植树问题教学设计及说课稿(通用20篇)
充实自己的日子总结是提高自我认知的有效方法。按时间、地点等要素进行归类,提高逻辑性;这些范文中的个案和案例可以帮助你更具体地理解总结的写作要点。
植树问题教学设计及说课稿篇一
【教师课前准备】在编写教案前,先阅读网上大量有关《植树问题》的优秀案例,理解不同版本的教学设计,以便更有效地进行教材重组。
【学生课前准备】预习
《义务教育课程标准实验教科书 数学》(人教版)四年级下册第117页。
教材简析:
本册的“数学广角”主要是渗透有关植树问题的方法,通过现实生活中的一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用这些规律来解决生活中的一些简单实际问题。
在本节课里,学生第一次接触到“植树问题”。解决植树问题的思想方法是实际生活中应用比较广泛的“复杂问题简单化”的数学方法。让学生能够理解植树问题中两端都栽的情况下数量之间的关系,并能解决生活中的一些简单实际问题。教学中,要引导学生通过观察、猜测、实验、推理等活动,初步体会植树问题的数学思想方法,感受数学的魅力。同时让学生学会应用植树问题的规律解决一些简单的实际问题,培养学生观察、分析及推理的能力,培养他们探索数学问题的兴趣和发现、欣赏数学美的意识。
学情简析:
“植树问题”原本属于经典的奥数教学内容,新课程教材把它放到了4年级下册的“数学广角”中让所有的学生学习,说明这一教学内容本身具有很高的数学思维含量和很强的探究空间,既需要教师本身的有效引领,也需要学生的自主探究。从学生的思维特点看,3、4年级的学生仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。教学时可以从实际的问题入手,引导学生在分析、思考问题的过程中,逐步发现隐含于不同情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决问题中的应用。
教学目标
知识与技能:使学生经历将实际问题抽象出数学模型的过程,掌握植树问题中棵数与间隔数之间的关系,并能利用这一关系解决简单的新的实际问题。 过程与方法:通过观察、猜想、验证、推理等活动,使学生经历和体验“复杂问题简单化”、“一一对应”等解题策略和数学思想方法。
情感态度和价值观:感受数学在日常生活中的广泛应用,体会数学的价值,激发热爱数学的情感。
教学重、难点
重点:让学生探究发现植树问题(两端都栽)的规律,经历数学建模的过程,体验“复杂问题简单化”的解题策略和数学思想方法。
难点:在探究活动中发现规律,抽取数学模型,并能够用发现的规律来解决生活中的一些简单实际问题。
教具、学具
教具:课件
学具:直尺、小棒
1、自主探究法 学生在植树探究的学习过程中,通过分析综合、抽象概括、归类梳理的数学活动,在分析、思考问题的过程中,逐步发现隐含于不同情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决问题中的应用。
2、激励评价法 评价时遵循“没有差生,只有差异”的教学理念。采用多维和多级的评价方式,尊重学生的人格、情感和差异,形成融洽的师生关系,帮助每个学生了解自己的学习能力和水平。
课前活动
1. 活动
师:在上课之前,老师了解了一下,发现我们班很多同学都很喜欢唱歌,现在离上课还有一点时间,我们一起来唱一首《幸福拍手歌》好吗?(齐唱:幸福拍手歌)
师:看着老师的手,你从中得到了什么数字?(5,5个手指)
师:老师从中也得到了一个数字—4,你们知道它指的是什么吗?
师:你们发现手指数与间隔数的关系了吗?谁能说一说?
2.引入
师:连手上都有这么多数学奥秘,看来数学真是无处不在!现在我们可以开始上课了吗?
【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有关系,后面的学习做好铺垫,同时使学生感受数学与生活的密切联系。
一、 创设情境,揭示课题
教师出示几幅有关北方沙尘暴的图片,引出植树的话题。
师:在我国的北方,冬天经常会出现沙尘天气,你们听说过吗?
生:听说过。
师:请同学们看一段录像。
生观看
师:沙尘暴给人们的生产和生活都带来了非常大的危害。同学们,你们知道吗?沙尘天气实际上是大自然对人类的一种惩罚。由于我们人类过去滥砍滥伐,破坏自然资源和生态环境,才造成今天的恶果。
师:要治理沙尘天气,最好的办法是什么?
生:植树造林
师:对,植树造林。你们看,上至国家领导,下至学生,都积极投身到植树造林的活动。看到这一排排整齐的小树,如果我们从数学的角度来分析,这里面还有很多有趣的数学问题呢。这节课,我们就来研究植树中的数学问题。
【设计意图】通过沙尘暴的图片、视频引入新课,过渡自然、真实,并能调动学生学习的主动性和趣味性。
二、提出问题 初步解决
1、出示问题
2、理解题意
(出示课件)
师:学校都有哪些要求呀?
理解“每隔五米种一棵”“两端都栽”“一边”
要准备多少棵树苗呢?能帮同学们解决一下吗?做在我们的一号题卡上吧。
3、动笔计算
4、反馈答案
方法一:1000÷5=200(棵)
方法二:1000÷5=200(棵) 200 +2=202(棵)
方法三:1000÷5=200(棵) 200 +1=201(棵)
??
【设计意图】教学要建立在学生原有的经验基础上。这个环节,通过让学生做一做,激活学生的原有经验。出现几种不同的答案,留下悬念,引发思考,激发学生的探究欲望。
三、自主探究 发现规律 1、自主探究
画图实际种一种。
师:老师也有同感,一棵一棵种到1000米确实太麻烦了。有更简单的方法吗?
预设:(当学生想到方案)
生:可以先在短一点的路上栽树
师:你的想法很独特,很有自己的见解,其实,你的这种方法就是我们数学研究上的一种重要的方法,这种方法就是遇到复杂问题先想简单的,从简单问题入手来研究。板书:复杂问题 简单问题。
(当学生没有想到方案)
师引导:其实像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法就是遇到复杂问题先想简单的,从简单问题入手来研究。板书:复杂问题 简单问题。
师:按照这样的思路,1000米太长了,我们先在10米、15米、20米??的距离上能种树 ,每隔5米种一棵,两端都栽,看能不能发现什么规律,找到了规律,我们再来解决1000米距离上种树的问题。
(出示课件)
师:请大家任选其中一种情况,利用老师所准备的学具--画纸或小棒,画一画、摆一摆或模拟实际种一种探究间隔数与棵树各是多少。
【设计意图】创造矛盾,激发学生探究欲望,并恰当的向学生渗透“复杂问题简单化”这一数学思想。
2、发现规律
大家仔细观察表格,想一想,看一看,有什么发现?把你的发现和小组内的同学说一说。
(课件演示)
一个间隔对应一棵,这样一直对应下去,100个间隔有100棵树,但种完了吗?
【设计意图】让学生体会到,不管数字多大,用“一一对应”的方法,最后还要不是一棵,才达到两端都栽的结果。
3、总结规律
师:谁来总结一下在两端都栽的情况下,棵树与间隔数的关系?
【设计意图】让学生体会到研究问题可以从简单入手,将困难的变为容易的,将复杂的变为简单的,用这样的方法,可以有效的解决问题。把抽象的数学思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。
3、运用规律
【设计意图】就植树问题举一反三,巩固“植树问题”数学模型。
四、解决问题 巩固提高
瞧,咱们刚刚探讨出来的规律就运用的这么好,真厉害。利用植树问题的规律不仅能解决植树问题,还能解决生活中的实际问题,比如说安路灯、上楼梯、听钟声、挂灯笼、过车站等等。
【设计意图】再现生活中的类似“植树问题’,通过不同层次的练习,培养学生灵活运用规律解决问题的能力。
五、回顾总结 拓展延伸
1、今天我们学会了什么? 你是用什么方法学到的?
2、拓展延伸。(出示课件) “只栽一端”“两端都不栽”的情况下棵树与间隔数又有什么样的关系。
【设计意图】拓展延伸环节是学生对后续的学习有一个初步的认识,激发进一步学习热情。
植树问题教学设计及说课稿篇二
教学目标:
一、知识与技能性:
1.利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。
2.通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。
3.能够借助图形,利用规律来解决简单植树的问题。
二、过程与方法:
1.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。
2.渗透数形结合的思想,培养学生借助图形解决问题的意识。
3.培养学生的合作意识,养成良好的交流习惯。
三、
情感态度与价值观。
通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。
教学重、难点。
引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。
教学准备:
课件。
教学过程:
一、动手种树,初步感知。
1、创设情景。
2、理解题意。
[出示要求]:在操场边上,有一条20米长的小路,学校计划在小路的一边种树,请按照每隔5米种一棵的要求,设计一份植树方案,并说明你的设计理由。
师:从这份要求上,你能获得哪些信息?
(20米长的小路,一边,每隔5米种一棵)。
3、设计方案,动手种树。
师:了解了信息,请同学们设计一份植树方案。你可以用这条线段来代表20米长的小路,其中每一小段的长度是1厘米,我们用它来表示1米长的小路,请你用自己喜欢的图案或图形来表示小树苗,把你设计的方案画一画。比一比,谁画得快种得好,老师就聘请他作学校的环境设计师。
学生活动,教师巡视指导。
4、反馈交流。
师:根据你的方案,需要种几棵树?
师:同学们真会动脑筋,设计出了这么多的方案。那他们的方案分别是怎样的呢?
请设计师们给大家作一下介绍。
师:他的设计符合要求吗?
师:这位同学是按照每隔5米种一棵的要求来设计的,我们把这个距离叫做间隔距离,在这份设计方案中,有几个间隔距离呢?我们一起来数一数。有4个这样的间隔距离。像这样间隔距离的个数我们又把它叫做间隔数。
师:接下来我们来看看种4棵树的设计方案是怎样的?
生答。
师:最后我们来看看种3棵树的设计方案又是怎样的呢?
生答。
师:就一个要求,同学们就设计出了三种不同的植树方案,真是太能干了!
看来你们都有成为环境设计师的资格。李老师会把你们的方案上交到学校的。
师:第一种方案,在路的头尾都种了一棵树,我们就把它叫做是“两端都种”的植树方案,第二种方案,只种头不种尾或者只种尾不种头,我们就把它叫做是“只种一端”的植树方案,第三种植树方案头尾都不种树,我们就把它叫做是“两端不种”的植树方案。(板书:两端都栽只栽一端两端不栽)。
二、合作探究,
总结。
方法。
1、总结规律。
师:现在我们一起来研究一下,在这三种植树方案中,它们的间隔数和树的棵数之间分别有着什么样的关系呢?同桌同学先讨论讨论,然后完成这张表格。
植树方案间隔数(个)棵数(棵)间隔数与棵数的关系。
学生反馈交流,师生共同完成表格。
师小结:刚才我们通过每隔5米种一棵树的要求,发现了植树的三种方案,并知道了每种方案中棵数与间隔数之间的关系,接下来我们重点来研究“两端都种”的植树问题。
(学生活动后反馈交流)。
师小结。
2、运用规律。
三、开放练习,应用方法。
(1)学生独立解答。
(2)全班交流结果。
2、师:如果两侧都要种,一共需要多少棵樟树苗?(把。
第1。
题中的“一侧”改为“两侧”?)。
(1)学生独立解答。
(2)集体反馈。
(1)学生独立解答。
(2)集体反馈。
师小结。
(1)学生独立解答。
(2)集体反馈。
师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。
6、书本p122练习二十第4题。
四、课堂小结,课外延伸。
师:通过这节课的学习你有什么收获?
五、板书设计:
(主板书)(副板书)。
间隔距离间隔数棵数。
两端要栽:间隔数+1=棵数1米20个21棵。
只栽一端:间隔数=棵数2米10个11棵。
两端不栽:间隔数-1=棵数4米5个6棵。
10米2个3棵。
植树问题教学设计及说课稿篇三
教学内容:
人教版《义务教育课程标准实验教科书数学》四年级下册第1。
17、118页例。
1、例2。教学目标:
1.利用生活中的问题,通过动手操作的实践活动让学生发现分的间隔数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。
2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。过程与方法:
经历解决实际问题的过程,体验分析解决问题的方法。情感态度与价值观:
体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力,收到热爱劳动,保护环境的教育。教学重点:
理解掌握解决问题的规律。教学难点:
能运用规律解决实际问题。教学、具准备:
尺子、树、纸条等。
教学过程:
一、谈话引入,教学“间隔”1.猜一猜。
同学们你们喜欢猜谜语吗?今天老师给你们带来一则谜语你们想猜吗?两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。这是什么呢?(手)。
2、教学“间隔”的含义。
师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个“空”也可以说成4个“间隔”,5个手指之间有4个间隔,那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)。
师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是——植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。
二、探究新知。
1.小黑板出示:
同学们在20米长的小路一边植树,每隔5米栽一棵。一共需要多少棵树苗?
(1)学生读题,理解题意。
(2)独立思考,再小组合作,探究植树的方案。(3)学生在黑板上展示自己的作品。2.师小结各种方法,并板书。
3、尝试应用。
小黑板出示题目:
同学们在100米长的小路一边植树,每隔5米栽一棵(两端都栽),一共需要多少棵树苗?学生独立完成,集体订正。
三、巩固练习。
师:同学们真能干!其实在我们的生活周围存在许多类似的植树问题.学生完成例二后的做一做。
小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,只栽一端的话:棵树=间隔数;两端都不栽的话:棵树=间隔数-1;而且还运用规律解决了生活中的实际问题。
四、全课总结。
1.通过这节课的学习你有什么收获?
2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树的问题等,这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。
特点。
植树的棵树。
间隔数。
棵数与间隔数的关系两端都栽:
棵数=间隔数+1只栽一端:
棵树=间隔数两端都不栽:
教学反思:
“植树问题”是新课标人教版四年级下册的内容,教材将植树问题分为几个层次:两端都种、两端不种、及封闭图形。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究上都很重要的数学思想方法——化归思想。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。
我所执教的这节课主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。
一、通过课前活动,以大家都熟悉的手为素材,从让学生初步认识间隔,感知间隔数与手指数的关系。
二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。
四、多角度的应用练习巩固,拓展学生对植树问题的认识。
反思整个教学过程,我认为这节课有以下几点做得比较好:
一、创设浅显易懂的生活原型,让数学走近生活。
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。
二、注重学生的自主探索,体验探究之乐。
是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。生活情景图引入后学生动手操作出示实例图示,引导学生在观察、点数形象图形后进行对比,发现两端植树时棵树与间隔数之间的关系!当学生对实物图有了清晰的认识后,教师将形象的图形抽象成线段图,让学生在脱离实物图后,依然能够发现棵树与间隔数之间的关系。学生直观的体会到了植树问题中相关的量,在观察思考后学生则进一步验证了棵树与间隔数之间的关系。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、利用学生资源,加强生生合作。
学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。
不足之处是:
1、自己的普通话不过关。
2、时间没掌握好,学生合作探究时花费时间长了,导致延时。
植树问题教学设计及说课稿篇四
教学目标:
1、在摸一摸、摆一摆、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。
2、在亲身体验、交流中,进一步理解间隔数与棵数之间规律,并解决生活中的植树问题。
3、在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。
教学重点:理解“植树问题(两端要种)”的特征,应用规律解决问题。
教学过程:
一、初步感知间隔的含义。
1、肢体体验:同学们都有一双灵巧的小手,它不但会写字、画画、干活,在它里面还蕴藏着有趣的数学知识,你想了解它吗?请举起你的右手,并将五指伸直、张开、用左手摸摸右手,数一数,五个手指有几个空格?(4个空格),师:在数学上,我们把这个空格叫“间隔”。也就是说,大小拇指在一只手的两端:5个手指之间有几个间隔?(4个间隔)。弯弯你的大拇指看:4个手指之间有几个间隔?(4个间隔);把大、小拇指一齐弯弯看:3个手指之间有几个间隔?(4个间隔),那么,将5个手指换成小树,5棵小树之间有几个间隔(4个)。
师:生活中的“间隔”到处可见,你知道生活中还有哪些间隔吗?(两棵树之间、两个同学之间、楼梯、锯木头、敲钟…都有间隔。)。
2、引入课题:师:树可以美化环境,清新空气,我们要多植树。在一条直线上种树,每两棵树之间相等的段数叫做间隔数,每个间隔的长度叫间距,也叫株距。间隔数与棵数的关系,数学里统称植树问题,这就是我们今天要探究的内容——在一条不封闭的直路上的“植树问题”。(揭题,板书:植树问题)。
二、探究规律,解决问题。
1、找出两端都种树的规律。
植树问题情景1,师出示:例1.同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?师:请同学们默读题目,谁来分析一下这道题的条件、问题、关键词和单位?要求一共需多少棵树苗?先要知道两端都栽树,棵数与间隔数有什么关系?要解决这个问题,实践是检验真理的唯一标准,但是100米这个数字有点大,不好验证,在遇到比较复杂的问题时,我们可以先用比较简单的例子来验证。
师:现在我们用研究出的两端都栽树,棵数等于间隔数加1的规律来解决例1中的问题,在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?生:100÷5=20(个间隔)20+1=21(棵)。利用两端都栽树,棵数=间隔数+1”这个规律解决了两端都植树的问题。
三、应用规律,走进生活。。
走进生活:
(一)目标检测:
1.排列在同一条直线上的16棵树之间有()个间隔。2.从第1棵树到最后1棵树之间有30个间隔,一共有()棵树。
(二)闯关题。
2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?
3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
4、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?
5、15个军人站成一列,每两个军人间距离为1米,这列队伍有多长?
四、总结:通过这节课的学习,你们有什么收获?
:实地考察。
两端要栽:棵数=间隔数+1;
植树问题教学设计及说课稿篇五
“植树问题”在实际生活中应用比较广泛,它通常是指沿着必须的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本节课就是要渗透有关植树问题的一些思想方法,透过学生的动手操作、自主探究来发现现实生活中它们的规律,,抽取出其中的数学模型,然后再用规律解决植树中的相关问题。教学目标:
1.使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。
2.掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。
教学重难点:
掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。
教具学具:
绳子、挂图、泡沫、小树、题卡
教学过程:
1.小游戏:
点名学生动手操作,给绳子打3个结并观察:给绳子打3个结,会把绳子分成几个间隔?(有三种状况:4个、3个、2个)(解释“间隔”的意思)
透过刚才的游戏,你得出了什么结论?(强调结数和间隔数的三种关系)点评:透过游戏激趣,引出“间隔”、“间隔数”的概念教学,由于有绳子打结作铺垫,抽象概念得到了具体化,同时间接渗透了间隔与间隔数两者之间的关系,为探究新知打下良好的基础。
2.导入新课:这天这节课我们就来学习和间隔有关的植树问题(板书课题:植树问题)
点评:所选例题具有很强的开放性,同时以“海南国际旅游岛建设”引入例题,体现了数学与生活紧密联系,让学生在简单愉快的生活化的课堂环境中学习数学。
2.分组动手操作(分八小组,每组6人),在泡沫上“植树”,
要求:(1)计算一共需要准备多少棵树苗
(2)思考棵数与间隔数的关系。
点评:学生亲自动手操作,并透过仔细观察、交流讨论,有效促进学生思维活动的体验以及情感的体验过程,提高了学生分析问题和解决问题的潜力,把感性认识上升为理性认识。
3.汇报结果:
(1)两端都种:50÷5+1=11(棵)结论:棵数=间隔数+1
(2)只种一端:50÷5=10(棵)结论:棵数=间隔数
(3)两端都不种:50÷5-1=9(棵)结论:棵数=间隔数-1
4、总结(学生汇报教师书写):
(1)两端都种:棵数=间隔数+1
(2)只种一端:棵数=间隔数
(3)两端都不种:棵数=间隔数-1
点评:孔子说:“吾听吾忘,吾见吾记,吾做吾捂!”学生在动手操作的过程中,仔细观察,用心思考,在操作的过程中充分体验,充分交流,加深对植树问题三种状况的理解。结论的得出也就水到渠成了。
1、做一做:
2、数学竞技场:分组竞赛,每组派代表选题,解答对得相应的分值,解答错则机会让给其他表现好的小组,总分最高的小组获胜。
(1)挂灯笼(20分):要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)
(2)插彩旗(20分):校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)
(6)街道上(50分):在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)
这节课我们学习了什么资料?你还有什么疑问?(植树问题的三种状况)
植树问题
两端都种:棵数=间隔数+1
只种一端:棵数=间隔数
两端都不种:棵数=间隔数-1
例题:寰岛小学决定美化校园,要在长50米的塑胶跑道的
一侧每隔5米植一棵树,一共需要准备多少棵树苗?
两端都种:50÷5+1=11(棵)
只种一端:50÷5=10(棵)
两端都不种:50÷5-1=9(棵)
(1)挂灯笼:要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)
(2)插彩旗:校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)
(6)街道上:在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)
教学后记:
本节课旨在透过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,用心性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:
本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的构成,提高了学生的思维水平,完善了学生的认知结构。
本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。由于练习的解答采取竞赛的方式,充分调动了学生学习的用心性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)
本节课,我透过引导学生动手操作(模拟植树)------交流讨论(植树方案)------得出结论(三种植树问题的解决方法)-----应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。
植树问题教学设计及说课稿篇六
教学内容:
教学来源:
人教版小学数学教材第九册第七单元《植树问题》。
五年级学生。
备课人:
张金玲。
基于标准:
数学广角的教学目标可概括为以下几点:
1、感悟重要的数学思想方法;。
2、运用数学的思维方式进行思考,增强分析和解决问题的能力;。
3、在参与观察、猜测、试验、推理等数学活动中发展合情推理,感悟演绎推理思想,学会独立思考。
教材分析:
《植树问题》是人教版义务教育课程标准实验教科书五数上册第七单元“数学广角”中的内容。“数学广角”是人教版中的一个亮点,它系统而有步骤地向学生渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。这一单元内容就是植树问题,教材将植树问题分为几个层次,有两端栽、两端不栽、一端栽一端不栽以及环形情况、方阵问题等。本节课例1是两端都栽树的情况。
学情分析:
学生已经学习了除法的含义、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。
学习目标:
1.利用学生熟悉的生活素材、通过画线段图、填表格、讨论交流等活动,能化繁为简并说出两端都栽的情况下间隔数与棵数之间的关系。
2.能发现并理解植树问题(两端要栽)的一般解题规律,并能利用规律解决相关的实际问题。
评价任务:
任务一:通过猜谜活动,以及画线段图、做表格等活动,完成目标一。
任务二:通过课堂例题的理解分析,找到两端都栽的植树问题的一般解题规律,达成目标二前半部分。另外利用习题的解决,达成目标二的后半部分。
【学习重点】:发现棵数与间隔数的关系。
【学习难点】:理解两端都栽的植树问题的一般解题规律并能运用规律解决问题。
【教学准备】:课件、小组学习单。
【教学过程】:
一、导入新课。
1、猜谜语,直观认识间隔。
新课前老师给大家带来一个谜语,请看,“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体的组成部分。”它是什么呢?谁知道?(手)。
同意的举手?你们真会联想,它就是我们的手。我们的手作用可真大,能写会算还会画,而且我们的手上还有许多的数学奥秘,仔细看自己的手,你能看到数字吗?(5)。
哦,怎么看出5了?(表示手指的个数)谁还看到了数字5?真不错,除了用数字可以表示手指的个数,咱们的手上还有没有数字?(还能看到手指之间的间隔,两个手指之间的缝隙,教师说明,缝隙就称为间隔。)。
手指之间还有一个个的间隔。同学们,咱们手上五个手指之间到底有几个间隔呢?(4个)。
我们一起来数一数。还真有4个间隔。那四个手指之间有几个间隔?三个手指之间呢?两个手指之间呢?(生依次回答。)。
你发现什么了吗?(生说)。
的确,手指数和间隔数之间是有着一定的规律的,它们之间的这种规律最适合解决今天我们要研究的这类问题,这类问题的名字叫做植树问题。板书:植树问题。
二、探究规律实现目标。
1、例题探究。
说起植树问题我们就先从植树谈起吧。请看例题。
a、从题中你能知道哪些信息?谁来说一说?生说,师画。
师小结:
一边是小路的一侧,指左边或者右边,全长1000米是指小路的总长。每隔五米栽一棵是每两棵树之间的距离,简称间距。两端要栽指起点与终点处都要栽。
b、算一算,一共要栽多少棵树?反馈答案:
方法1:1000÷5=200(棵)。
方法2:1000÷5=200200+2=22(棵)。
方法3:1000÷5=200200+1=21(棵)。
疑问:现在出现了三种答案,到底哪种答案是正确的呢?下面我们一起来验证一下,你想用什么方法验证?(生说:画线段图的方法)。
三、自主探究,发现规律。
1、化繁为简探规律。
是个好办法!我们可以选择画线段图来验证。每隔5米栽一棵就画一段,再过5米再画一段,这样我们需要画多少段呢?好画吗?为什么呀?(数据太大了)。那怎么办呢?(选择简单的数据进行研究,得出规律再解决这道题)。
是呀,在遇到比较复杂的问题时,我们可以先用比较简单的例子来研究。你准备选用哪个数来研究?(生说)下面请大家自己选择简单的数据在练习本上试着进行验证,并把你试的结果汇报给组长填在表格中,之后观察表格中的数据,你发现了什么?把你的发现在小组内说一说。
植树问题教学设计及说课稿篇七
1、通过猜测、试验、、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。
2、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。
发现并理解两端都栽的植树问题中间隔数与棵数的规律。
运用“植树问题”的解题思想解决生活中的实际问题。
课件、直尺、学习纸。
(一)创设情境,引入新课。
教师:你们知道3月12日是什么节日吗?关于植树你知道些什么?(引导学生说诸如植树时两棵数之间有一定的距离,这些距离一般相等……这些与本课学习相关的信息。)。
教师:其实在植树中还隐藏着很多数学问题呢!今天我们这节课就来研究植树中的数学问题。(板书课题:植树问题)。
(二)充分经历,探究新知。
1、大胆猜测,引发冲突。
(1)读一读,说一说。
课件出示例1,引导学生获取相关数学信息。让学生读题,然后指名说一说:从题中你了解到了哪些信息?重点帮助学生弄清楚下列数学信息的含义:
“每隔5米栽一棵”是什么意思?
使学生明确“每隔5米栽一棵”就是指每两棵树之间的距离都是5米,每两棵树之间的距离也叫间隔长度,也可以说成“两棵树之间的间隔是5米”。
“两端要栽”是什么意思?“一边”是什么意思?
(2)猜一猜,想一想。
让学生根据例题中的信息,猜一猜一共要栽多少棵树苗,教师对学生的猜测不发表评论,引导学生积极发表自己的看法。
教师:到底要栽多少棵呢?对不对呢?你打算怎样检验自己的猜想?
引导学生用画线段图的方法进行验证。
(设计意图:帮助学生厘清题意,让学生通过猜想答案,引起认知冲突,激发学生继续探究的欲望。)。
2、借助操作,探究规律。
(1)初步体验,化繁为简。
教师:为什么觉得很麻烦?
学生:因为100米里面有20个5米,太多了。
教师:也就是说100米在这道题中显得数据有点大,因此画图时会比较麻烦。像这样比较复杂的问题,我们可以先从简单一些的情况入手进行研究。比如,我们可以先选取100米中的一小段研究。
(2)教师演示,直观感知。
教师演示课件,边演示边说明。
教师:我们选取100米中的20米来研究,用一条线段表示20米,每隔5米栽一棵,也就是说树的间隔是5米。(教师板书)。
教师;大家看一看,我们把这段路平均分成了几段?也就是有几个间隔?栽了几棵树?
引导学生说出20米长的一条路,间隔长度是5米,有4个这样的间隔,可以栽5棵树。
(设计意图:让学生体会复杂问题可以从简单问题入手的解题策略,并通过课件的演示,向学生示范线段图的画法,为学生下面的自主探究作好准备。)。
(3)动手操作,初步体验。
让学生自由选择100米中的一小段,动手画一画,看一看这一小段上,两端都要栽,一共要栽几棵树。
引导学生观察,在这些不同的画法中,有一个共同的地方:棵树比间隔数多1。
(4)合理推测,感知规律。
教师:不用画线段图,如果这条路长30米、35米……又应栽几棵树呢?请同学们拿出学习纸,填写表格。
学生填写表格,教师巡视,对个别学生进行指导和说明。
学生填写完表格后,小组交流汇报结果。
(5)归纳概括,理解规律。
教师:请大家认真观察表格,你发现在一条线段上栽树(两端要栽),间隔数和棵树有什么关系?将自己的发现在小组内说一说。
学生汇报自己的发现。
引导学生发现两端都栽树,植树的棵数比间隔数多1,也可以说间隔数比棵数少1。
教师:为什么两端都栽树,棵数比间隔数多1?
学生回答后,教师借助课件演示帮助学生进一步直观理解。
(设计意图:学生动手操作,合作交流。让学生在不断的操作和交流中,经历了观察、发现和感受的全过程,学到了解决问题的方法。)。
(6)即时巩固,强化规律。
(设计意图:通过这个小练习,使学生进一步掌握在两端都栽的情况下,树的棵数和间隔数之间的关系。)。
3、运用规律,验证例1。
学生尝试列式解决问题,教师巡视,有针对性地指导。
(设计意图:让学生经历猜测——试验——验证的探究过程,同时让学生明确每步算式的意义,以便于学生更好地理解植树问题的数学模型。)。
(三)回归生活,实际应用。
1、“做一做”第1题。
教师:这道题里没有植树呀,能用我们今天学的方法解决吗?
使学生明确应用植树问题的规律,可以解决生活中很多类似问题。在本题中把一盏路灯看成一棵树,也能用植树问题的规律来解决。
教师:其实植树问题,并不只是与植树相关,生活中有很多问题和植树问题相似,比如安装路灯、电线杆、设立车站等。
2、练习二十四1、2、3题。
让学生进一步感受到植树问题在生活中的广泛应用。
3、练习二十四第4题。
教师:这一题与例题有什么不同?
老师引导学生找出此题与例题的区别。例题是知道全长与间隔长度求棵数,而本题是知道间隔长度与棵数求路的全长。
教师:你是怎样计算的?为什么用36减1?
(设计意图:运用植树问题的数学模型解决生活中的类似问题,把植树问题进行拓展应用,使学生能举一反三,触类旁通,并让学生体会到数学与实际生活的紧密联系。)。
(四)课堂小结,畅谈收获。
通过本节课的学习,让学生了解两端都栽的情况下,棵数和间隔数的关系,这部分内容比较抽象,为了将难点化简,讲授新知前,我利用手指游戏导入,孩子很感兴趣,而且初步感受到了棵数、间隔数的关系。再从生活中抽取简单的植树现象,加以提炼,建立数学模型,再将这一数学模型应用于生活实际。
从学生感兴趣的猜谜和游戏入手,创设轻松愉悦的氛围,让学生初步感知棵数、间隔数的关系,为进一步的探究奠定了基础。这种学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,为学生提供了充分思考的时间与空间,让学生从简单的问题入手,借助直观的图示,探索植树问题两端要栽的规律。借助图形,建立知识表象,注重对数形结合意识的渗透,使学生得到启迪,悟到方法,从而建立起学习的信心,进一步解决较复杂的问题,渗透一种化归思想。
“数学来源于生活,而又应该为生活服务。”让学生认识到只要善于观察,就会发现生活中的许多事例跟植树问题相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。
但这节课也有我颇感不足的地方,我觉得自己对学生的学习起点没有充分把握,没有注重学生逆向思维的培养,也没能很好地关注到全体学生,在以后的教学中,我还要注意把握好教材的度,适当进行取舍,更合理的安排好教学时间。
植树问题教学设计及说课稿篇八
教学内容:
人教版五年级上册第106页内容教学目标:
知识与技能:
通过探索,发现两端都栽的植树问题的规律,并运用这一规律解决实际生活中的问题。
过程与方法:
让学生经历观察、猜想、自主实验、探究、交流,从中发现规律,抽取数学模型过程。
情感态度与价值观:
让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。教学重点:
引导学生发现并理解全长与间距、间隔数与棵数之间的关系和规律。教学难点:
理解全长与间距、间隔数与棵数之间的规律并运用规律解决生活中的实际问题。
植树问题教学设计及说课稿篇九
5月13日校本教研中听了葛老师讲的植树问题,“植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容。葛老师利用学生的动手操作,小组活动等形式向学生渗透复杂问题从简单入手的思想,明确了植树问题中两端都栽情况的解决问题,教学效果良好。
1、导入新课的形式新颖,教师利用猜谜语的形式导入,激发学生兴趣,在伸出双手,找出手指之间的间隔,理解间隔的概念,以及间隔数,将复杂的问题形象化,学生易学、易懂,开了一个好头。
2、葛老师上课的思路比较清晰,她先提炼出数学模型(间隔数+1=棵数),最后将这一数学模型应用与生活实际。整堂课节奏紧凑,层层深入,学生在愉悦的氛围中引发了乐学的动机,在开放的课堂中提供了乐学条件,在活动的氛围中增加了乐学的体验。在上课过程中,“猜想到验证”的学生学习过程一直贯穿着整节课中。
3、课堂教学体现系统性。葛老师能灵活构建知识系统,注重教学内容的整体处理。能活用教材,让资源启迪探究。激发学生探究的欲望。通过例题,让学生比较系统地建立植树问题中“两端都要种”的情况。
4、课堂练习设计合理,如采用表格的形式出现不同的已知的条件,解决不同的问题,让学生通过解决问题,感受植树问题服务于生活,同时提高了学生解决实际问题的能力,更激发学生学习数学的兴趣。
5、葛老师还注重了利用例题的教学进行了归纳与总结,经过老师与学生的共同研究交流,总结出了解决问题的方法,有利于学生进一步的学习。这节课充分体现了老师与学生、教法与学法的和谐。
植树问题教学设计及说课稿篇十
教学目标:
1、在摸一摸、摆一摆、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。
2、在亲身体验、交流中,进一步理解间隔数与棵数之间规律,并解决生活中的植树问题。
3、在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。
教学重点:
理解“植树问题(两端要种)”的特征,应用规律解决问题。
教学难点:
让学生发现植树的棵数和间隔数之间的关系。应用规律解决问题。
教学准备:
课件。
教学过程:
一、初步感知间隔的含义。
1、肢体体验:同学们都有一双灵巧的小手,它不但会写字、画画、干活,在它里面还蕴藏着有趣的数学知识,你想了解它吗?请举起你的右手,并将五指伸直、张开、用左手摸摸右手,数一数,五个手指有几个空格?(4个空格),师:在数学上,我们把这个空格叫“间隔”。也就是说,大小拇指在一只手的两端:5个手指之间有几个间隔?(4个间隔)。弯弯你的大拇指看:4个手指之间有几个间隔?(4个间隔);把大、小拇指一齐弯弯看:3个手指之间有几个间隔?(4个间隔),那么,将5个手指换成小树,5棵小树之间有几个间隔(4个)。
师:生活中的“间隔”到处可见,你知道生活中还有哪些间隔吗?(两棵树之间、两个同学之间、楼梯、锯木头、敲钟…都有间隔。)。
2、引入课题:师:树可以美化环境,清新空气,我们要多植树。在一条直线上种树,每两棵树之间相等的段数叫做间隔数,每个间隔的长度叫间距,也叫株距。间隔数与棵数的关系,数学里统称植树问题,这就是我们今天要探究的内容——在一条不封闭的直路上的“植树问题”。(揭题,板书:植树问题)。
二、探究规律,解决问题。
1、找出两端都种树的规律。
植树问题情景1,师出示:例1.同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?师:请同学们默读题目,谁来分析一下这道题的条件、问题、关键词和单位?要求一共需多少棵树苗?先要知道两端都栽树,棵数与间隔数有什么关系?要解决这个问题,实践是检验真理的唯一标准,但是100米这个数字有点大,不好验证,在遇到比较复杂的问题时,我们可以先用比较简单的例子来验证。
师:现在我们用研究出的两端都栽树,棵数等于间隔数加1的规律来解决例1中的问题,在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?生:100÷5=20(个间隔)20+1=21(棵)。利用两端都栽树,棵数=间隔数+1”这个规律解决了两端都植树的问题。
三、应用规律,走进生活。
走进生活:
(一)目标检测:
1.排列在同一条直线上的16棵树之间有()个间隔。2.从第1棵树到最后1棵树之间有30个间隔,一共有()棵树。
(二)闯关题。
2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?
3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
4、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?
5、15个军人站成一列,每两个军人间距离为1米,这列队伍有多长?
四、总结:通过这节课的学习,你们有什么收获?
五、作业设计。
实地考察。
两端要栽:棵数=间隔数+1;
植树问题教学设计及说课稿篇十一
教学目标:
1、通过探究发现一条线段上两端要种的植树问题的规律。
2、使学生经历和体验“复杂问题简单化”的解题策略和方法。
3、让学生感受数学在日常生活中的广泛应用,尝试用数学的.方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
教学过程:
一、创设情景。
1、我们来看这幅图(/|/|/|),提问:人数与杠杆数有什么关系?
边板书边说:“一个人后面一根杠杆,一个人后面一根杠杆,一个人后面一根杠杆,人数与杠杆数一一对应,人数=杠杆数”。
2、我们再来看这幅图(/|-|-|),提问:他们在抬杠杆时出现了什么问题?
请大家讨论一下,为什么左边的杠杆没有抬起来?怎样才能把左边的杠杆抬起来?
1)增加1人(动画演示)。
提问:人数与杠杆数有什么关系?
板书:人数=杠杆数+1。
提问:你能说说这两幅图的区别吗?
板书:两端有人一端有人。
2)首尾相接(动画演示)。
提问:人数与杠杆数有什么关系?
板书:人数=杠杆数。
提问:如果有4人,怎样才能把4根杠杆抬起来?5人呢?
小结:围成一个封闭图形时,人数=杠杆数。
二、探究新知。
1、p.117例题1。
1)学生读题。
审题:每隔5米栽一棵,怎么理解?(每段5米)两端要栽,说明什么?
提要求:请同学们先独立解题,再由小组讨论解题思路以及理由。
汇报:先算什么?
提示:如果我们一时想不清要不要加1,我们怎么办?我们可以先把数据改成小一点,再画线段图,找出规律再解答。
学生画出线段图后说说规律。
2)对比后揭示课题:
我们来对比一下抬杠杆与植树有什么联系?
树的棵数相当于什么?
两端都有人相当于什么?
间隔数相当于什么?
教师小结:我们把研究间隔数与棵数之间的关系的问题称为植树问题。
3)改编题:
如果把“一边植树”改成“两边植树”,怎么解答?
你准备先算什么?
学生独立解题后交流答案。
三、尝试练习。
1、p.118做一做。
学生读题后提问:每隔6米,就是什么?
学生看线段图中的第一棵和最后一棵,说说是两端都种还是一端种?先算什么?
独立解答。交流答案。
2、出示p.122t.2.3.1。
让学生独立解答。
汇报交流。
重点强调:t.1。
课件演示5时的敲钟过程,让学生说说什么时候敲完,敲的下数相当于植树问题中的什么?敲钟的时间相当于什么?再说说解题思路。
四、拓展练习。
出示题目:“起点至第一栏的距离为13.72米,中间共有10个栏,栏间距离为9.14米,最后一栏至终点的距离是14.02米。你们知道他从起点到终点跑了多少米吗?”
出示线段图后,学生独立解答后交流。
五、课堂总结。
学生说说有什么收获。
教师补充强调:植树问题中,有四种不同的类型,其中当两端都种时,棵数=间隔数+1。
植树问题教学设计及说课稿篇十二
1、以课标为理论依据,为本节课把脉。
《课标》提出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和解决问题的策略。”
(新课标实施后,数学教材进行了相应的改革,数学思想方法的重要性更为彰显。最明显的表现在于每册教材多了“数学广角”这一单元,通过“数学广角”来进一步渗透数学学习的思想、方法,加强学生综合运用知识的能力,逐步提高解决问题的能力。)。
2、注重生活体验,探求事物中隐含的规律。
有意义的学习是学生在具体情境中通过生活体验而自主建构的。体验是学生活动化学习的关键,是建构知识的基础。因此,利用学生的生活经验,结合生活实际,学生经历从实际问题中抽象出数量关系,并运用所学知识解决生活实际问题。既重视了数学思维培养,又渗透了数学方法,探求给定事物中隐含的规律或变化趋势。”
我执教的内容是人教版小学数学四年级下册第八单元数学广角例1--植树问题。它在生活中的应用非常广泛,具体情况复杂而多样。
现实生活中与“植树问题”类似的有很多:如安装路灯、花坛摆花、站队中的方阵、锯木头、走楼梯,等等。由于它们之间都存有共性:都隐藏着间隔数与棵数之间的关系,因此,抽取比较有代表性的“植树问题”,作为数学模型研究,总结这一类问题的解决方法,和策略。
本节课主要探讨关于在一条线段植树的问题,即使在一条线段植树也有不同的情形:只栽一端、只栽中间、两端都栽的几种情形。例1主要研究两端都要栽的植树问题,也是这一系列内容的起始课,教材以学生比较熟悉的植树活动为线索,让学生选用自己喜欢的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等数学探索的过程,并启发学生透过现象发现其中的规律,抽取出数学模型,再利用规律回归生活,解决生活实际问题。
植树问题的教学旨在向学生渗透有关植树问题的一些思想方法和策略,提高学生的综合分析、推理能力。
说教学目标:依据教材、教参的编排体系和编写意图我确定本节课的教学目标为:
1、学生通过小组合作、交流,经历将实际问题抽象出植树问题模型的过程,掌握在线段上植树(两端要栽)的情况中“棵数=间隔数+1”的关系。
2、会应用植树问题的模型解决一些相关的实际问题。
3、学生能借助图形理解“棵数=间隔数+1”“总长=间隔数×间距”等间隔数与棵数、总长、间距的关系,感悟数形结合的思想。
4、感悟构建数学模型是解决实际问题的重要方法之一。
5、学生经历和体验“复杂问题简单化”的解题策略和方法。
说教学重点、难点:
教学重点:
学生从实际问题中探索并总结出两端都种植时“棵树=间隔数+1”的关系,并能利用发现的规律解决实际问题。
(数学学习,不是单纯的因数学而教学,而是重视学生知识的建构过程,而过程性目标的设立,使得学生思维发展有了凭借,也使数学学习的思想方法真正得以渗透,这也是我们数学教学的实质。)。
教学难点:
能把现实生活中类似的问题同化为“植树问题”,建立物体总个数与间隔数之间的关系,并运用植树问题的思想方法解决这些实际问题。
(生活中的实际问题千变万化,学生先分析与“植树问题”的异同,再选择合适的方法,例如:在路旁安装路灯问题,学生先建立路灯的总数相当于植树问题中棵数,再分析间隔数与路灯的总个数之间的关系,需要学生具有一定的分析判断能力,因此具有思维难度)。
为了加强学生理解间隔数与棵数之间的关系,利用线段图、小棒、直尺、课件演示等直观手段,让学生发现、总结、运用规律,加深学生对重、难点的理解。
教学具准备:方格纸、小棒、直尺、课件。
教师是学习的引导者,学生是学习的主人,教师在学生的学习过程中起到点拨、渗透,引导的作用。在本节课中,我力图体现学生的主体地位,发挥学生的主观能动性。因此,我采用小组合作、自主探究式学习模式,学生通过画图等方法探究发现规律,应用规律,通过有序的操作、思考、实践等活动,学生的所想、所悟与直观形象结合,渗透数形结合的方法,深刻体会到解决植树问题的思想方法内涵。
(一)创设情境。
(创设为学校设计植树方案的情境,贴近学生生活,让学生感受到数学问题来源于生活,为生活服务的思想。并且激发学生积极参加到学习活动中。我还把教材例题100米,改成20米,主要因为我感觉100米的距离还是有些长,学生在动手操作时,不便于研究。同时也遵从了教参中把复杂问题简单化的思想)。
二、探究新知。
这一环节是本节课的重点,本节课重点探讨在线段上植树(两端要栽)的情况中“棵数=间隔数+1”的关系,间隔数与棵树的关系其实也是生活中一些类似问题的关系问题,因此,在本节课的第二个教学环节就是向学生渗透此类问题的思想方法、让学生发现其中的规律,建立起数学模型的过程,非常重要。
我精心设计了这样4个小环节:
1、出示要求。(。
2、学生分组设计方案。
3、学生展示自己设计的方案。
4、引导归纳。
5、尝试应用。
三、巩固应用。
1、联系生活。
其实我们的生活中类似植树问题的现象有很多,你能举例吗?
师:杨老师也找到一些,请大家试一试。
(2)丁丁回家每走一层楼就有12个台阶,共要走72个台阶,丁丁住在几楼?
(6)广场上的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间?
2、分层练习。
(1)选择一题,独立解题。
(2)组内交流。
(3)集体交流。
(练习题设计有层次性,充分体现本节课的重点,难点,并且又利用学生熟悉的生活场景,带着浓厚的兴趣和高涨的积极性,解决实际生活中的问题,也体现让数学知识回归生活,为生活服务的思想。)。
四、小结。
师:这节课你有什么收获?
两端都种:棵数=间隔数+1。
总长=间隔数×间距。
通过这样一堂课的教学,学生感受这样两点:
现代教学论认为:学生只有在亲身经历或体验一种学习过程中,其聪明才智才能得以发挥出来,任何学习都是一种积极主动的建构过程。学生通过小组合作、交流,学生自主构建植树问题的数学模型,从而体会复杂问题从简单入手的数学思想,感悟数形结合的思想。
二、数学知识生活化。
整节课的教学,努力做到放飞学生思维的翅膀,把数学教学融于千姿百态的生活之中,从学生实际出发,通过解决生活中的问题,学生感受到数学知识来源于生活,运用于生活,数学就在我们身边,从而深刻感受到数学的应用价值,激发学习数学的兴趣。营造一份“天高任鸟飞、海阔凭鱼跃”的佳境,让每一位学生都能成为生活的主人,让每一节数学课都成为学生人生路上前进的加油站!
植树问题教学设计及说课稿篇十三
一、知识与技能性:
1、利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。
2、通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。
3、能够借助图形,利用规律来解决简单植树的问题。
二、过程与方法:
1、进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。
2、渗透数形结合的思想,培养学生借助图形解决问题的意识。
3、培养学生的合作意识,养成良好的交流习惯。
三、情感态度与价值观。
通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。
引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。
课件。
一、动手种树,初步感知。
1、创设情景。
2、理解题意。
[出示要求]:在操场边上,有一条20米长的小路,学校计划在小路的一边种树,请按照每隔5米种一棵的要求,设计一份植树方案,并说明你的设计理由。
师:从这份要求上,你能获得哪些信息?
(20米长的小路,一边,每隔5米种一棵)。
3、设计方案,动手种树。
师:了解了信息,请同学们设计一份植树方案。你可以用这条线段来代表20米长的小路,其中每一小段的长度是1厘米,我们用它来表示1米长的小路,请你用自己喜欢的图案或图形来表示小树苗,把你设计的方案画一画。比一比,谁画得快种得好,老师就聘请他作学校的环境设计师。
学生活动,教师巡视指导。
4、反馈交流。
师:根据你的方案,需要种几棵树?
师:同学们真会动脑筋,设计出了这么多的方案。那他们的方案分别是怎样的呢?
请设计师们给大家作一下介绍。
师:他的设计符合要求吗?
师:这位同学是按照每隔5米种一棵的要求来设计的,我们把这个距离叫做间隔距离,在这份设计方案中,有几个间隔距离呢?我们一起来数一数。有4个这样的间隔距离。像这样间隔距离的个数我们又把它叫做间隔数。
师:接下来我们来看看种4棵树的设计方案是怎样的?
生答。
师:最后我们来看看种3棵树的设计方案又是怎样的呢?
生答。
师:就一个要求,同学们就设计出了三种不同的植树方案,真是太能干了!
看来你们都有成为环境设计师的资格。李老师会把你们的方案上交到学校的。
师:第一种方案,在路的头尾都种了一棵树,我们就把它叫做是“两端都种”的植树方案,第二种方案,只种头不种尾或者只种尾不种头,我们就把它叫做是“只种一端”的植树方案,第三种植树方案头尾都不种树,我们就把它叫做是“两端不种”的植树方案。(板书:两端都栽只栽一端两端不栽)。
二、合作探究,总结方法。
1、总结规律。
师:现在我们一起来研究一下,在这三种植树方案中,它们的间隔数和树的棵数之间分别有着什么样的关系呢?同桌同学先讨论讨论,然后完成这张表格。
植树方案间隔数(个)棵数(棵)间隔数与棵数的关系。
学生反馈交流,师生共同完成表格。
师小结:刚才我们通过每隔5米种一棵树的要求,发现了植树的三种方案,并知道了每种方案中棵数与间隔数之间的关系,接下来我们重点来研究“两端都种”的植树问题。
(学生活动后反馈交流)。
师小结。
2、运用规律。
三、开放练习,应用方法。
(1)学生独立解答。
(2)全班交流结果。
2、师:如果两侧都要种,一共需要多少棵樟树苗?(把第1题中的“一侧”改为“两侧”?)。
(1)学生独立解答。
(2)集体反馈。
(1)学生独立解答。
(2)集体反馈。
师小结。
(1)学生独立解答。
(2)集体反馈。
师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。
6、书本p122练习二十第4题。
四、课堂小结,课外延伸。
师:通过这节课的学习你有什么收获?
五、板书设计:
(主板书)(副板书)。
间隔距离间隔数棵数。
两端要栽:间隔数+1=棵数1米20个21棵。
只栽一端:间隔数=棵数2米10个11棵。
两端不栽:间隔数-1=棵数4米5个6棵。
10米2个3棵。
植树问题教学设计及说课稿篇十四
曹老师本节课无论是从教育理念还是对教材的解读与整合以及个人丰富风趣的教学语言等诸多方面都彰显了自身较高的专业素养,用他的热情与激情感染了每一位听课者,给大家以视听的享受。
1、丰富风趣的语言艺术。苏霍姆林斯基指出:“教育的艺术首先包括谈话的艺术。”教师的教学效果,很大程度上取决于他的语言表达能力,这就给教师的语言修养提出了很高的要求。在课堂教学当中,教师的表述具有新颖性,能够把学生的思维引入课堂教学中来。本节课曹老师从课前准备到结束每一个教学环节都显现出他独特的风韵格调。开课前一曲改编的幸福拍手歌将孩子不自觉的代入了课堂的准备之中。课堂引入巧妙引导,诱发情感;课堂提问巧问促思,激起思维的波澜;课堂评价具体诚恳,点燃学生学习的热情,透着老师关爱之心。整节课教师激情四射,非常投入,引领着学生全身心的投入到学习活动之中。
2、以新的课改理念来指导自己的教学行为,以自己的教学行为来诠释自己的教学思想。新课标强调要让学生成为学习的主体,教学中要留有充分的时间和空间,让其经历有自己的语言表达规律、与同伴交流各自的方法的过程。曹老师本节课虽然教学容量大,但每一个知识点的形成和问题的探讨都不急于求成,善于等待。例如在探讨20米小路,每5米栽一棵树,为什么是4个间隔数?10米木头锯5段这个问题时,给学生留有充足的思考和交流的空间,当有5六个孩子都有答出时,教师没有急于给出答案。正是有了教师的等待,最后有孩子终于想到了解决题的办法。这不仅体现了曹老师对学生的一种信任,也是一种尊重。更是对自己的角色和职责做出了很好的定位。
3、注重课堂细节,重视学生学习习惯的培养。良好的学习习惯,是学习活动顺利进行的保证,是提高学习质量的诸多重要条件之一,是学会学习的一个重要指标。曹老师整节课善于组织课堂,让学生养成良好的听课习惯。学生回答问题时要求做到有条理,清楚表达自己的观点,回答完整等等。例如学生在回答间隔、间距时。练习中单位、答语等细节问题。
4、具有扎实的教学基本功。曹老师能够熟练地操作多媒体教学设施辅助教学,课件精美实用。教态自然得体具有亲和力,具有清晰的逻辑思维能力,具有较强的与人交往沟通能力,具有较高水平的班级管理与课堂调控、组织能力。
曹老师这节课通过深入的解读和创造性的整合教材,精心设计,精彩的演绎,从学生的反馈来看,取得了良好的教学效果。
1、教师能有效倡导学生主动参与、乐于探究、勤于动手的学习方式。有效地组织和引导学生开展探究性的学习,让学生经历了知识形成的过程,使接受与探究相辅相成,学生的学习境界更高,学习效果更好,教学目标落到了实处。
2、有效的课堂提问,激发了不同学生的思考。老师对关间词“间隔数、间距”的解释到位,对在20米的小路一边植树,每隔5米栽一棵,有几种栽法?让学生探究不同的植树方法,使学生的个性发挥得淋漓尽致,紧接着让学生比较三种植树方案的相同点和不同点,从而对植树规律得出了实践性的`体验,加深了对这个规律的理解。在探究过程中的追问(为什么在相同的条件下,栽树的不一样呢?),使学生通过更深一步的思考,进一步重现了计算过程与思考方法,通过有条理的表述,让学生思维的逻辑性得到了进一步的锻炼,自然学生的思维能力就得到了更深层的发展。
3、学生参与学习活动面广,学生上课热情高,主动参与,全班不同层面的学生参与学习的全过程,有充分参与的时间和空间。
4、整堂课中,曹老师注重了学习方法的渗透,关注学生的学习起点,合理安排教学内容。
5、练习设计层次分明,应用意识地培养和思维训练贯穿始终。最后问题的拓展与延伸到封闭图形的植树问题。给学生留下思考的余地,与本节课首尾呼应。
如何更有效的突破种树的棵树与间隔数的“一一对应“关系?
植树问题教学设计及说课稿篇十五
植树去(7的分合)》选自于世界图书出版社做中学1下册。这节活动位于《多角度分类》之后,意在进一步丰富幼儿按特征分类知识、发展幼儿的思维能力。同时作为本节活动,旨在通过植树这一生活情境,探索7的分合,帮助幼儿建立一定的数量关系,涵盖多方面的知识。
新《纲要》要求幼儿应从生活中和游戏中感知事物的数量关系,还要关注幼儿探索操作,交流问题和合作能力。本节活动中,为幼儿提供操作材料,让幼儿通过自身的探索,操作活动获取有关数的分解和组成的经验,同时引导幼儿用所学的数学知识去解决生活中的实际问题,使学与用结合起来。
根据我对活动内容的理解,结合《指南》中对5—6岁幼儿数学认知活动的相关要求,我将本节活动目标定位为:
1、乐于探索,能积极参加游戏活动。(情感目标)。
2、探索7的组成,知道7有6种分法。(知识目标)。
3、能与同伴友好合作,能用自己喜欢的方式记录自己的发现。(能力目标)。
其中活动的重点为探索7的组成,知道7有6种分法。活动的难点为。
为了帮助幼儿建立对7的分合的正确认识,顺利达成活动目标,突出活动重点,克服活动难点,本节活动主要采用以下教学方法:
1、情景教学法:为了激发幼儿参与活动的兴趣,本节活动创设了“熊大熊二参加植树活动,遇到了要将7棵树分别种在两块地里”的情境,借用幼儿喜欢的动画片形象引领幼儿快乐参与活动。
2、操作交流法:在活动中,为每组幼儿都准备了丰富的操作材料,幼儿通过分一分,栽一栽,说一说的活动,形成了对7的组成的较为直观形象的认识。
3、游戏教学法:活动中,通过种树游戏建立对7的分合的初步概念,紧接着通过“碰碰碰”的游戏形成对7的分合的正确认识,最后通过乘坐火车的游戏再巩固。
在本节活动中,主要向幼儿渗透如下学法:
1、观察记录法:通过幼儿对栽树游戏中两块中树的数量的观察,引导幼儿运用数字记录自己的发现。
2、通过幼儿亲身的游戏实践,真实操作中掌握7的分合知识。
3、动手操作法:合作交流法:通过小组内、班级幼儿之间,以及师幼的合作交流,形成对7的分合的完整的概念。
(一)游戏情境的导入:
以幼儿喜欢的《熊出没》的主题曲导入,创设熊大熊二参加植树活动,遇到要将7棵树分别种在两块地里的问题,想请小朋友帮忙种树这一情境。
(二)游戏活动的准备:
主要引导幼儿运用教师准备的材料,通过分一分,栽一栽,记一记,说一说的游戏操作活动,在幼儿与材料的相互作用形成对7的分合的认识和经验。
(三)游戏活动的过程:
通过幼儿与教师扮演的数字精灵7的碰碰对的游戏,巩固幼儿对7的分合的较为全面和准确的认识。
(四)游戏活动的拓展:
1、通过去雪岭乘坐7号列车的乘车游戏,再次巩固幼儿对于7的分合的完整的经验。
2、鼓励幼儿探索再添一棵树,8棵树该怎么分。
3、教育幼儿爱护树木,保护环境。
植树问题教学设计及说课稿篇十六
1、认识15个生字。
2、朗读课文,背诵课文。
3、感悟课文内容,知道植树的好处,体验植树的快乐,感受自己象小树一样成长。
1、认识15个生字。
2、感悟课文内容,朗读课文,背诵课文。
1、出示图片:画面上画了什么?你了解到了什么?
2、出示课题:我们去植树。
3、齐读课题,教师重点指导“植”的读音。
1、自由读文,找一找哪些读音自己读不准。
2、听老师范读课文,学一学自己读不准的字音。
3、自己在课文中找到要求认的字,并画出词语,再读一读。
4、出示词语卡片进行认读,再出示会认字的卡片进行认读。说说你记住了哪些生字,用什么方法记住的.。
5、再读课文,你想提醒大家注意哪些字的读音?
1、读一读第一段,你了解到什么?
(1)我们是怎样种树的?
(2)边看图边读,你有什么感受?
2、你们想到哪儿去种树?快读第二自然段。
(1)指名读,从马路、小山、河岸的话中你们体会到什么?
(2)教师引读,听了这些感谢的话你们会怎么说?
(3)表演读。
(4)练习背诵。
3、自由读第三四自然段,你又了解了什么?
(1)小树给我们带来哪些快乐?
(2)你们和小树之间有哪些相似的地方?
(3)快带着快乐读读课文吧。
(4)试着背一背这两个自然段。
学习了这一课你有什么想法?
植树问题教学设计及说课稿篇十七
尊敬的各位评委:
大家下午好!我说课的内容是人教版小学数学五年级上册第七单元《植树问题》第一课时的内容。
我将以教什么,怎样教,为什么这样教为思路,从说教材、说学生、说教法与学法、说媒体使用、说教学过程五个方面展开我的说课。
一、说教材。
(一)教材的地位与作用。
新课标实施后,数学教材进行了相应的改革,数学思想方法的重要性更为彰显。最明显的表现在于每册教材多了“数学广角”这一单元,通过“数学广角”来进一步渗透数学学习的思想、方法,加强学生综合运用知识的能力,逐步提高解决问题的能力。
《植树问题》是人教版新课程标准五年级上册“数学广角”的内容,这一单元主要内容就是植树问题。本节课主要探讨关于在一条线段上植树的问题,例1主要研究两端都要栽的植树问题,也是这一系列内容的起始课。通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型。本节课不但是建构知识的基础,而且起着启后的作用。
(二)教学目标的确定。
知识与技能:利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。
过程与方法:使学生经历感知、理解知识的过程,体验“复杂问题简单化”的解题策略和方法。
情感态度与价值观:通过实践活动激发学生热爱数学的情感,感受日常生活中处处有数学,体验学习成功的喜悦。
(三)说教学重点、难点。
教学重点:会应用植树问题的规律解决两端都种数的问题。
教学难点:能把现实生活中类似的问题同化为“植树问题”,建立物体总个数与间隔数之间的关系,并运用植树问题的思想方法解决这些实际问题。
二、说学生。
由于学生初次接触“植树问题”,这部分的学习内容学生一定会很感兴趣,学习的热情也会比较高涨,但根据以往的教学经验,这部分内容对于学生来说是不容易理解和掌握的。学生已经掌握了关于线段的相关知识,也具备了一定的生活经验和分析思考能力与计算能力。因此为了让学生能更好地理解本单元的教学内容,我在教学过程中对教材进行了分类学习,并充分利用学生原有的知识和生活经验,来组织学生开展各个环节的教学活动。
三、说教法、学法。
我采用自主探究式学习模式,学生模拟“种树”————探究发现规律————应用规律实践的活动过程,通过有序的操作、思考、实践等活动,使学生的所想、所悟与直观形象结合,经历知识的探究过程,渗透数学学习方法,深刻体会到解决植树问题的思想方法内涵。
四、说媒体使用。
为更好地发挥多媒体作用,提高课堂效率,本节课运用多媒体主要是以下几方面:
2、运用课件播放,逐步演示小路是20米、25米、30米时的栽树情况,便于让学生弄清楚什么是间隔数、什么是棵数。
3、在课堂检测时运用多媒体呈现,增加课堂容量,提高课堂效率,在矫正达标时,运用实物展台直观呈现学生检测练习,节省书写时间,便于其他学生看清楚。
五、说教学过程。
(新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,我在教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。
鉴于本课教学内容设定的教学目标及学生的认知规律和实际情况,我设计了如下教学程序:
(一)创设情境、导入新课。
1、小游戏:找手指上的数学。我们的双手不但会做事情,还隐藏许多数学问题。
2、引出“间隔长”的概念。
随机请一行同学站起来,不断增减学生,让学生边观察边说,几个同学几个隔,老师发问,哪个间隔长,引出“间隔长”的概念。
(初步感知什么是间隔数,间隔长度。为下面的发现规律打下基础。揭示课题:在生活中我们常常会遇到像同学们排队这样的问题,数学家把这类问题统称为植树问题,这节课我们就一起研究和解决一些简单的植树问题。这样激发了学生的求知欲,形成积极的情感态度。)。
(这一环节,用意在于先突破教学中的知识点,理解间隔,间隔数,初步感知间隔数与物体个数的关系,并且起到规范学生语言的作用,使学生在轻松的活动中为新课的学习作铺垫)。
(二)学习新课:我精心设计了这样4个小环节。
1、化繁为简,解决问题。
例题1:通过创设在100米小路一边植树,每个5米栽一棵的现实情境,提出“一共要栽多少棵树?”的问题,先让学生猜一猜,再让学生去画图验证时感知100米太长了,可以将100米转化成20米等小的数据研究。
(1)自主学习。
学生通过线段图画一画、小棒摆一摆等学生自己喜欢的、比较形象的方式,解决植树问题的思想方法,初步感知到在植树问题中,棵数与间隔数之间会存在一定的关系。并且,这样设计,我并不强调(两端都栽),本意在于,先给学生创设宽松的思维环境,让学生打开思路,找到在一段路栽树时的不同方法,让思维如花般绽放。
(2)小组汇报:(抽取数学模型,猜测两端都栽时棵数与间隔数之间的关系。)边模拟栽树,边板书,边汇报。
点明:今天主要研究一下像这样的两端都栽的植树问题。(从上面多种方案中,抽取两端都栽的数学模型加以研究。)。
(设计意图:生本教学改变了教师是课堂的主人这一传统现象,变为学生是课堂的主人,让学生小组汇报就是把课堂还给孩子,孩子们通过分工,小组共同把他们的发现汇报给全班,锻炼了学生的组织分工和语言表达能力,增强了孩子的自豪感和自信心,在交流汇报的过程中,台下的学生有不同的意见和汇报的小组进行交流、补充、纠错,纠正和完善了知识点。)。
2、课件播放:
在前面学生动手操作的基础上,又通过课件演示20米小路,每5米栽一棵(两端都栽)的栽树过程,通过进一步的拓展:如果小路是25米呢?30米呢,逐步演示。
(这个过程是重点,必须让学生弄清楚什么是间隔数、什么是棵数,因此,利用课件直观形象地加以演示,)学生的思维顿时茅塞顿开:啊!原来棵数与间隔数还存在这样的关系,但是学生,只是直观看到的,还处于比较朦胧的认知状态,不理解。再者,只通过一个例子说明之间的关系,不具有说服力,因此,还需要通过进一步的验证活动来证明规律的存在。
3、验证规律,再次感悟解决植树问题的策略。
是不是在一段路种树,两端都要种时,间隔数与棵树之间都是这样的关系呢?接着我恰当的组织学生进行又一次的操作活动:请同学选择任意路长、和间隔,去自主验证。(通过全班学生的验证、使验证结果更具有说服力)而且,让学生的自我探究意识和求知欲得到再次激发,迫切的需要知道自己猜测的正确与否,自主地寻求验证的方法,从而也向学生渗透了解决数学问题的思想和策略。
4、引导学生用数学的形式,列数学算式。
学生把刚才的规律,转化成数量关系,从而列出:20÷5+1=5(棵)这样的算式。
(这个环节我遵循从具体到抽象的思维过程,建立了解决植树问题的思想方法,感悟到解此类问题的策略。)。
(整节课的教学设计让学生经历由复杂问题到简单问题再到发现规律,最后解决问题的过程,渗透化繁为简的数学思想。)。
(三)应用迁移,巩固提高。
一方面为了巩固之前发现的规律,另一方面让学生认识到植树问题不仅用来解决植树的问题,还可以解决类似的问题。本课练习安排了以下两个层次:
1直接应用模型解决简单的实际问题。
(1)教材练习二十四,第1题。
(2)找生活中的有关“植树问题”。
如:安装路灯、排队问题、楼梯问题、封闭中的花坛种花问题等等。
2、推广到与植树问题相近的一些问题中。
(设计题图:通过设计有层次性的练习题,,使学生进一步体会,现实生活中的许多不同事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。同时充分体现本节课的重点,难点,并且又利用学生熟悉的生活场景,带着浓厚的兴趣和高涨的积极性,解决实际生活中的问题,也体现让数学知识回归生活,为生活服务的思想。)。
(四)应用迁移,巩固提高全课总结。
1、师:同学们今天的表现真不错,运用发现的规律解决了不少问题,你们看,老师把大家的发现编成了一首儿歌,我们一起来读读吧!(课件出示)小树苗,栽一栽,两端都栽问题来,间隔数多1是棵数,棵数少1是间隔数,怎样求出间隔数?全长除以间隔长。
2、师:植树问题中的学问还有很多,在以后的学习中,我们还会学到两端不栽,一端栽,封闭图形中的植树问题,这些都需要同学们在以后的学习中开动脑筋、积极思考才能找到解决问题的好办法。
(五)布置作业:教材第109页第3题。
六、说板书设计。
我的板书是我和学生共同完成的,直观形象,一目了然,突出了重难点,有利于学生更好的巩固和掌握本课所学的知识。
植树问题教学设计及说课稿篇十八
“植树问题”是人教版五年级上册“数学广角”的内容,本单元内容由原实验教材四年级下册移来,例3调整为封闭曲线上的植树问题。本单元共有三个例题,例1是直线植树中两端都栽的情况,例2是直线植树中两端都不栽的情况,例3是封闭曲线上植树问题。考虑到教学内容的需要,教学本部分知识时重点就是借助图画方法和“一一对应”“化繁为简”等方法解决问题。
1.引导学生通过观察、猜测、试验、推理等活动,初步体会植树问题的模型思想。2.通过画线段图初步培养学生探索解决问题有效方法的能力。
3.让学生尝试用植树问题的方法来解决实际生活中的简单问题,培养学生解决实际问题的能力。
教学重点:建立“树的棵树与间隔数”的模型思想。
教学难点:学会运用图画方法和“一一对应”“化繁为简”的思想解方法决问题。
1.例1:一条线段上植树(两端都栽)。
植树问题教学的重点是解决点和间隔的关系,建立相应的模型。但是当数据比较大时,不利于学生发现规律,所以教材编排上体现了化繁为简和建模的思想。
例1是关于一条线段上的植树问题并且两端都要栽树的情况,让学生在解决这个问题的过程中发现规律,找到解决问题的有效方法,经历解决问题的过程。
(1)渗透化繁为简的思想,经历解决问题的过程。
通过学生的话“100m太长了,可以先用简单的数试试”渗透化繁为简的解决问题的方法,接下来的编排渗透了“猜测—探索—归纳—应用”的解决问题的策略。
(2)重点培养学生借助线段图建立数学模型的能力。
教材呈现学生用画示意图或线段图的方法帮助思考,通过观察两端都栽树的示意图或线段图,把分割点和栽树的棵树一一对应起来,发现并初步总结栽树的棵数与间隔数之间的关系。再让学生在30m、35m上加以验证,从而建立起一条线段两端都栽这类植树问题的数学模型。从而找到解决问题的方法。
2.例2:一条线段上植树(两端都不栽)。
例2是关于一条线段的植树问题的另一种情况,即两端都不栽树的情况。教材继续通过画线段图的方法帮助学生分析、理解,找出一般规律来解决问题,突出学生的迁移能力培养。
有了例1的基础,可以放手让学生独立思考。学生自然会想到借助线段图来分析,教材呈现学生画线段图进行分析,发现当两端都不栽树时,植树的棵数比间隔数少1,然后利用发现的规律解决例题的问题。
一端栽另一端不栽的情况放在“做一做”第2题让学生自己探究。通过画线段图,可以与例。
1、例2的对比来获得对这一基本模型的理解,同时运用发现的规律解决要求的问题。
3.例3:封闭曲线上植树。
(1)突出画图的策略。
例3是在一条首尾封闭的曲线上植树的问题。编排思路和例1相同,继续渗透化繁为简的思想和画图的策略。借助图示探索规律,建立模型。
(2)注重模型的对比与沟通。
通过小精灵的问题“如果把圆拉直成线段,你能发现什么?”启发学生联系已有的知识找出这种植树问题的规律,即栽树的棵树正好等于间隔数,也就相当于一条线段上植树的一端栽另一端不栽的情况,渗透转化的数学思想。
1.经历建模的过程,感悟思想方法。
“数学广角”的教学目的主要是让学生体验知识的形成过程和感悟数学思想方法。具体到本单元,教学时,教师应从实际问题入手,引导学生在解决问题的分析、思考过程中逐步发现隐含于不同的情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决实际问题中的应用。比如例1的教学,可以让学生经历猜想、实验、归纳、推理的过程,渗透简单的化归、数形结合、一一对应、模型、推理等数学思想,激发学生学习数学的兴趣。
2.突出画图(线段图)的策略。
几何直观是课标的核心概念之一,帮助学生养成画图的习惯是非常重要的。本单元通过画示意图或线段图来解决植树问题,可以更直观理解、更好地发现规律,建立模型,找出解决问题的方法。
另外,学生在学习中容易将两端都栽、一端栽另一端不栽、两端都不栽三种情况弄混。事实上,学生不用记每种模型的结论,遇到问题,只要画个线段图,问题就迎刃而解了,从而体会到画图策略的价值。
植树问题教学设计及说课稿篇十九
知识目标:
通过开放题的教学,培养学生探究数学问题的兴趣,引导学生细致严密地考虑问题;
能力目标:
让学生自己动手,自己实验,得出规律,解决生活中的实际问题。
情感目标:
通过小组合作、交流,培养学生的协作精神。
教(学)具准备:
长方形泡沫塑料板(每小组一块,正面画圆,背面画其他的封闭图形),牙签,画有长方形的练习纸。
指名回答,引导学生说出棵数与段数的关系:
两端都种只种一端两端都不种。
棵数=段数+1棵数=段数棵数=段数-1。
请你把这个规律跟同桌说一遍;教师在黑板上贴示。
这些你能找到它的端点来吗?这就是我们今天要重点来讨论的内容封闭路线上的植树的规律。
1、湖、花坛等等,它们的外围线路都是封闭的。它和不封闭路线上的植树规律是否相同呢?我们自己动手种一下就知道了。
2)、学生以小组为单位操作;
3)、交流:你们小组种了几棵,把圆分成了几段?
4)、初步概括:你们发现了什么规律?(在圆形路线上植树,棵数=段数)。
2、是不是每种封闭路线上的植树规律都是这样的呢?我们还要进一步研究。
1)、出示长方形空地题目。
教师巡视指导;
3)、学生交流:说说你们小组是怎么种的?种了几棵?把长方形分成了几段?
得出:种植路线是长方形的,种植棵数与种植段数是相等的。
4)、出示教科书第120页的例3,让学生先独立思考,再讨论解决。
5)、展示不同的解决问题的方法,集体讨论判断正误。
3、研究在其他封闭图形上种树:
a、你还想在什么封闭路线上种树?(指名回答)。
b、学生在泡沫塑料板的各种封闭图形上种树,边种边数:种了几棵?分成了几段?
c、小组交流。
4、得出规律:在封闭路线上植树:棵数=段数(板书)。
5、联系:它和非封闭路线上的哪种情况相同?
(告诉学生事物就是这样相互联系的!
6、质疑问难:大家还有什么疑问吗?
如果在不规则的封闭路线上植树,棵数和段数是否相同?
练习第121页的做一做上的习题。
学生尝试练习,交流,指名板书解题方法。
这节课你最大的收获是什么?
植树问题教学设计及说课稿篇二十
本节课教学植树问题中两端都栽的这种情况,其主要目的是通过孩子们熟悉的、生活中常见的植树问题的实例,探究发现两端都栽这种情况中植树棵数与间隔数(段数)之间的规律,从而运用所发现的规律去解决生活中的数学问题。
本节课的教学目标是通过向孩子渗透有关植树问题的一些思想、方法,借助线段图、化繁为简等手段让学生从中发现一些规律,抽取出其中的数学模型,体验知识的形成过程和感悟数学的思想方法。
基于以上目标,我特对本节课作如下设计:
1.以孩子们喜欢的猜谜活动引入和我们形影相随的手。然后通过观察张开的右手,发现手指数与间隔数之间的关系(引出间隔数)。再通过预习汇报,让孩子发现植树问题的几种情况,并且为各种情况取名,明确我们本节课所要探究的植树问题(两端都栽),让我们的学习探究目标明确。
2.探究新知:从例1入手,通过让孩子猜猜一猜活动产生孩子们的探究欲望,究竟是多少棵?我们能想办法验证吗?启发孩子想到用线段图画一画这一数形结合的方法进行验证。这时老师加以引导:100米长的小路我们一直画下去、一棵一棵地栽下去,会让孩子感到很麻烦、复杂,因为100米太长了,那么有更简单的方法吗?引导、启发孩子选取100米中的一小段进行研究,这样数据小,画起来就会简单、方便,便于研究,让孩子体会到化繁为简的优势。为此给孩子创设小组合作探究的机会,让孩子充分发挥自己的想象和学习的主动权,选取自己喜欢的数据进行合作、交流(在此做引导:选取的数据必须能被5除尽的,也就是没有余数),避免孩子选中有余数、出现一端不能栽的情况。因为各组所研究的数据不同,出现的结果也不同,经过板书整理,孩子就会很轻松地归纳、推理出其中的规律,让孩子亲身经历猜想、验证、归纳、推理的探究过程。
3.延学中应用所发现的规律,培养孩子解决实际问题的能力。进行了与例题略有不同的变式,旨在进一步让孩子感悟这一数学思想方法和思维的灵活性。