数学建模论文规范(优质13篇)
总结能够帮助我们理清思路,提高解决问题的能力。写一份较为完美的总结,首先需要认真梳理并整理所需总结的内容。这些总结范文能够帮助你更好地理解总结的重要性和作用。
数学建模论文规范篇一
概率论与数理统计是一门研究随机现象及其统计规律的数学学科,它是高等院校各专业开设的重要的基础数学课程之一。以下是“概率统计中融入数学建模思想的教学探索论文”,希望能够帮助的到您!
如何运用该课程的理论知识解决实际问题具有非常重要的研究意义。每年一次的全国大学生数学建模竞赛是目前各高校的规模较大的课外科技活动之一。数学建模是一门运用数学工具和计算机技术,通过建立数学模型来解决现实中各种实际问题的新学科。它通过调查,收集数据、资料,观察和研究其固有的内在规律,提出假设,经过抽象简化,建立反映实际问题的数学模型,即将现实问题转化为数学问题。纵观历年数学建模竞赛试题,像高等教育的学费问题、北京奥运会人流分布、dna序列分类问题、dvd在线租赁问题及医院病床的合理安排等问题都不同程度地涉及到了概率论与数理统计的相关知识。笔者多年来一直为理工科的本科生讲授概率论与数理统计课程,并每年辅导和指导全国大学生数学建模竞赛,所以与同事们一直都在探索如何深化概率论与数理统计这门课程的教学改革,使其与数学建模思想能有机结合。本文将从以下几方面进行探讨研究。
一、概率统计教学中融入数学建模思想的重要性。
传统的概率论与数理统计课程的教学,可以简单地归纳为:数学知识+例子说明+解题+考试。这种模式虽然使学生在一定程度上掌握了基础知识,提高了计算能力,也学会了运用所学知识解决课后作业和应付考试。但也不难看出,这种教学方式与实际严重脱节,学生学会了书本知识,但却不知在所学专业中该如何运用,这不仅与素质教育的宗旨相违背,也极大地削弱了学生学习这门课程的能动性,从而也影响了教学效果。数学建模的指导思想恰恰在于培养学生运用所学理论知识来解决现实实际问题。这不仅仅是这门课程对学生的教育问题,更是顺应当前素质教育和教学改革的需要问题。
二、在课堂教学中融入数学建模思想。
对于讲授概率论与数理统计这门课程的教师来说,有着非常重要的任务,那就是如何教好这门课程,即如何使学生通过对这门课程的学习而增强其对概率统计方法的理解与实际应用能力。
1.教学内容上数学建模思想的渗透。众所周知,教师对教学内容的把握起着不容忽视的作用。有效的教学是依赖于教师对该课程的内容有着全面的和深刻的理解。概率统计中的一些概念、性质、模型的应用确实有些难度,在日常教学中可以通过精选例题、切近现实生活,使学生逐渐深化对相关知识的理解,即讲课的内容生活化、趣味化,生活中的概率统计问题模型化。在概率统计里这些趣味性的例子比比皆是!比如摸球、投掷骰子等常见的游戏,“父母的身高对子女的影响”、“男女生人数的均衡对一个班级学习效果的影响”等发生在身边的事。在概率统计这门课程中数学模型的影子也随处可见!比如像降雨概率、人体舒适度指数、超市银台处的等待服务时间等这样的随机现象问题都需要将实际问题数量化,然后对研究对象做出判断,从而解决问题。教学内容中也可插入一些反映社会经济生活的背景与热点问题,使课堂教育跟上时代步伐。如有奖促销问题、保险赔偿金确定问题、交通事故问题等,这样的内容都旨在培养学生利用数学工具分析解决实际问题的意识和能力,也就是培养学生的建模能力。
2.教学方法中融入数学建模思想。在教学中,教师的责任更大地体现在对学生的引导能力,通过引导使学生运用自己的能力来解决相关的问题。这样使学生不但能够学到严谨的理论知识,同时也提高了学生分析问题和解决问题的能力。在教学中,我们主要采用精讲与导学相结合的方法,同时在课堂教学的各个环节中也可恰当运用讨论式、启发式、归纳类比式等教学方法。在运用各种教学方法中都要充分关注学生的参与性,在与学生的互动中挖掘出课本内容中的数学建模思想,使其“显化”出来。比如在讲解随机事件和古典概型中,可以讲解摸球问题、生日巧合及配对问题、确诊率及血清化验问题等,这样既活跃了课堂氛围,又培养了学生爱思考的习惯。必须提及的是“案例教学法”,它是概率统计课程融入数学建模思想的有效而常用的教学方法之一。在教学中可以直接给出案例,然后从求解具体问题中找出相应的理论和方法。此方法缩短了数学理论与实际应用的距离,不仅可以提高学生学习的积极性,同时也使学生明白概率统计是建立在现实生活基础上的一门课程。比如在随机变量的数字特征中,可以给出“报童的收益问题”案例;在参数估计中,可以给出“湖中鱼的数量估计”案例;在大数定律和中心极限定理中,可以给出“保险公司的收益问题”案例;等等。由于受到课时限制,可能不能充分有效地对案例进行完整讲解,通常将“案例分析法”和“现代教育技术法”相结合进行教学,利用多媒体教学手段可以将案例中出现的大量统计计算均由统计软件(如spss,sas,r等)来实现。这样既易于被学生接受,也有助于学生掌握统计方法和实际操作能力。
三、发挥课后作业作为课堂教学的补充与延伸作用。
作为数学课程,课后作业是十分重要的组成部分,是进一步理解、消化和巩固课堂教学内容的重要环节。
1.课后试验。在概率统计这门课程中有很多随机试验,并且很多统计规律也都是在随机试验中获得的。比如通过投掷均匀的硬币和均匀的六面体骰子,可以很好地理解频率与概率之间的关系;双色球的有(无)放回抽样,有助于理解随机事件的相互独立性;统计某书上的错别字,并判断是否服从泊松分布等。通过让学生们亲自做实验,不仅使他们能够探索随机现象的统计规律性,还能帮助他们更深刻的理解、巩固和深化理论。
2.课后作业。除常规概率统计练习题目外,可以增加一些有趣的、与日常生活中密切相关的概率统计题目。比如在给出了摸彩票规则和中奖规则后,解决下面三个问题:
(1)中奖概率与摸彩票的次序有关系吗?
(2)假设发行了100万张彩票,中一、二等奖的概率是多少?
(3)若你打算摸彩票,在什么条件下中奖概率会大一些?
3.课外实践。针对概率统计实用性强的特点,有目的地组织学生参加社会实践活动,深入实际,调查研究,收集数学建模的素材。只有将某种思想方法应用到实践中去,实际解决几个问题,才能达到理解、深化、巩固和提高的效果。教师可以从现实中寻找素材,选择具有丰富现实背景的学习材料,可以让学生自由组队,深入实际,运用统计方法调查、观察和收集一些数据,在教师指导下运用所学知识和计算机技术,分析解决一些实际问题,写出书面报告。比如利用闲暇时间观察校门口某路公交车各时段乘车人数,根据观察数据,为该线路设计一个便于操作的公交车调度方案:包括发车时刻表;共需多少辆车;以怎样的程度能够照顾乘客和公交公司双方的利益。
四、改变传统单一的考核方式。
考核是教学过程中不可缺少的一个教学环节,是检验学生学习情况,评估教师教学质量的手段。传统的概率论与数理统计课程均采用期末闭卷考试,教师通常都会按照固定的内容和格式出题,学生为了应付考试,往往把过多的精力花费在对公式和概念的死记硬背上,而忽略了所学知识在实际中的应用。虽然综合成绩是由平时成绩和期末成绩的各占比例计算而成,但平时成绩的考核主要看课后习题所做的作业,而学生的学习积极性对作业的态度差异性是很大的。为此,有必要改革传统单一的考核方式,培养学生综合运用知识的能力。考核结果包括两部分:一部分是闭卷考试,占60%,主要考察学生对概率统计的基本知识、基本运算和基本理论的掌握程度;另一部分是开放性考核,由各占20%的平时成绩和课后试验、课外实践构成,其中平时成绩主要考查学生的作业情况、考勤情况、课堂表现情况等方面;课后试验、课外实践主要考核学生对概率统计知识的应用能力,可以给学生一些实际问题,或者让学生参加社会实践调查收集数据,学生可以自由组队也可单独完成,通过运用概率统计知识建立数学模型并借助计算机处理大量数据对实际问题得到解决,最后提交一份书面研究报告。如此灵活多变的考核机制,才能充分调动学生学习的积极性和主动性,才有利于学生应用能力的培养。
通过在各个环节中融入数学建模思想,不但充分体现了概率统计的实用价值,搭建起概率统计知识与实际应用的桥梁,而且也使得工科类学生对概率统计这门课程的理解、认识增强了,数学的应用能力也得到了提高。
数学建模论文规范篇二
摘要:在新课改以后,要求教师要在教学中重视学生的主体地位,提升学生学习兴趣,培养他们的自主学习能力。本文从小学数学教学过程中数学建模入手,对如何将数学建模运用到学生解题过程中进行了分析。
数学建模是指利用数学模型的形式去解决实际中遇到的问题,换句话说,就是利用数学思维、数学方法解决各种数学问题。数学建模是在新课程改革后出现的新概念,经过一段时间的观察我们可以发现,数学建模的方法能够有效的提高学生的学习兴趣,培养学生的数学能力。这种方式能够将复杂的数学问题利用简单的方式找到解决方案,是提高小学数学课堂效率及课堂质量的有效手段。小学数学是小学学习中的重要课程之一,也是培养学生数学思维的重要阶段。可以说,小学数学的学习是学生学习数学的关键,对今后的学习起到极大的影响。因此,对于小学数学教师来说,不断的完善教学手段,提高数学课堂质量是教学工作中的重中之重。而数学建模就是为了解决数学在生活中的实际问题,能够让学生感受到数学本身的魅力,培养他们的数学思维,提高数学学习能力,从而让小学数学教学质量也得到大幅度的提升。小学数学与数学建模之间有着密不可分的作用,两者相互联系、相互促进,如何有效的将数学建模运用在小学数学教学过程中,是每个小学数学教师都值得思考的问题。
数学建模是为了解决数学中遇到的问题,数学本身特别是小学数学也是一门较贴近学生生活的学科。因此在数学学习中,教师要首先培养学生的数学学习意识,让他们感受到数学与生活的紧密联系,然后再引导学生用数学建模去解决遇到的问题。在这一过程中,数学教师要注意以下两个问题:(一)在教学中一定要贴近学生的生活,课堂中所提出的问题也必须要符合生活实际,让学生对所学内容感到亲切。积极引导学生利用多种方式解决同一问题,尤其是利用数学建模的方式,以达到培养他们的数学思维以及想象能力的目的。(二)在学生进行数学建模的过程中要利用多鼓励的方式调动他们对数学学习的积极性,让他们在数学建模中获得成就感,增加自信心,以此来提高学生在今后学习中使用数学建模方法的热情。
二、提高学生想象力,用数学建模简化问题。
对于小学生来说,他们的思维与其他年龄段相比极其活跃,拥有了丰富的想象力。在数学学习中,如果能将想象力与数学学习结合在一起,一定会得到意想不到的效果。教师可以根据小学生这一特点,提高他们的想象力,然后再引导他们利用数学建模解决问题,让题目简单化。具体来说,就是在面对复杂的'数学问题时,教师可以先为学生创建教学情境,以这样的方式提高学生的学习兴趣,让他们愿意主动去深入的研究遇到的题目。之后教师再去对他们进行引导,让他们能够理解题目中所提问题的含义,并能够运用他们的想象能力思考解决问题的方式。最后再引导他们进行数学建模,解决问题。这样的方式充分的利用了学生的想象能力,将所需解决的问题简单化。
三、选择合适的题目作为建模案例。
在数学建模过程中,教师也要时刻牢记题目应该贴近学生的生活,符合实际,并且具有一定的趣味性,让他们有兴趣投入到数学建模的过程中去,然后再反复练习之后达到提高他们建模能力的目的。在选择数学建模案例时教师主要应该注意以下两点:首先,教师在选择建模案例时要尽量选择比较典型的问题,能够让学生在学习了该题目以后掌握这一类的解题方法,达到小学数学教学的目的。所以,这就需要教师对题目进行深入的分析,看是否在拥有趣味性、真实性的同时符合教学要求。其次,题目最好能够拥有可变性,教师能够通过对题目中已知条件的改变让学生进行不同方面的建模练习,以此提高他们数学建模的能力。
四、引导学生主动进行数学建模。
在教师经过反复的教学后,学生都已经拥有了基本的数学建模知识,了解了数学建模过程,并且能够在解题过程中简单的使用数学建模。此时,教师在教学中就可以引导学生利用数学建模解决数学题目了。引导学生用数学建模方法解决数学问题,就要在解题过程中多对学生进行这一方面的鼓励,让他们提高建模信心。在这一过程中,教师还可以尝试让学生之间利用合作的方式让他们进行数学建模方法的探讨,并在探讨的过程中吸取他人的经验,提高自己数学建模水平,同时这样的方式能够让数学建模深入到每一个学生的心中,逐渐影响每一个学生的解题思路,让他们能够在解题过程中熟练运用建模的方式,提高解题能力。数学建模的方法能够有效的改变过去的传统教学思路,增加学生对数学的学习兴趣,提高数学解题能力。这种教学方法对于小学数学教师来说,值得不断的探讨研究,并应用在教学中,以此提高数学课堂的教学效率和教学质量。
数学建模论文规范篇三
摘要:随着现代社会的发展,数学的广泛用途已经无需质疑,他深入到我们生活的方方面面。现阶段,数学建模已经成为应用数学知识解决日常问题的一个重要手段。本文通过简述数学建模的方法与过程,以及应用数学建模解决实际经济问题的应用,展现的了数学学习的重要意义,以及数学在经济问题解决中的重要作用。
经济现象具有多变性,随着经济社会的发展,国际间贸易往来的日趋紧密,日常经济形势受到的影响因素越来越复杂多变。而日常经济生活中所遇到的经济现象同样存在着诸多的变化的影响因素。如何应对这些难以把控的变量,做好风险的预估、成本的核算、进行最大成本的规划,所有这些都可以借助数学知识、应用数学建模为工具进行较为理性的计算,为经济决策、企业规划提供重要的帮助。
数学建模,其实就是建立数学模型的简称,实际上数学建模可以称之为解决问题的一种思考方法,借助数学工具应用已知的定理定义进行合理的运算,推导出一种理性的结果的过程。数学建模是可以联系数学和外部世界的一个中介和桥梁,在工业设计、经济领域、工程建设等各个方面,运用数学的语言和方法进行问题的求解和推导,实际上,都是一种数学建模的过程。数学建模的主要过程可以总结为如下的框图形式:实际上,数学模型的最终建立是一个反复验证、修改、完善的动态过程,很少能够通过一次过程就建立起完美适合实际问题的数学模型。通过上述过程的多次循环执行:1.模型准备:分析问题,明确建模的目的,统计各种信息数据;2.模型假设:根据建模目的,结合实际对象的特性,对复杂问题进行简化,提取主要因素,提炼精确的数学语言;3.模型建立:根据提炼的主要因素,选择适当的数学工具,建立各个量(变量、常量)间的数学关系,化实际问题为数学语言;4.模型求解:对上述数学关系进行求解(包括解方程、图形分析、逻辑运算等);5.模型分析:将求解结果与实际问题结合,综合分析,找到模型的缺陷和不足,进行数学上的优化,建立稳定模型;6.模型检验:将模型得到的结果与实际情况相验证,检验模型的合理性和适用性。
二、经济问题数学模型的建立。
经济类问题因为其特有的特点,可以按照变量的性质分为两类:概率型和确定型。概率型应用于处理具有随机性情况的模型,可以解决类似风险评估、最优产量计算、库存平衡等问题;确定型则可以基于一定的条件与假设,精确的对一种特定情况的结果做出判断,如成本核算、损失评估等。对经济问题的建模计算实际上是一个从经济世界进入数学世界再回到经济世界的过程。建立经济数学模型,需要首先对实际经济问题和情况有一个较为深入的认识,然后通过细致的观察梳理,抽出最为本质的特征性的东西。将原始的复杂的经济问题简化提炼为一个较为理想的自然模型,然后基于这个原始模型应用数学知识建立完整的数学经济模型。
三、建模举例。
四、结语。
综上所述,我们可以看到,数学建模在经济中的应用可以非常广泛,对很多的决策和工作都可以提供参考和指导,如提高利润、规避风险、降低成本、节省开支等各个方面。上文只提供了一个简单的例子,和初步的介绍,其深入的理念和概念更加值得我们去努力的学习和思考。
数学建模论文规范篇四
摘要:数学建模课堂中学生的自主探究、合作学习与教师的科学引导并不矛盾而是相辅相成的。只有在教师科学、适时、适当地引导下才能更好地突出学生的主体地位,从而打造出自主探究、合作学习、愉悦发展的高效数学建模课堂。
一、新课的引入需要发挥教师的作用。
教师在数学建模课堂上的引导作用首先体现在教师对新课的引入上。教师一段精彩的导入会点燃学生学习的热情、激发学生的学习兴趣、唤起学生的好奇心,能把学生的注意力迅速集中到要学的知识上来。这对提高教学质量、提高学生的学习效果起着不可估量的作用。同时,新课前的导入环节是对学生进行情感教育的最佳时刻。学生只有在教师的引导下才能够体会到数学建模的价值、增强学好数学建模的信心。俗话说:“好的开始是成功的一半。”数学建模课堂也是这样。因此,在新课引入时要充分发挥教师的作用。
二、在教学任务的设计上需要发挥教师的作用。
数学建模课堂一般应采用任务型教学模式,是让学生通过自主探究、合作学习、交流展示的方式完成一系列学习任务来达到特定的教学目标和学习目标。学生在课堂中的主体作用能否得到有效发挥取决于教师对问题设计质量的高低。教师应通过设计一系列高质量的问题把复杂的数学建模问题分解成若干简单问题来引导学生更好地发挥其主动性。学生也只有在这些问题的正确引导下才能突破难点并向着学习目标努力,有效防止学生思考、探究、交流的内容偏离学习目标等现象的出现。这些任务的制订需要充分发挥教师的作用。
三、在新旧知识的联系点上需要发挥教师的作用。
建构主义强调新知识是在学生已有知识的基础上通过学生自身有意义的建构获得的。笔者认为,学生自主建构知识应在教师的科学引导下进行。尤其是对于数学建模这样高难度的知识更是这样。失去了教师的科学引导,学生易产生疲倦感,久而久之会丧失学习数学建模的兴趣和信心。因此,在新旧知识联系点上应发挥教师的作用。教师应在准确掌握教学目标、难点的基础上,充分考虑学生的认知能力、习惯、思维方式,通过有针对性的具体问题唤起学生对旧知识的回忆,再通过启发性问题引导学生去发现新知识,从而实现温故知新的目的。在教师引领下学生自主建构知识可以使学生少走弯路,从而使学生更加高效地自主探究、掌握新知识。
四、在教学重点、难点上需要教师的引导。
教学的重点、难点是每一节课的核心和主线,只有准确把握了重点、突破了难点才能更好地掌握本节课的内容。在强调学生自主探究、小组合作学习的课堂教学模式中,数学建模教材的重点、难点学生往往把握不准、难以突破。这就需要教师科学引导学生主动去发现重点、突破难点。教师引导学生发现重点、突破难点并不是让教师直接告诉学生本节课的重点是什么、怎样突破难点,而是通过具体问题的引导让学生自己找到重点、并通过学生自己的思考、讨论解决疑难问题。学生在教师的引导下通过自己的努力、讨论解决了疑难后,学生会非常兴奋,从而会越来越喜欢数学建模课。相反,在没有教师引导的数学建模课堂中,学生经常被困难吓倒,从而对数学建模课产生畏惧感。由此可见,教师对学生的科学引导是学生学好数学建模必不可少的环节。在以学生为本、注重学生全面发展、提倡课堂中突出学生主体地位的背景下,教师的引导仍是数学建模课堂中不可缺失的要素。数学建模课堂中学生的自主探究、合作学习与教师的科学引导并不矛盾而是相辅相成的。只有在教师科学、适时、适当地引导下才能更好地突出学生的主体地位,从而打造出自主探究、合作学习、愉悦发展的高效数学建模课堂。
数学建模论文规范篇五
培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。随着科学技术的不断发展,各学科各领域对实际问题的研究日益精确化与定量化,数学在科学研究与工程技术中的作用不断增强,其应用的范围几乎覆盖了所有学科分支,渗透到社会生活中的各个领域。前苏联数学家亚历山大洛夫曾说过,“数学在其它科学中,在技术中,在全部生活实践中都有广泛的应用”。1993年,王梓坤院士发表的著名报告《今日数学及其应用》中也深刻指出:“现代世界国家间的竞争本质上是高技术的竞争,而高技术本质上是一种数学技术。”数学是一门技术已经成为人们的共识。数学技术离不开数学建模,数学建模是把数学作为工具,并应用它解决实际问题的一种活动,它是一个跨学科、跨专业、综合性和应用性都非常强的过程,是数学应用的必由之路,是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介。因此,数学建模的过程是一个全而培养学生综合素质、提高学生各种能力的过程,数学建模是培养生产一线应用型人才的一条重要途径。
应用型人才是将专业知识和专业技能应用于社会实践的专门人才是熟练掌握社会生产或社会活动一线的基础知识和基本技能,主要从事一线生产的技术或专门人才社会对应用型人才的基本要求是具有基础扎实,知识而宽,应用能力强,素质高,有较强的创新精神和团队合作精神。他们的突出特点是既具有宽广的知识而和深厚的基础理论,又能将所学知识应用于本行业相关技术领域,适应产业发展对应用型人才市场需求的不断变化,还有接受继续教育的基础条件和进一步获取新知识的基本能力和扩展与职业相关的学科知识能力。
随着高等教育的不断扩招,高等教育的大众化趋势已越来越明显,在这种背景下,传统的“研究型”、“学术型”人才培养模式受到了严峻的挑战,因此,一些发达国家率先提出了“发展应用型大学”,“培养应用型人才”的口号。德国早在20世纪70年代就成立了应用科技大学,其应用型人才的培养特色鲜明,深受欢迎。美国的工程教育,英国的技术学院,日本的短期大学都以培养应用型人才而著称。近年来,我国高等院校对应用型人才的培养取得了一定的进展,但仍然存在认识上的不足,培养方案和措施仍有许多不尽如人意的地方,应用型人才的培养模式还有待于进一步探索。通过多年的实践和探索,根据应用型人才的特点和社会日益数字化,对应用型人才的要求以及数学在各行各业中的广泛应用、数学建模在应用型人才培养中具有不可替代的重要作用。
数学建模就是用数学语言、方法近似地刻画要解决的实际问题,对于已建立的模型采用推理、证明、数值计算等技术手段及相应的数学软件求解,并利用所得的结果拟合实际问题。数学建模在应用型人才培养中的作用主要体现在以下几个方面:。
由于实际问题的'复杂性,在数学建模过程中要涉及到大量的数据收集和对数据的分析与处理,一个完整的建模过程一般要经历模型的假设、模型的建立与求解、算法的设计和计算机实现、对结果的分析与检验并将所得的结果模拟实际问题等几个阶段。这些过程只靠个人的力量在有限时间内是很难完成的,这就注定了数学建模是一个团队的集体行为,需要有师生之间、学生之间以及学生与社会之间的交流与合作。因此数学建模有利于提高学生的团队合作精神,而团队合作精神又是社会对应用型人才的基本要求。
数学建模所面临的数据是杂乱无章的,这就要求学生对这些数据进行去粗取精,去伪存真,归纳、提炼、整理、加工和总结,还需要对一些已知条件进行符号化和量化,然后从中抽象出恰当的数学关系,从而组建一定的数学模型,再用所学的数学理论和方法去求解数学模型。在对实际问题中的数据进行加工和整理过程中,为使问题简化,有些因素是可以忽略的,但有些因素不能忽略,究竟哪些因素可以忽略、哪些因素不能忽略并没有一定的范式,这要根据建模者对实际问题的理解、研究问题的目的以及数学背景来完成这个过程,应该说这是一个创造性的过程。另外,数学模型是对实际问题的近似刻画,为了使建立的数学模型尽可能完美地表达实际问题,又使模型易于求解,需要对模型进行不断的改进和不断的完善,这就要求学生不断对问题进行深入的了解,深入到知识的更深层面,这样又会产生新的疑问,这个过程多次循环们复,学生的创新能力将不断得到加强。创新能力也是社会对应用型人才的基本要求。
一个完整的数学建模过程是综合运用知识和能力,解决实际问题的过程。这不仅需要学生有较好的数学基础和严密的逻辑推理能力,还要求学生对问题的实际背景有一定的了解,要求学生有广博的知识和深厚的专业基础,并能对这些知识进行融会贯通。数学建模面临的数据}i-.}i是庞大而复杂的,对数据的处理过程是一个分析与综合,抽象与概括,比较与类比,系统化与具体化的过程。在这个过程中,学生的应变能力和多角度分析,多方位思考能力不断得到提高,综合素质不断得到加强。综合素质和能力是应用型人才的基本特征和社会对应用型人才的起码要求。
从实际问题中抽象出来的数学模型一般很复杂,因此模型的求解一般很困难,甚至无法求出模型的解析解,即使能求出模型的解析解,由于其复杂性而无多大的应用价值。所以数学模型的求解通常需要编写算法,运用某些数学软件利用计算机求其数值解,这就要求学生有较强的数学软件应用能力和对计算机的实际操作能力。在操作的过程中,学生的动手能力和实践能力自然而然得到提高。另外在数学建模中,需要进行调查研究,需要对有关的数据进行广泛的采集和补充,这就是应用型人才培养中所强调的实践性。
数学建模本身就是综合运用知识,解决实际问题的过程。数学建模中的很多典型案例,如“最优捕鱼策略”,“投资的收入和风险”,“车灯线光源的优化设计”等就较好地突现了知识的应用性。数学建模是数学应用的必由之路,是联系数学与实际问题的桥梁。一方面数学建模需要用数学语言、方法近似地刻画要解决的实际问题,另一方面数学建模需要利用所得的结果拟合实际问题,所有这些都与应用型人才的突出特点和社会对应用型人才的要求是一致的。
数学建模需要学生亲自参与问题的研究与探索,数据的收集和补充需要学生的积极参与,数据的处理和模型的建立需要学生的主动参与,模型的求解需要学生独立完成。数学建模一般需要综合运用多方面的知识,需要了解相关问题的背景材料,需要对相关的数据进行合理的取舍和有效的筛选,有些知识和相关的资料需要学生自己去查询,所有这些都为学生的自主学习提供了一个良好的“下台。另外,数学建模需要用自己的语言描述问题的解决过程,需要广泛的交流与合作,还需要进行论文的写作等等,这些都对学生语言表达能力的提高具有重要的作用。应用型人才的一个突出特点就是具有接受继续教育的基础条件和进一步获取新知识的基本能力和扩展与职业相关的学科知识能力,而自学能力和语言表达能力为进一步获取新知识等能力提供了良好的基础。
应该说,数学建模的作用是多方面的,通过数学建模的训练,学生获得了参与研究探索的体验,培养了收集、分析和利用信息的能力,学会了分享与合作,锻炼了学生的意志力、洞察力、想象力、自学能力、语言的翻译和表达能力以及综合应用专业知识解决实际问题的能力与分析问题、解决问题的能力,所有这一切都是应用型人才培养所要达到的目标,也是与应用型人才培养模式的四个基本点是一致的。因此数学建模能将应用型人才的突出特征和社会对应用型人才的要求体现得淋漓尽致,它在应用型人才的培养中具有不可替代的重要作用。
1.马克思有一句名言,“一门科学只有成功地应用了数学时,才算真正达到了完善的地步”。不论是自然科学还是社会科学都需要数学,都蕴含数学。一门科学要成功地应用数学,必须对这门学科中的问题建立数学模型。因此,建议高等院校的各个专业都要不同程度地开设数学建模课程,并根据专业的不同要求选择合适的数学建模内容,真正做到“人人学有用的数学,人人做有用的数学,人人用有用的数学”。
2.数学建模课程应增加实训内容,数学建模的学习应以实训内容为主。教师应根据学生的具体情况,女排布置具有综合性、开放性、灵活性和趣味性的实训题目,让学生自己进行调查研究,自己收集数据、分析数据和处理数据,模型的建立和求解要以学生为主体,并以论文的形式提交给教师,教师提供实时指导和帮助,对建模的结果进行有的放矢的点评,并将实训内容作为学生期末考评的主要内容和重要依据。
3.举办多种形式的数学建模竞赛,丰富数学建模的教学内容和教学方式,引进案例教学和专题讲座,通过对典型案例的深入剖析,激发学生的学习兴趣和积极性,培养学生的数学建模思想和坚忍不拔的毅力,聘请专家对一些典型问题进行专题讲座。
数学建模论文规范篇六
为了培养小学生良好的数学学习兴趣,激发他们的数学潜能,教师需要采取必要的措施注重数学建模思想的有效培养,促进学生的全面发展。在制定相关培养策略的过程中,教师应充分考虑小学生的性格特点,提高数学建模思想培养的有效性。基于此,文章将从不同的方面对小学生数学建模思想的培养策略进行初步的探讨。
作为小学数学教学中的重要组成部分,数学建模思想的渗透及相关教学活动的顺利开展,有利于提高复杂数学问题的处理效率,保持数学课堂教学的高效性。要实现这样的发展目标,增强小学生数学建模思想的实际培养效果,需要加强对学生动手实践能力的培养,激发学生的更高兴趣。建模的过程涉及问题表述、求解、必要解释及有效验证,在这四个环节中,可能会存在一定的问题,影响着数学教学计划的实施。因此,教师需要利用学生动手实践能力的作用,实现数学建模思想的有效培养,促使小学生能够在数学建模过程中享受到更多的快乐。比如,在讲解“认识角”知识的过程中,某些学生认为边越长角度也越大。为了使学生能够对其中的知识点有更加正确而全面的认识,教师可以通过在黑板上设置一些能够活动的三角板,让学生亲自动手操作,以此得出角与边长的正确关系,为后续教学计划的实施打下坚实的基础。通过这种教学方法的合理运用,可以激发出学生们在数学建模学习中的更高兴趣,丰富他们的想象力,从而使他们对数学建模思想有一定的了解,在未来学习过程中能够保持良好的`数学建模能力。
通过对小学阶段各种数学实践教学活动实际概况的深入分析,可知构建良好的数学模型有利于加深学生对各知识(福建省莆田市秀屿区东峤前江小学,福建莆田351164)点的深入理解,增强其主动参与数学建模教学活动的积极性。因此,为了使小学生数学建模思想培养能够达到预期的效果,教师需要结合实际的教学内容,建立必要的数学参考模型,提升学生对数学建模思想的整体认知水平。比如,在讲授“异分母分数加减法”这部分知识的过程中,可以设置“0.8千克+300克”“1.6千克-400克”等问题,向学生提问是否可以直接计算,并说出原因。当学生通过对问题的深入思考,总结出“单位不同不能直接计算”的结论后,继续向学生提问小数计算中为什么每一位都要对齐,实现“计数单位统一后才能计算”这一数学模型的构建。在这样的教学过程中,学生可以加深对知识点的理解,实现数学建模思想的有效培养。
加强小学生数学建模思想的有效培养,需要在具体的教学活动开展中注重对数学思想的灵活运用,增强相关模型构建的可靠性,促使学生在长期的数学学习中能够不断提高自身的数学能力,运用各种数学知识处理实际问题。比如,在“角的度量”这部分内容讲解的过程中,为了提高学生对角的分类及画角相关知识点的深入理解,教师可以将所有的学生分为不同的小组,让学生们通过小组讨论的方式,对角的正确分类及如何画角有一定的了解,并让每个小组代表在讲台上演示画角的过程。此时,教师可以通过对多媒体教学设备的合理运用,利用动态化的文字与图片对其中的知识要点进行展示,确保学生们能够在良好的教学模式中提升自身的认知水平,并在不断的思考过程中逐渐形成良好的创造性思维,强化自身的创新意识。比如,在讲解“图形变换”中的轴对称、旋转知识点的过程中,教师应通过对学生的正确引导,运用三角板、圆柱等教学辅助工具,让学生从不同的角度对各种轴对称图形、旋转后得到的图形进行深入思考,提高自身数学建模过程中的创新能力,从不同的角度深入理解图像变换过程,对这部分内容有更多的了解。因此,教师应注重小学生数学建模思想培养中多方位思考方式的针对性培养,提高学生的创新能力,优化学生的思维方式,全面提升小学数学建模教学水平。
总之,加强小学生数学建模思想培养策略的制定与实施,有利于满足素质教育的更高要求,实现对小学生数学能力的有效锻炼,确保相关的教学计划能够在规定的时间内顺利地完成。与此同时,结合当前小学数学教育教学的实际发展概况,可知灵活运用各种科学的数学建模思想培养策略,有利于满足学生数学建模学习中的多样化需求,为相关教学目标的顺利实现提供可靠的保障。
[1]童小艳.小学数学教学中培养学生建模思想的策略[j].学子(教育新理念),20xx(6).
[2]白宁.先学而后教——小学生数学建模思想培养的捷径[j].数学学习与研究,20xx(16).
数学建模论文规范篇七
数学建模就是通过计算得到的结果来解释实际问题,并接受实际的检验,来建立数学模型的全过程。那么,关于数学建模的论文格式有什么讲究呢?请看下文。
论文用白色a4纸打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。
论文第一页为承诺书,具体内容和格式见本规范第二页。
论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。
论文题目、摘要和关键词写在论文第三页上(无需译成英文),并从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。注意:摘要应该是一份简明扼要的详细摘要,请认真书写(但篇幅不能超过一页)。
从第四页开始是论文正文(不要目录)。论文不能有页眉或任何可能显示答题人身份和所在学校等的信息。
论文应该思路清晰,表达简洁(正文尽量控制在20页以内,附录页数不限)。
引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:
[编号]作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:
[编号]作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:
[编号]作者,资源标题,网址,访问时间(年月日)。
注意:
1.摘要在整篇论文评阅中占有重要权重,请认真书写摘要(注意篇幅)。摘要中把论文的主要内容及特点充分表达出来。论文主要部分要阐述题目,假设,分析,建模,解模和结果的全过程,对模型的检验及模型的优缺点和发展前景也要有所表述。
标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:
[编号]作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:
[编号]作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:
[编号]作者,资源标题,网址,访问时间(年月日)。
附录:封面样式。
数学建模论文规范篇八
走美杯”是“走进美妙的数学花园”的简称。
“走进美妙的数学花园”中国青少年数学论坛是中国少年科学院创新素质教育的品牌活动。20xx年,由国际数学家大会组委会、中国数学会、中国教育学会、中国少年科学院成功举办了首届“走进美妙的数学花园”中国少年数学论坛,至今已连续举办七届,全国三十多个城市近三十万人参与了此项活动,在全国青少年中产生了巨大的影响。“走进美妙的数学花园”中国青少年数学论坛活动是一项面对小学三年级至初中二年级学生的综合性数学活动。通过“趣味数学解题技能展示”、“数学建模小论文答辩”、“数学益智游戏”、“团体对抗赛”等一系列内容丰富的活动提高广大中小学生的数学建模意识和数学应用能力,培养他们一种正确的思想方法。著名数学家陈省身先生两次为同学们亲笔题词“数学好玩”和“走进美妙的数学花园”,大大鼓舞了广大青少年攀登数学高峰的热情和信心,使同学们自觉地成为学习的主人,实现从“学数学”到“用数学”过程的转变,从而进一步推动我国数学文化的传播与普及。
“走美”活动已连续举办七届,近30万青少年踊跃参与,已取得良好社会效果,并被写入全国少工委《少先队辅导员工作纲要(试行)》,向全国少年儿童推广。
“走美”作为数学竞赛中的后起之秀,凭借其新颖的考试形式以及较高的竞赛难度取得了非常迅速的发展,近年来在重点中学选拔中引起了广泛的关注。客观地说“走美”一、二等奖对小升初作用非常大,三等奖作用不大。
1、活动对象。
全国各地小学三年级至初中二年级学生。
2、总成绩计算。
笔试获奖率:
一等奖5%,二等奖10%,三等奖15%。
3、笔试时间。
每年3月上、中旬。
报名截止时间:每年12月底。
走美杯比赛流程。
1、全国组委会下发通知,各地组委会开始组织工作。
2、学生到当地组委会报名,填写《报名表》。
3、各地组委会将报名学生名单全部汇总至全国组委会。
4、全国“走进美妙的数学花园”趣味数学解题技能展示初赛(全国统一笔试)。
6、全国组委会公布初赛获奖名单并颁发获奖证书。
7、获得初赛一、二、三等奖选手有资格报名参加暑期赴英国剑桥大学数学交流活动。
8、各地按照组委会要求提交数学建模小论文。
9、前各地组委会上报参加全国总论坛学生名单。
10、全国总论坛和表彰活动。
数学建模论文规范篇九
第一条,论文用白色a4纸打印(单面、双面均可);上下左右各留出至少2.5厘米的页边距;从左侧装订。
第二条,论文第一页为承诺书,第二页为编号专用页,具体内容见本规范第3、4页。
第三条,论文第三页为摘要专用页(含标题和关键词,但不需要翻译成英文),从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。摘要专用页必须单独一页,且篇幅不能超过一页。
第四条,从第四页开始是论文正文(不要目录,尽量控制在20页以内);正文之后是论文附录(页数不限)。
第五条,论文附录至少应包括参赛论文的所有源程序代码,如实际使用的软件名称、命令和编写的全部可运行的源程序(含excel、spss等软件的交互命令);通常还应包括自主查阅使用的数据等资料。赛题中提供的数据不要放在附录。如果缺少必要的源程序或程序不能运行,可能会被取消评奖资格。论文附录必须打印装订在论文纸质版中。如果确实没有需要以附录形式提供的信息,论文可以没有附录。
第六条,论文正文和附录不能有任何可能显示答题人身份和所在学校及赛区的信息。
第七条,引用别人的成果或其他公开的资料(包括网上资料)必须按照科技论文写作的规范格式列出参考文献,并在正文引用处予以标注。
第八条,本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。在不违反本规范的前提下,各赛区可以对论文增加其他要求。
第九条,参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求命名和提交以下两个电子文件,分别对应于参赛论文和相关的支撑材料。
第十条,参赛论文的电子版不能包含承诺书和编号专用页(即电子版论文第一页为摘要页)。除此之外,其内容及格式必须与纸质版完全一致(包括正文及附录),且必须是一个单独的文件,文件格式只能为pdf或者word格式之一(建议使用pdf格式),不要压缩,文件大小不要超过20mb。
第十一条,支撑材料(不超过20mb)包括用于支撑论文模型、结果、结论的所有必要文件,至少应包含参赛论文的所有源程序,通常还应包含参赛论文使用的`数据(赛题中提供的原始数据除外)、较大篇幅的中间结果的图形或表格、难以从公开渠道找到的相关资料等。所有支撑材料使用winrar软件压缩在一个文件中(后缀为rar);如果支撑材料与论文内容不相符,该论文可能会被取消评奖资格。支撑材料中不能包含承诺书和编号专用页,不能有任何可能显示答题人身份和所在学校及赛区的信息。如果确实没有需要提供的支撑材料,可以不提供支撑材料。
第十二条,不符合本格式规范的论文将被视为违反竞赛规则,可能被取消评奖资格。
第十三条,本规范的解释权属于全国大学生数学建模竞赛组委会。
说明:
(1)本科组参赛队从a、b题中任选一题,专科组参赛队从c、d题中任选一题。
(2)赛区可自行决定是否在竞赛结束时收集参赛论文的纸质版,但对于送全国评阅的论文,赛区必须提供符合本规范要求的纸质版论文(承诺书由赛区组委会保存,不必提交给全国组委会)。
(3)赛区评阅前将纸质版论文第一页(承诺书)取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(由各赛区自行决定是否使用)。评阅后,赛区对送全国评阅的论文在第二页建立“送全国评阅统一编号”(编号方式由全国组委会规定),然后送全国评阅。
数学建模论文规范篇十
在高等教育事业改革不断深化的背景下,为了提升教育教学质量,新时期对大学数学教学提出了更高的要求。大学数学作为课堂教学的主体,教师在传授知识的同时,要注重学生学习能力和解决问题能力的培养。
数学知识来源于生活,应用于生活,如微积分作为高等数学知识中的典型代表,在各个行业中具有不可或缺的作用。为此,任课教师在大学数学教学中培养学生发现问题、分析问题和解决问题的能力十分重要,在传授知识的过程中帮助学生利用所学知识来解决实际问题。一般情况下,教师着重介绍相关数学概念和原理,推导常用公式,促使学生能够记住公式,学会公式的应用过程,逐渐掌握解题技巧。
因此,如何能够在传授知识的同时,促使学生掌握数学学习方法,将所学知识应用到实践中来解决数学问题是一个首要问题。从大量教学实践中可以了解到,在大学数学教学中渗透数学建模思想十分重要,有助于激发学生的学习兴趣,促使学生积极投入其中,切实提升学生的数学专业水平。
在大学数学教学中渗透数学建模思想,应该结合实际情况,深入挖掘数学知识。在教学中,教师应该充分发挥自身引导作用,联系学生数学知识实际学习情况,有针对性地整合数学知识,了解相关数学内容,这样不仅可以丰富教学内容,还可以为课堂教学注入新的活力,有效激发学生的学习兴趣,提升学习成效。具体表现在以下方面:
(一)闭区间连续函数的性质。
闭区间连续函数的性质内容是大学数学教学中的重要组成部分,由于知识理论性较强,知识较为抽象,学习难度较大,在讲解完相关理论知识后,可以引入椅子的稳定问题,创建数学模型,提问学生如何在不平稳的地面上平稳地放置椅子。学生可以了解到这一问题同所学知识相关联,闭区间连续函数的性质可以解决这一问题。学生整合所学知识,通过对问题的分析,可以了解到利用介值定理來解决问题。通过建立数学模型,学生更加充分地掌握了闭区间连续函数的`性质,提升了学习成效,为后续知识学习打下了坚实的基础。
(二)定积分。
定积分是高等数学教学中的重要组成部分,在解决几何问题时均有所应用,并且被广泛应用在实际生活中。如,在一道全国大学生数学建模竞赛题目中,计算煤矸石的堆积,煤矿采煤时所产生的煤矸石,为了处理煤矸石就需要征用土地来堆放煤矸石,根据上级主管部门的年产量计划和经费如何堆放煤矸石?题目中的关键点在于堆放煤矸石的征地费用和电费的计算。征地费计算难度较小,但是煤矸石堆积的电费计算难度较高,但此项内容涉及定积分中的变力做功知识点。学生掌握这些内容后就可以建立数学模型,更加高效地了解如何根据预期开采量来堆放煤矸石。通过数学模型,学生也可以了解到定积分内容同实际生活之间的联系,学习积极性就会大大提升。
(三)最值问题。
在高等数学中,最值问题占比比较大,同时在实际生活中应用较为普遍,导数知识可以解决实际生活中的最值问题,这就需要提高对导数知识实际应用的重视程度。教师在为学生讲解完导数的相关概念知识后,通过建立关于天空的采空模型,提问学生为什么雨后太阳出来了,雨滴还在空中,那么将为人们呈现出什么样的景色?学生回答彩虹。继续提问彩虹为什么有颜色,是什么决定了天空中彩虹的高度?对此,学生的兴趣较为浓厚,可以分为若干个小组进行讨论。通过分析可以得出,雨滴可以反射太阳光,形成彩虹。结合光线的反射和折射定律,借助所学的导数知识来计算得出太阳光偏转角度的最值,有效解决实际学习的问题,加深对知识的理解和记忆,提升数学知识学习成效。
(四)微分方程。
微分方程知识同实际生活之间息息相关,建立微分方程可以有效解决实际生活中的问题。这就需要学生在了解微分方程知识的基础上,进一步建立数学模型来解决问题。如,在当前社会进步和发展下,人均物质生活水平显著提升,肥胖成为危害人们身体健康的主要问题之一,受到社会各界广泛的关注和重视。通过问题精简化和假设,可以得到微分方程模型,在分析方程中饮食控制和运动锻炼两个关键要素后,有助于避免人们走入减肥误区,帮助他们树立正确的减肥理念。
(五)矩阵。
在高等数学教学中,矩阵的概念较为抽象和复杂,在讲解问题之前,应该根据知识点来创设教学情境,辅助教学活动。通过引入企业工厂生产总成本模型,充分描述工厂生产中需要的原材料和劳动力,并且详细记录管理费用。这有助于加深人们对矩阵概念的认知和理解,提升学习成效,同时帮助学生深入理解和记忆,锻炼学生的数学解题思维,加深概念理解和记忆,掌握解题技巧和方法,从而提升学生的数学建模意识。
综上所述,在大学数学教学中,可以通过数学建模思想来引导学生养成良好的自主学习能力,发挥自身的主体能动性和创新能力,提升学生解决问题的能力,将所学知识灵活运用到实际生活中,养成良好的数学素养。
数学建模论文规范篇十一
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二)教学方法传统化。
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用。
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施。
(一)在公式中使用建模思想。
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的'教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二)讲解习题的时候使用数学模型的方式。
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三)组织学生积极参加数学建模竞赛。
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语。
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献。
[1]谢凤艳,杨永艳。高等数学教学中融入数学建模思想[j]。齐齐哈尔师范高等专科学校学报,20xx(02):119—120。
[2]李薇。在高等数学教学中融入数学建模思想的探索与实践[j]。教育实践与改革,20xx(04):177—178,189。
[3]杨四香。浅析高等数学教学中数学建模思想的渗透[j]。长春教育学院学报,20xx(30):89,95。
[4]刘合财。在高等数学教学中融入数学建模思想[j]。贵阳学院学报,20xx(03):63—65。
数学建模论文规范篇十二
众所周知,高等数学是所有自然学科的基础,一个大学生要想在以后的工作、学习中大展宏图,那么就一定少不了坚实的高等数学基础。如何解决大学生在学习高等数学时碰到的问题?如何调动大学生学习高等数学的积极性?让学生们了解高等数学的用途,真正愿意静下心来好好学习高等数学,努力为以后的发展打好数学基础。一直以来,各所高校的教师们都在努力的想办法、找对策,一些实用有效的方法已经提出并且在逐步推广,比如,问题驱动式的教学方法和基于pbl的教学方法等。笔者从所在学校的学生实际学习情况出发,根据几年来的教学心得和积累,打算提出一种较为实用的教学方法——利用数学建模的思想调动大学生学习高等数学的积极性。该方法在笔者所教授的班级中已经实际应用过几届,学生普遍反映效果较好,任课老师也认为该方法确实能极大地调动学生的学习积极性。
提到高等数学,学生们的第一反应往往是:各种公式塞满黑板,各种运算充斥脑海;定义、定理、推论一个连着一个;极限、连续、可导可积一个涵盖另一个[1]。和高中数学相比,记忆的负担轻了(实际上是知识点太多,记不住了),而对思维的要求却提高了。对大学生来说,每一次的高数课,都是一次大脑的思维训练,时刻要求精神高度集中,一定要紧跟老师的步划,一旦走神,后面的内容就不知所云了。这样的要求短时间可以达到,长久下去学生们会觉得很辛苦,很有压力,会出现抱怨。笔者碰到过这样的学生,刚开始时,兴致勃勃,雄心万丈,可到后来兴趣索然,马虎应对。怪学生吗?诚然学生有责任,但任课老师也该负很大的责任。作为高等数学的老师我们经常要面对学生提的这些问题:(1)我学的专业和高等数学相差甚远,有可能这一辈子都不会用到高等数学的知识,那我学高等数学的目的何在?(2)老师您天天鼓吹高等数学的强大功能和广泛用途,但是通过一学期的学习,我发现除了对付考试有用,真不知高等数学可以用在何处?这些问题不及时解决,时间长了一定会影响到大学生对高等数学的学习积极性,甚至有可能会产生厌学的情绪和氛围。有些极端的学生,期末考试之后,一听到自己高等数学考过了,立马将高等数学的课本给撕了,可想而知高等数学对其造成的压力有多大[2]。如何解决大学生在学习高等数学时碰到的问题?如何调动大学生学习高等数学的积极性?让学生们了解高等数学的用途,真正愿意静下心来好好学习高等数学,努力地为以后的发展打好数学基础。笔者从所在学校的学生实际学习情况出发,根据几年来的教学心得和积累,打算提出一种较为实用的教学方法——利用数学建模的思想调动大学生学习高等数学的积极性。
一、以实际问题反推解决问题时我们需要的高等数学知识。
有这样一个实际问题:报童每天清晨从报社购进报纸零售,晚上将没卖掉的报纸退回给报社。假设报纸每份的购进价为b元,零售价为a元,退回价为c元,自然地有abc。这就是说,报童每售出一份报纸赚a-b元,每退回一份报纸赔b-c元,报童每天如果购进的报纸太少,那么会不够卖,就会少赚钱;如果每天购进的报纸太多,那么会卖不完,将要赔钱。请为报童规划一下,他该如何确定每天购进的报纸份数,以获得最大的收入[3]。
现在我们来反推该问题涉及到的高等数学的知识:首先,通过分析题目可知,问题解决的关键在于——如何确定每天的报纸需求量,注意每天的报纸需求量是随机变化的?解决这个关键问题的知识我们早就掌握了,分别是数理统计中的频率连续化、概率论中的概率密度与期望和高等数学中的定积分[4]。
二、利用高等数学的解决实际问题。
f(r)[4]。如果求出了f(r),那么。
g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)。
现在我们来求f(r),假定报童已经通过自己的经验和其他渠道掌握了一年(365天)中每天报纸的售出份数,那么在他的销售范围内,每天报纸日需求量r的概率f(r)为:
f(r)=,r=(0,1,2,3,…)。
其中k表示为卖出r份的天数。
g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)。
通过上面的分析,可知实际问题归结为,在p(r)和a,b,c已知时,求n使得g(n)最大。
=-(b-c)p(r)dr+(a-b)p(r)dr.(3)。
令=0,得到=,又因为p(r)dr+p(r)dr=1,所以p(r)dr=.(4)。
在等式(4)中,p(r)和a,b,c均为已知,所以利用定积分的知识一定可以求出n。也即可以确定每天购进的报纸份数,使报童每天获得最大的收入。
三、利用现实问题,让学生学会思考,给他们提供创造成就感的机会。
通过上面碰到的实际问题,可以很容易地说服同学们静下心来好好学习高等数学。因为通过实际问题的求解,学生们了解到了,要想解决一个实际问题(哪怕是很小的问题),也需要大量的高等数学知识的储备;学生们也大概领略到了高等数学的用途与功能。这样的教学方法简单、直接,胜过老师课堂上反复的唠叨与强调。有了这样的一些实际问题,老师们就可以大胆地将数学建模思想引入高等数学的教学当中,让学生们在解决实际问题中学会思考,掌握知识,提高能力。
通过训练后,碰到实际问题,同学们会自然的想到我们的教学方法:(1)这些实际问题涉及到的高等数学知识?那些自己掌握了,那些还没有弄明白,学要加强学习。(2)知识点找到后,如何建立起数学与实际问题求解之间的关系?也即如何建立数学模型。(3)除了老师给的题目,自己本专业中的实际问题,能否用高等数学的知识去解决?通过思考、分析、解决这些问题,学生们会有一种创造创新的成就感,会愿意自主学习,自然而然其学习高等数学的积极性也会大大提高了。
数学建模论文规范篇十三
高校数学教育是高等教育的基础学科,占据重要的一席之地。如何改变学生对数学枯燥乏味的学习状态,让学生轻松愉快地参与到数学学习中,是当前高校数学教学者面临的一个重要课题。在高校数学教学中开展数学建模竞赛,不仅能培养学生的创新思维,还能有效提高提高学生的创新能力、综合素质和对数学的应用能力。本文对高校开展数学建模竞赛与创新思维培养进行了分析阐述,并对此进行了一定的思考。
数学建模是一种融合数学逻辑思想的思考方法,通过运用抽象性的数学语言和数学逻辑思考方法,创造性的解决数学问题。当前很多高校中开始引入数学建模思想来加强学生创新能力的培养,可以使学生的逻辑思维能力和运用数学逻辑创新解决问题的能力得到提升。数学建模竞赛起源于1985年的美国,几年后国内几所高校数学建模教师组织学生开始参与美国的数学建模大赛,促进了数学建模思维的快速发展。直到1992中国首届数学建模大赛召开,而后一发不可收拾,至今仍以每年20%左右的速度增长,呈现一派繁荣景象。
2.1数学建模竞赛自主性较强。自主性首先体现在在数学建模过程中学生可以根据自己的建模需要通过一切可以利用的资源、工具来进行资料查阅和收集,建模比赛队员可以根据自己的意见和思维进行灵活自由解答,形式不拘一格。其次体现在数学建模竞赛的组织形式呈现多元化特点,组织制度上也较为灵活多样,数学建模主要侧重于分析思想,没有标准答案可以参考分享。2.2建模队伍呈日益燎原之势。1992年首届中国数学建模大赛开展以来,其影响力与日俱增,高校和社会各界对数学建模颇为重视,参赛队伍、参赛学生的质量一直处于上升状态,数学模型也日渐合理科学,学生团队在国际数学建模大赛中屡创骄人战绩。2.3组织培训日益加强。数学建模竞赛对学生数学知识的掌握及灵活运用、口套表达、语言逻辑思维、综合素质都有着非常高的要求,因此高校遴选参赛选手都投入了很大的精力,组织培训的时间很长,培训内容也很丰富,为数学建模竞赛取得好成绩奠定了坚实的基础。
3.1学生的团队协作能力和意识得到增强。数学建模竞赛的团队组织形式活泼自由,通常采用学生组队模式开展,数学建模竞赛队伍形成一个团结战斗的整体,代表着不仅仅是学校的声誉,还一定程度上展示着国家的形象。经过长时间的培训,对数学模型的研究和分析,根据学生训练中的优势和特长,进行合理科学的小组分工,让学生快速高效地完成整个数学建模,在建模过程中学生统筹协作、密切配合,发挥各自的优势和长处,确保数学建模取得最大效用,学生的团队协作能力和意识得到锻炼,责任感和荣誉感进一步增强,通过建模竞赛彰显团队的合作能力和中国数学建模方面的发展。
3.2高校学生参赛积极性高涨。近年来大学生数学建模竞赛的参与性高涨,参赛人数保持着20%左右的上涨幅度,参赛成绩也较为理想,创新能力得到了较好的锻炼和培养,综合素质得到提高,数学的应用能力提升。
3.3高校学生数学逻辑思维能力和灵活运用知识的能力得到提升。数学建模竞赛充满着刺激性和挑战性,是学生各方面综合能力的一个展示。在数学建模竞赛中,学生不仅要需要扎实丰厚的数学知识储备,还需要具备清晰的数学逻辑思维和语言表达能力。同时要有机智的临场发挥能力和应变能力,不怯场、不惊慌,有充分的思想准备,能轻松应对其他参赛选手和评委的提问,能组织条理性、逻辑性的语言进行表述,将参赛小组数学模型的含义和设计清晰完整的传达给评委和其他参赛选手。在这个过程中,无疑会使学生的数学逻辑思维和语言表达能力及灵活运用数学知识的能力有一个较大的提升。
3.4学生的自学能力和意志力得到锻。数学建模竞赛对参赛学生的综合知识和能力要求非常高,难度也非常大,需要与众不同的智慧和能力。可以说数学建模过程中,有许多高深的知识难于理解,有的日常学习过程中根本接触不到,需要数学建模参赛小组成员的互助合作,充分发挥各自优势和平时培训中的知识积淀,通过借助大量的工具书及参考资料,加上团队的`理解分析去摸索,探寻数学建模所需要的基础知识,无疑这对学生的自学能力培养是一个很好的锻炼。另外,搜寻资料、学习数学建模知识的过程是枯燥乏味的,需要长久的耐力和信心,无疑这对学生的坚毅不畏难的品质是一个很好的培养和磨炼。
3.5创新思维与能力得到有效提升。经过艰苦复杂的数学建模训练,高校学生信息收集与处理复杂问题的能力得到培养锻炼,学生数量观念得到增强,能够养成敏锐观察事物数量变化的能力,数学的严谨推导也使学生养成认真细心、一丝不苟的习惯,逻辑思维能力得到提高,思路变得更加富有条理性,能灵活地处理各种复杂问题,有效解决数学疑难,数学理论能更好第应用于实践,数学素养进一步得到提升。
综上所述,高校学生数学建模竞赛的开展,能较高地提升学生的创新能力和综合素养,团队合作能力、竞争能力、表达交流能力、逻辑思维能力、意志品质能力等都能得到良好的塑造。高校要积极组织和开展数学建模竞赛,使学生的综合素质得到发展和锻炼。学校用重视和鼓励全体学生参与数学建模竞赛,通过竞赛实现学生各方面能力尤其是创新能力的培养。
[1]赵刚.高校数学建模竞赛与创新思维培养探究[j].才智,20xx(06).
[2]陈羽,徐小红,房少梅.数学建模实践及其对培养学生创新思维的影响分析[j].科技创业月刊,20xx(08).
[3]赵建英.数学建模竞赛对高校创新人才培养的促进作用分析[j].科技展望,20xx(08)5.
[4]毕波,杜辉.关于高校开展数学建模竞赛与创新思维培养的思考[j].中国校外教育,20xx(12).