简单问题的基础上,把比的知识应用于解决相关的实际问题的一个课例。教材有两部分内容:分一分和算一算。分一分:鼓励学生通过实际操作——分橘子,体会到1:1分配的不合理性,产生按比分配的需要,同时体会按比分配在生活当中的实际应用,构建解决按比分配问题的模型;算一算:在有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解题策略解决实际问题。研究比的应用,也为以后学习“比例”、“比例尺”的知识奠定基础。
【学生分析】学生在二年级上册学习了除法的意义,了解了“平均分”,在五年级上册学过分数的意义,本单元学习了比的意义和比的化简。比的很多基础知识与除法、分数的知识具有明显的、可供利用的内在联系,这些对于学生学习比的应用奠定了良好的知识基础。
比的知识在生活中有着很广泛的应用,因此,学生有一定的经验基础,但是他们对按比分配的实际意义理解并不清楚。因此,教学这部分内容时,应当充分利用学生原有的知识基础,创设有利于学生动手操作的实践活动,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生通过自主探究与合作交流,推出新结论,解决新问题。
【教学目标】根据以上的分析,我设定了本节课的教学目标。
3、使学生在探索未知、寻求成果的过程中品味学习的乐趣,并养成积极、主动的探究精神。
本课的教学重点:能运用比的意义解决按照一定的比进行分配的实际问题。因为这是本课的重要的知识目标,因此也是本课的教学重点。
本课的教学难点:通过实际操作理解按比分配的实际意义。因为在分的过程中,孩子会有不同的表现,这也是学生学习新知识的生长点,是他们面对一个新的数学问题最自然最真实的感受,这一环节为后面寻找解决问题的策略奠定良好的基础。因此,我把理解按比分配的实际意义定为本课的教学难点。
【实践与反思】。
本课我没有使用教材提供的分橘子的情境,而是对教材做了较大的改动,设计了以调配绿色为主题的配色活动。
一、导入。
我以感受家乡的美,描绘大连的绿来导入新课。这种直观的图片不仅会激发学生对家乡的热爱之情,更会激发学生的学习兴趣,同时自然地引入到“绿色是怎么调配出来的”这一主题。
二、实验操作。
学生进行两次配色活动。第一次的配色活动没有给学生规定统一的数据,目的是让学生在自由活动的过程去观察和发现不同的结果,从而得出结论。学生在观察自己调配出的绿色后惊奇地发现同样都是用黄色与蓝色颜料配,调出来的绿色却不一样。这一矛盾极大的刺激学生各种感官,引起学生的探究欲望,学生通过观察、猜测并结合数据推断出“只有各组所用黄色与蓝色的体积比相同,各组才能配出完全一样的绿色来”这一结论。根据学生的经验,知道用黄色和蓝色可以根据需要配成不同的绿色,但并不清楚原因是什么。如果弄清楚原因,比的实用价值就会在他脑海里打下烙印,学生会对比的实用价值有初步地感悟。
第二次的配色活动是根据需要调配黄色与蓝色的比为3:2的绿色。这一环节是经过网上研课,在与专家网友交流的过程我逐步体会到“分一分”的重要性,从而加入的一个环节。按比分是平均分问题的发展,当我要调配出不同的绿色来时,按比分的需要就产生了。这一活动设计的主要目的有五,一是复习旧知,沟通比与分数、除法的关系;二是通过实际操作,在不断调整一次量取数量的过程中发展学生的数感;三是通过学生交流各自不同的分法,使学生体会到黄色占了3份,蓝色占了2份,这为后面解决问题奠定了基础;四是在观察记录的过程中,巩固比的化简内容,同时为学生今后学习正比例积累经验;五是让学生体会到按比分的必要性,对比的应用价值有了更进一步的体验。而这一环节的设置也正是本课的亮点之一。当让学生按黄与蓝的体积比为3:2来调配绿色,有一个组调配的绿色与其它组有明显的不同。这个组的学生说:“因为黄色与蓝色的比为3:2,所以我们取了40ml的蓝色和60ml的黄色.......”立刻就有学生提出:“反了,你们组把黄与蓝搞反了,你们组黄与蓝的比是2:3。”这个错例使得学生对按比分的价值有了进一步的体验。在调配的过程中,各组呈献了不同的分法。我们组黄色与蓝色的体积比是3:2,我们就先假设一份是10ml,那么黄色就占3份也就是30ml,蓝色占2份,也就是20ml,黄与蓝的比是3:2。还有的组是这样一看黄与蓝的比是3:2,就想到了黄色是30ml,蓝色是20ml。取了之后,觉得太少了,于是又取了30ml的黄色和20ml的蓝色两次,一共是90ml的黄色,60ml蓝色,黄与蓝的比仍然是3:2。这时我及时引导:“同学们发现了吗,当取的黄色颜料扩大为原来的3倍,相应的蓝色颜料也要扩大为——”学生齐说:原来的3倍。师:“比仍然是——”生:“3:2。”
在量取的过程中,学生将体会到黄色占了3份,蓝色占了2份,这为后面解决问题奠定了基础;在观察记录的过程中,学生会发现不管黄色与蓝色的量是多少,黄色与蓝色的体积比都是3:2,不仅可以巩固比的化简内容,还会使学生体会到黄色颜料扩大到原来的几倍,蓝色颜料也要扩大为原来的几倍,为学生今后学习正比例积累了经验。
三、算一算。
在实际操作的基础上,解决“绿色是200ml,黄色与蓝色的体积比为3:2,黄、蓝色各是多少ml?这一实际问题。”学生出现了多种解决问题的策略,在学生探索出不同的解决问题的策略之后,我组织学生将不同的策略进行比较,发现用分数的方法和用整数方法的共同点,有效地沟通了比与分数的关系。
四、交流资料,出示课题。
交流课前查找的一些事物各组成部分的比。此环节第一个目的是让学生进一步体会按比分配在生活中的实际意义,另一个目的是还可以利用学生搜集的资料,改编成练习题,使学真实地感到数学与生活的联系。
五、巩固应用。
巩固应用部分的两个练习的设计,充分体现了“学生活中的数学、学有用的数学”这一理念。首先,利用孩子搜集到的资料编题,生活中应用按比分配的例子很多,孩子搜集到的有关资料都是可利用的资源,直接用孩子的资料编题,寻找解决问题的策略,可以让孩子进一步感受到这样的知识在生活中应用十分广泛,体会到学习数学的价值;第二个练习是利用人身体各部分的比来算一算、量一量身高与头部的长度。课堂上,孩子对于这一练习有着浓厚的兴趣,学生在学习时兴趣盎然,有一种成就感与满足感,这样“身临其境”地学数学,学生不会有一种陌生感,反之具备了一种似曾相识的接纳心理。
本节课学生的学习热情很高,每个学生都积极参与到教学过程之中,可见这样的学习活动是学生喜闻乐见并乐于尝试的。通过网络研课,许多老师在细节上给予了详尽的指导,使我在预设时考虑了大量的细节问题,因此,本课较为圆满地完成了任务。出现的问题是书中出现的图示法并没有出现在班级学生的做法中。应该说图示法是解决问题的一个很重要策略,也是最直接的一种策略,当我们步入社会中,还经常会用这一策略解决很多现实问题。但是学生中却没有出现这一方法的。我思考了一下,主要原因有二:一是这道题的数量关系比较清晰,对本班学生来说比较容易理解,学生认为不需要借助图形理解题意;另一个原因也是显现了教师在日常教学中对于计算的方法和结果关注较多,对于图示法、列表法等策略渗透不够,所以使得学生没有利用图示法来解决问题的习惯,这也是老师在以后的教学中需要注意的。
小学数学比的应用教案篇七
1、进一步理解解比例的意义。
2、掌握解比例的方法,会解比例。
3、强调解比例的书写规范和计算中的灵活性,以提高同学们的审美能力和计算能力。
教学重难点。
掌握解比例的方法,学会解比例。
教学过程。
一、复习旧知。
1、什么叫做比例?什么叫做比例的基本性质?
2、根据比例的基本性质,将下列各比例改写成乘法等式。
3∶8=15∶40。
二、探索尝试,解释交流。
这个问题怎么解决?写出你的想法。
师:假设14个玩具汽车可以换x本小人书,你能写出一个比例吗?这个比例中x是多少呢?请在小组内交流一下。
(1)自己动脑写出想法。
(2)小组交流。
2、师:哪个小组展示本小组的想法。
板书:4:10=14:x。
解:4x=140。
x=35。
答:14个玩具汽车可以换35本小人书。
3、总结:
师:在比例里,如果已知任何三项你能求出比例中的另外一个未知项?
对,先写成乘法形式,再求出未知数的值。这种求比例中的未知项,叫做解比例。
三、课堂练习。
1、解比例。
2、根据下面的.条件列出比例,并解比例。
(1)6和8的比等于36和x的比。
(2)比例的两个内项是0.4和0.3,两个外项是6和x。
(3)比例的第一项是4,第二项是8,第三项是x,第四项是10。
四、总结:
谈谈这节课的收获?
小学数学比的应用教案篇八
本课教学内容是人教版九年制义务教育课程标准实验教科书三年级下册第七单元第一课时《小数的认识》。
(二)地位作用。
本节课是学生认识小数的第一课,本节课学习的好坏直接影响到以后的相关教学,所以上好这节课显得尤为重要。本节课的教学是在学生已经了解了分数初步知识的基础进行教学的,所以在教学时应引导学生对原来分数意义的回忆,加强印象,便于更好地进行教学。
(三)学情分析。
三年级的学生虽然已经具有一定的知识与生活经验,但是在知识和认知水平还存在一定的局限性,数感不太强。小数在现实生活中经常可以看到,对于三年级的学生来说,小数已经不是一个陌生的存在,但是对于小数所包含的一些意义知道的并不是很多。通过本节课的教学,可以让学生对小数有一个理性的认识。由于学生的基础、能力差别比较大,学习兴趣和学习习惯自然也有不同层次,因此本课的学习就让学习充分利用好已有的知识和经验,调动他们的多种感官全面参与新知识的发展和形成的过程。
(四)教学目标。
恰当的目标,科学的方法是教学取得成功的关键。根据课程标准、教材的编排特点,我个人对教材的理解和对学生学情的进一步分析,特制定了以下教学目标:
1、让学生能够认识小数,并能够正确读写小数。
2、通过对以元、米等为单位的小数的分析,使学生了解小数的初步含义。
3、使学生知道十分之几的分数可以化成一位小数,百分之几的分数可以化成两位小数。
4、让学生感受小数与日常生活的紧密联系,从而培养学习的积极性。
教学重、难点:由于什么叫小数和小数的读写比较简单,学生学起来不用费太大的劲,所以我觉得本课的重点应放在如何让学生掌握把十分之几、百分之几的分数化成小数的方法上。分数与小数在写法上区别较大,要让学生把分数和小数联系起来,从而理解小数的意义比较困难,所以我把“让学生理解小数的意义”定为教学难点。
学具准备:课件、答题卡。
二、说教法、学法。
(一)说教法。
教学有法,教无定法,贵在得法。为了实现本课的教学目标,使学生学习后能做到把握重点、突破难点。在教学过程中,我主要采取以下几种教学方法以及教学手段:
1、自主尝试法。根据学生心理发展的规律,学生通过自己学习新知识,比听教师讲解学习新知识记忆更加深刻、兴趣更加浓厚。因此,在教学时,简单问题小数的认、读、写,我让学生自己和小组合作尝试、讨论,在尝试的过程中顺利而迅速地学习本内容。通过学生的自主学习,体现了以学生为主体、老师为主导的教学原则。
2、多媒体辅助教学。在教学小数的意义与转化的过程时,我采用多媒体课件演示,深化学生思维,帮助学生理解。运用计算机多媒体教学课件辅助教学,可以激发学生的学习兴趣,调动学生的学习积极性。
3、发展迁移法。运用迁移规律,注意从旧到新、引导学生在整理旧知(分数学习的经验)的基础上学习新知,体现“温故知新”的教学思想。
(二)说学法。
根据本节内容“生活性”强的特点,以及“学生为主体,教师为主导的教学原则”,在学法指导上应以学生自主学习为主,配以小组合作学习法、讨论法进行自主探究式学习。在教学过程中,注意引导学生怎样有序思考,锻炼学生思维,使学生解决问题的能力逐步提高,教会学生学习。
三、说教学过程。
为凸显本节课的设计理念、切实高校完成教学目标、突出教学重点、突破教学难点,我设计了如下教学环节:
(一)、创设情境。
在课伊始,我创设了一个学生喜闻乐见的旅游的情境。请同学们仔细观察,游乐园超市标价牌上的数字和我们前面学过的数相比,有什么不一样的地方?通过学生的观察,自然引入小数。
俗话说:“良好的开端是成功的一半”。一开始我就引用了学生感兴趣的事件,从学生已有的知识和经验出发,为整堂课的教学奠定了良好的基础。从而顺利进入第二环节。
(二)交流点拨。
1、尝试学习。
【设计意图】:这个环节放手让学生自主学习能学会的知识,体现学生的自主学习、生生互动、生生互助,体现开放、多元的课堂模式。
2、联系生活实际体会小数的意义。
通过实际的价钱和身高,让学生在真实情境中体会以元和米为单位的小数的实际意义。激发学生的独特思维和精彩的回答。
(四)反馈小结。
采用冲关之旅的习题形式。
第一关青蛙跳跃帮助青蛙选择小数的荷叶进行跳跃,
第二关机灵耳朵请同学们仔细听并将听到的填在答题卡上。
第三关放飞气球判断出说法正确的气球并放飞。
第五关智慧大挑战想一想,谁来说?
延伸拓展:组一个一位小数,比它大的,比它小的,组一个两位小数。
(五)数学史。
同学们,小数就是十进分数。它的发展由来已久,我国古代数学家刘徽在一千七百多年前就在《九章算术》一书中运用了十进分数。古代人为了表示小数,就把小数点后面的数放低一格。
小学数学比的应用教案篇九
《比的应用》是新世纪小学数学六年级上册的内容,是在学生理解了比的意义、比的化简、比与分数的联系、以及掌握用分数乘、除法解决简单问题的基础上,把比的知识应用于解决相关的实际问题的一个课例。比的应用又称按比例分配,按比例分配有按正比例分配和反比例分配两种,由于按反比例分配的实际应用并不广泛,而且可以转化为按正比例分配来解答,因此教材只教学按正比例分配。按比分配是“平均分”问题的发展,平均分是按比分配的特例。研究比的应用,也为以后学习“比例”、“比例尺”的知识奠定基础。
教材有两部分内容:分一分和算一算。分一分:创设一个给两个班的小朋友分橘子的情境,鼓励学生通过实际操作,在交流不同分法的过程中体会到1:1分配的不合理性,产生按比分配的需要,同时体会按比分配在生活当中的实际应用;算一算:在有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解题策略解决实际问题。
学生在二年级上册学习了除法的意义,了解了“平均分”,即按1:1分,学生在五年级上册学过分数的意义、分数与除法的关系,本单元学习了比的意义和比的化简。由于比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识具有明显的、可供利用的内在联系,这些对于学生学习比的应用奠定了良好的知识基础。
比的知识在生活中有着很广泛的应用,因此,学生也有一定的经验基础。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。
1、能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的实际意义;
3、使学生在探索未知、寻求成果的过程中品味学习的乐趣,并养成积极、主动的探究精神。
课前准备:学生查找有关事物各组成部分比的资料,课前让学生熟悉用量杯量取溶液的方法。
课上准备:有关课件、黄、蓝色颜料、量杯等。
理解按比分配的`实际意义,并能运用比的意义解决按照一定的比进行分配的实际问题。
理解按比分配的实际意义,沟通比与分数之间的联系。
一、情境导入。
师:同学们,作为一个大连人,你熟悉自己的家乡吗?大连给你留下最深的印象是什么?谁能用简短的一个词来概括。
生1:我最喜欢大连的星海广场。
师:你对大连的星海广场印象最深。还有吗?
生2:大连的海。
生3:大连的草坪。
师:今天,老师也给同学们带来了几幅大连的风光图片,咱们一块来看一看。
(放投影,出示大连的星海广场等图片,学生情不自禁地说出地点。)。
师:看了这些风光片之后,你还有什么新的感受?谈谈你的感想。
生:这些图片大部分都是绿色,给人一种朝气蓬勃、心旷神怡的感受。
师:如果咱们把这些画面画下来,你认为主色调应该是什么色?
生齐:绿色。(师板书:绿)。
师:绿色充满了生命的活力。孩子们,知道绿色是怎么调配出来的吗?
生:知道,是黄色和蓝色调配出来的。(师板书:黄+蓝——)。
二、实验操作。
1、动手操作,调配绿色。
提前给每组准备了蓝色和黄色颜料,一个小量杯,二个大量杯,大量杯上贴上组号。
生:听清楚了。
师:现在各小组可以调配了。
学生开始操作,由小组长进行分工,一人记录,一人操作,一人负责传递器材、搅拌颜料,还有一个人负责卫生工作。
师:调好的小组请组长将颜色放到前面来,并把数据记录在黑板上。
将调配好的绿色按组序一字排开,量杯上标明组号,学生能清楚地看到各组调配出来的颜色。
师:老师想请一个小组的组长汇报一下你们用了多少ml的蓝色和多少ml黄色。
生:我们第四小组用了100ml的黄色和60ml蓝色调配出了一种绿色。
师:咱们再看看其他组的数据。
2、观察发现,得出结论。
(1)观察。
师:孩子们,结合这些数据,再观察这些绿色,你有什么发现?
生1:我发现黄色越多,调出来的绿色越浅;蓝色越多,调出来的绿色越深。
生2:各组调出来的绿色都不一样。
师:咦,咱们都是用黄色和蓝色来调,为什么调出来的绿色有深有浅呢?
有个别学生举手了。
师:不少同学有想法了,把你的想法在组内跟小伙伴们交流交流。(学生讨论)。
生1:我发现每个组用的黄色和蓝色不一样多,调出来的绿色深浅也不一样。
师:还有其它的想法吗?生2:黄色与蓝色的量不一样,所以它们的比不一样。
生3:我认为蓝色和黄色的比不一样,所以调出来的颜色就不一样。
(2)得出结论。
它山之石可以攻玉,以上就是为大家带来的10篇《六年级数学教案《比的应用》》,您可以复制其中的精彩段落、语句,也可以下载doc格式的文档以便编辑使用。
小学数学比的应用教案篇十
教学目标:
2、培养学生应用所学数学知识解决实际问题的能力;使学生真正成为课堂的主人;
3、通过实例使学生感受到数学来源于生活,生活离不开数学。
教学重点:
1、正确理解按比例分配的意义。
2、掌握按比例分配应用题的特征和解题方法。
教学难点:能正确、熟练地解答按比例分配的实际问题。
教学过程:
一、课前组织复习旧知。
同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某兴趣小组男生和女生的人数比是5:4,从这组比中,你能推断出什么信息呢?”(课件出示题目)。
学生自由发言,预设推断如下:
1、全班人数是9份,男生占其中的5份,女生占其中的4份。
2、以全班为单位“1”,男生是全班的,女生是全班的。
3、以男生为单位“1”,女生是男生的,全班是男生的。
4、以女生为单位“1”,男生是女生的,全班是女生的。
5、女生比男生少(或20%)。
6、男生比女生多(或25%)。
追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)。
二、探索方法,建立模型。
1.理解题意。
(1)什么是稀释液?怎样配置的?
(2)什么是按比例分配?
2.自主探究,合作学习。
自学数学书p49例题2,思考:
(1)你从例题2中得哪些信息?
(2)1:4表示什么?你从中得到哪些信息?
(3)你能用画图的方法给同位讲解吗?
(4)方法一先求什么?再求什么?方法二先求什么?再求什么的?
3.小组展讲。
小结:方法一把各部分数的比看作份数关系,先求每一份,然后再求各部分的.量;方法二把各部分的比转化成分别占总数的几分之几,根据分数乘法的意义,直接求总数的几分之几是多少。
三、巩固练习。
2.填空。
3.一个长方形的周长是28cm,长与宽的比是5:2,长与宽各是多少cm?
4.一个班,男生比女生人数多10人,男生与女生人数的比是3:2,全班有多少人?
小学数学比的应用教案篇十一
使学生进一步认识按比例分配应用维他命和按比例分配应用题的特征和解题思路,能应用比的知识解答相关应用题。
进一步提高学生分析、推理等思维能力和应用比的知识解决问题的能力。
应用比的知识解答相关应用题。
教学过程设计。
教学内容。
师生活动。
三
1、说出下面每个比表示的具体含义。
苹果和梨的重量比是2∶3;
电视机和收音机的台数比是5∶2;
学校老师与学生的人数比是1∶25。
2、口答。
练习136;说说是怎样想的?
3、揭示课题。
1、练习137。
找一找相同点和不同点。
这两道题里的40棵各与比里哪个份数相对应?
这两道题,哪一道是按比例分配问题,哪一道不是?为什么?
按比和分数的关系想一想,这两道题会解答吗?
上下练习;
2、题组练习。
(1)学校饲养组养的白兔和黑兔只数的比是5∶4。白兔有15只,黑兔有多少只?
(2)学校饲养组养的白兔和黑兔只数的比是5∶4。黑兔有12只,白兔有多少只?
说说有什么相同和不同的地方?
这两道题与按比例分配问题相同吗?有什么不同?
3、补充练习。
出示:男生人数和女生人数的比是3∶4,女生有多少人?
1)学生说说上面比的具体含义。
2)口头补充成按比例分配应用题,并口头列式解答;
3)口头补充成已知一个数量,求另一个数量的应用题,并口头列式。
小学数学比的应用教案篇十二
教学分析:
按比例分配的练习。
学情分析:
已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。
教学目标:
能运用比的意决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。
教学策略:
练习、反思、总结。
教学准备:
小黑板。
教学过程:
一、基本练习。
(一)六1班男生和女生的比是3:2。
1.男生人数是女生人数的()。
2.女生人数是男生人数的(),女生人数和男生人数的比是().
3.男生人数占全班人数的(),男生人数和全班人数的比是().
4.全班人数是男生人数的(),全班人数和男生人数的比是().
5.女生人数占全班人数的(),女生人数和全班人数的比是().
6.全班人数是女生人数的(),全班人数和女生人数的比是().
把250按2比3分配,部分数各是多少。
二、变式练习。
1、被减数是36,减数与差的比是4比5,减数是多少?差是多少?
将本文的word文档下载到电脑,方便收藏和打印。
小学数学比的应用教案篇十三
按比例分配的练习。
已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。
能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。
练习、反思、总结。
小黑板。
一、基本练习。
(一)六1班男生和女生的比是3:2。
1.男生人数是女生人数的()。
2.女生人数是男生人数的(),女生人数和男生人数的比是().。
3.男生人数占全班人数的(),男生人数和全班人数的比是().。
4.全班人数是男生人数的(),全班人数和男生人数的比是().。
5.女生人数占全班人数的(),女生人数和全班人数的比是().。
6.全班人数是女生人数的(),全班人数和女生人数的比是().。
把250按2比3分配,部分数各是多少。
二、变式练习。
1、被减数是36,减数与差的比是4比5,减数是多少?差是多少?
教学反思:
提高练习的灵活度,以及练习的形式。
小学数学比的应用教案篇十四
教学要求:
1、使学生进一步认识整除里的一些概念,理解和认识这些概念之间的联系与区别,能应用概念进行分析,判断,进一步发展思维能力。
2、使学生正确掌握分解质因数和求两个数的公约数,求两个或三个数最小公倍数的方法,并能按照方法分解质因数和求出两个数的公约数,两个或三个数的最小公倍数。
教学过程:
一、揭示课题。
1、口算(指名口算课本第64页第11题)。
2、引入新课。
我们已经复习了整小数的意义,今天复习数的整除(板书课题),通过复习,加深对整数特性的认识,掌握好数的整除的意义及其中的一些概念,认识概念之间的联系和区别,能熟练地用短除法分解质因数和求公约数最小公倍数。
二、复习约数和倍数。
1、提问:什么是整除(板书整除)如果a能被b整除,必须具备哪些条件?
当a能被b整除,也就是b整除a时,还可以怎样说?板书:
约数。
倍数。
2、做“练一练”第1题。
学生做在课本上,说明倍数和约数的依存关系。
3、学生练习。
(1)从小到大写出9的五个倍数。
复习约数倍数相关知识(略)。
(2)写出18的所有约数。
三、复习质数合数。
1、提问按照一个数约数的个数分类,除0以外的自然数可以分为几类:
板书:1。
质数。
合数。
怎样的数是质数?怎样的数是合数?1为什么既不是质数,也不是合数。
2、口答:
(1)说出比10小的质数和合数。
(2)最小的质数和最小的合数各是几?
(3)下面哪些是质数?哪些是合数?
785123579190。
3、提问:你能把90写成质数相科乘的形式吗(板书)这里的因数叫做90的什么数?(板书:质因数,分解质因数)。
4、做“练一练”第3题。
练后指名口答,集体订正。
四、复习公约数和公倍数。
1、学生练习。
(1)写出18和24所有的公约数,指出公约数。
(2)从小到大写出4和6的五个公倍数,指出其中最小的公倍数。
学生口答,老师板书。
提问:什么叫做公约数和公约数?什么叫做公倍数和最小公倍数?
(板书——公约数、公约数——公倍数——最小公倍数)。
2、“练一练”第4题。
集体练习,指名口答,说一说方法怎样归纳三种关系?
追问:用短除法求公约数和最小公倍数有什么相同和不同?
五、复习。
能被2、5、3整除各有什么特征。
1、提问:能被2、5、3整除各有什么特征。
(板书:——能被2、5、3整除的数)。
2、“练一练”第5题。
提问:这里能被2整除的数都是什么数?不能被整数的数都是什么数,
板书:偶数。
奇数。
想一想,自然数可以分为哪几类?
六、课堂小结。
根据板书内容,说说相互之间有什么联系。
七、课堂练习。
1、练习十一和12题。
2、课堂作业。
(练习十一第15、16题、17题中(3)(4)。
八、课外作业:练习十一第18题。
将本文的word文档下载到电脑,方便收藏和打印。
小学数学比的应用教案篇十五
1、在具体情景中理解增加百分之几或减少百分之几的意义,加深对百分数意义的理解。
2、能解决有关增加百分之几或减少百分之几的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。
【教学重点】。
理解增加百分之几或减少百分之几的意义,能解决有关增加百分之几或减少百分之几的实际问题。
【教具准备】。
多媒体课件。
【学具准备】。
【教学设计】。
教学过程教学过程说明。
一、准备。
线段图是把握数量关系的重要方法之一。
你能用线段图表示下面的数量关系吗?
1.学生独立完成线段图。
2.展示学生成果。
3、教师对学生的作品进行评价。
25%=1/432人。
围棋班比围棋班25%。
航模班。
1、出示教科书p23上面的问题。
2、思考:增产百分之几是什么意思?
※学生自由发表自己的见解。
※教师评价。
杂交水稻比普通水稻增加的产量是普通水稻产量的百分之几。
3、学生独立解答问题。
4、班内交流。
方法一:7-5.6=1.4(吨)。
1.45.6。
=0.25。
=25%。
方法二:75.6。
=1.25。
=125%。
125%-100%=25%。
三、试一试。
1、出示教科书p23下面的问题。
2、几成是什么意思?
※成数主要用于农业收成。
※几成就是十分之几。
※一成就是1/10,也就是10%。
二成五就是2.5%,也就是25%。
3、学生独立解决问题。
※(2.61-2.25)2.25。
=0.362.25。
=0.16。
=16%。
四、练一练。
1.教科书p24练一练第1题。
2.科书p24练一练第2题。
3.教科书p24练一练第3题。
五、课堂总结。
通过今天的学习你有什么收获?
从复习中引导学生分析数量关系。
通过介绍某实验田普通水稻与杂交的产量,引出增产百分之几的实际问题。
引导学生分析数量关系,再一次体会百分数的意义。
引导学生用两种不同的方法解答,开拓学生的思路,发展学生思维的灵活性。
重点理解几成的意思。让学生独立完成再交流,发展学生的思维。
小学数学比的应用教案篇十六
按比例分配的练习。
已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。
能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的`能力。
练习、反思、总结。
小黑板
(一)六1班男生和女生的比是3:2
1.男生人数是女生人数的( )
2.女生人数是男生人数的( ),女生人数和男生人数的比是( ).
3.男生人数占全班人数的( ),男生人数和全班人数的比是( ).
4.全班人数是男生人数的( ),全班人数和男生人数的比是( ).
5.女生人数占全班人数的( ),女生人数和全班人数的比是( ).
6.全班人数是女生人数的( ),全班人数和女生人数的比是( ).
把250按2比3分配,部分数各是多少
1、被减数是36,减数与差的比是4比5,减数是多少?差是多少?
提高练习的灵活度,以及练习的形式。
小学数学比的应用教案篇十七
掌握各部分量占总数量的几分之几,能熟练地按已知一个数求它的几分之几是多少,用乘法求各部分量的新方法。
能根据实际情况,判断各部分量之间应该按怎样的比例来分配。
掌握按比例分配应用题的特征及解题方法.教学难点:按比例分配应用题的实际应用。
2、培养学生应用所学数学知识解决实际问题的能力;
3、通过实例使学生感受到数学来源于生活,生活离不开数学。
引导学生将比转化成分数、份数,指导学生试算。
学生课前作调查;
一、导入。
1、看题目:“比的应用”,你想知道什么?
2、小小调查员:前几天,我已经请同学们去作了课外调查,看看在我们日常生活中,哪些地方用到了比的知识。下面,请汇报一下你调查到的信息。
二、新课。
1、配置奶茶。
星期天的上午,小明家来了一位客人。刚巧爸爸妈妈有事出去了。于是小明就做起了小主人,亲自招待这位王叔叔。
师:请客人坐下后,一般要干什么?(泡茶)对,这是待客的基本礼仪。小明打算亲手配制一杯又香又浓的奶茶,招待王叔叔。
(1)奶茶中,奶和茶的比是2:9。看了这句话,你知道了些什么?
(2)小明想要配制220毫升的奶茶,
(a)先要解决什么问题?(奶和茶各取多少毫升?)。
(b)请你先独立计算一下,奶和茶各取多少毫升?
(4)评价。
(a)请你谈谈你对这些不同解法的看法?你比较喜欢哪一种解法,为什么?
(b)其实,这些方法都很好。不过,第(b)种解法是我们今天所学到的一种新方法。它是“把一个数量按照一定的比例分配”的问题,我们把它叫做“按比例分配”。(显示课题,齐读)。
2、计算电费。
(1)刚才小明就按大家计算的结果给王叔叔配制了一份奶茶。王叔叔在小明家坐了一会儿,刚巧看到桌子上放着一张电费的清单。原来,“小明家和另外两户居民合用一个总电表。九月份共应付电费60元。”(显示)王叔叔想看小明这个小主人合不合格,就问小明:“你们家上个月交了多少元电费?”
(a)你觉得小明家应付多少元电费?你是怎么想的?
(b)你为什么不同意他的想法?(不公平)。
三、课堂小结。
今天这堂课我们学习了“按比例分配”,你有什么收获?
小学数学比的应用教案篇十八
1.________,用了4张,还剩多少张?
2.________,又跑来5只,一共有多少只?
教师谈话:我们学习的应用题,都是由两个条件和一个问题组成的,如果缺少一个条件就无法解答,必须根据所求问题和其中一个条件,找到所需要的另一个条件.今天我们继续学习应用题.(板书课题)
1.出示例5
学校有15只白兔,7只黑兔,一共有多少只兔?
由学生读题、分析,列式并解答.
15+7=22(只)
口答:一共有22只兔.
又生了8只小兔,学校现在有多少只兔?
启发性提问:
(1)要想求学校现在共有多少只兔,问题中的“现在”指的是什么时候?
(2)第二问只有一个条件能解答吗?缺少的条件往哪里去找?
(3)怎样列式解答?
相邻的两名同学互相讨论,全班交流,三个问题分三次讨论.
通过讨论,明确以下问题:
列式: 22+8=30(只)
口答:现在有30只.
指若干名学生把解答第二问怎样想的说一说.
2.出示例6
指名学生读题.
提问:这道题有几个问题?咱们先解答第一问.
指名学生解答第一问,并说一说是怎样想的.
(从30人中去掉 7人,就是车上还剩的人数)
30-7=23(人)
口答:车上还剩23人.
再解答第二问.
(用车上还剩的 23人,和上来的 9人合在一起,就是现在车上有的人数)
23+9=32(人)
口答:现在车上有32人.教师小结:
1.半独立性练习
课本中“做一做”的第1题:
商店有8辆自行车,又运来25辆,一共有多少辆?
全体学生在书上独立解答,订正后,老师稍加提示,解答第二问.
已经求出一共有33辆,卖出10辆,还剩多少辆?
全体学生在书上独立解答.
课本中“做一做”的'第2题:
小华有25张动物邮票,送给同学8张,小华还剩多少张邮票?
王叔叔送给他7张,小华现在有多少张邮票?
第一问由学生独立解答,第二问指名学生说出条件和问题,再独立解答.
2.课堂独立练习
练习二第1题:
由学生独立做在练习本上.
3.课后练习 练习二:第2,4题.
课堂教学设计说明