数学组合图形教学设计(优秀15篇)
总结是我们对自己的成长和进步进行梳理的重要步骤。教育总结应该包括哪些内容?如何提高总结的质量和深度?以下是小编为大家收集的成功案例,希望能给大家提供一些借鉴和启示。
数学组合图形教学设计篇一
西北大学附属小学马红娟。
【教学目标】。
1、让学生在自主探索的活动中,掌握将组合图形通过分割和添补的方法探讨组合图形面积的计算方法,使学生学会计算组合图形的面积。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
【教学重点】。
经历自主探索的过程,掌握将组合图形通过分割和添补的方法计算组合图形面积的方法。
【教学难点】。
【学具准备】七巧板、答题纸、每小组一张例题一的平面图。
【教具准备】课件。
【教学过程】。
一、活动激趣,认识图形。
1、课件激趣:猜一猜,这个盒子里到底藏了哪些平面图形?(课件演示图形从盒子里跑出来)复习基本图形的面积计算公式。
2、学生动手拼一拼:拿出准备好的七巧板,一分钟竞赛,在一分钟内拼出有趣图形。
3、展示学生作品:这些图形和基本图形有什么联系和区别?这些图形有什么共同点?
揭示组合图形的概念:基本图形拼成的图形叫组合图形。
4、生活中哪里还有组合图形?(学生说;课件展示。)。
5、练眼力:看看这个组合图形是由哪些基本图形组成的?
(学生试着分一分,老师总结:可见,几个基本图形组合在一起就是组合图形,同样的,一个组合图形也可以分成几个基本图形。运用这样的思想,可以解决实际生活中的很多问题。)。
二、情景出示,体验探索。
3、面积如何求?小组一起研究,在老师发的平面图纸上试一试,寻找计算办法,并计算出得数。(小组内研究、计算)。
4、在黑板上展示不同的计算办法,让小组代表讲解本组解决思路和办法。
前三种方法有什么共同点?(板书:分割法)。
第四种方法有什么特点?(板书:添补法)。
三、解决问题,强化应用。
1、请大家运用学到的知识,帮助大队辅导员解决一个问题:中队旗到底有多大?
学生在答题纸上独立完成,然后全班交流,展示不同的解决方法和计算结果。
4、还有两幅组合图形,你能用你喜欢的方法计算面积吗?学生独立完成,组内交流。
四、小结。
谁来说一说,这节课你都学习了那些知识?有什么收获?
计算组合图形的面积时,要根据图形本身的特点,灵活地选择计算方法(分割法或添补法)。
五、趣味思考题。
【板书设计】。
分割法添补法。
【教学反思】。
本课的教学遵循了学生自主学习的原则,通过学生合作探究,寻找解决问题的办法,突出了转化思想,能够结合实际,让学生体验生活中的数学,加强了数学的乐趣。
一、通过学生动手摆一摆,辨一辨,认识组合图形的特点。
学生用七巧板动手摆出一个自己喜欢的图形,本事这个类似游戏的活动就充满了挑战和趣味,学生非常积极地参与其中。学生把不同的基本图形拼在一起,就是经历了组合图形形成的过程,对于组合图形的特点有了充分的感性认识,为下一步把组合图形分割成不同的基本图形打好了基础。在认识了组合图形后,又以游戏的形式做“练眼力”一题,让学生把七巧板拼好的作品分成不同的基本图形,这是为新课情境的解决办法做提示,也是为抽象的数学图形的分割做好基础。
二、学生经历探索过程,在同伴的合作中寻找解决问题的办法,突破本节课的重难点教学。
教师设置情境,请学生四人一小组帮助小华计算客厅的.面积。7m4m6m3m每个小组都可以在平面图上画一画、写一写、算一算。然后选出不同的做法展示全班展示,让小组代表解释本组的思路和方法。当时黑板上展出的学生的做法共有六种,经过学生的讲解分析和判断,大家一致拿掉了非常复杂的两种分割方法,并阐明了理由。这个过程很好地把“分割法”和“添补法”进行了展示,并且在不好的展示范例中发现了分割越简单越好计算为上策,以及不论采取什么方法,只要能找到相关数据才是对的办法的结论。这些教学中的重难点都不是老师传授的,而是通过学生自己的探究、计算、体验和对比得到的,是学生自己经历了学习的过程,效果较好。
三、课堂练习紧扣生活实际,并注重教学难点的进一步实践。
随后出现的课堂练习,均从实际生活情境中来。首先队旗的面积计算,这是学生比较感兴趣的话题,能够引起他们的计算热情。同时中队旗这个组合图形可以用分割法或者添补法转化成不同的基本图形,使学生进一步体验组合图形计算的多样性。接着计算的零件的面积,则是学生体会根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。练习的第三题则设置了哪个公司的报价划算的情境,增强学生解决实际问题的能力,体验数学的实用性。其后跟着的两道练习,都是不断加强本节课的学习要点,注重学生的实际问题的解答能力。
本节课没有得到很好突破的,正是在教学难点部分。老师没有吃透教材,对于学生真正的难点心中并不明确。学生用分割法或者添补法转化成基本图形并不存在困难,而是选择了某种分割法或者添补法后能够找到相关的数据来进行计算,这才是突破的重点。首先老师在思想上认识不够,所以在课堂上强调不够;同时教学环节的而设计上就没有注意突出这一点。如果在练习中加入错题分析,以学生的错来引出难点突破,或者加入一道:看分割好的组合图形你需要找到哪些数据的练习,效果应该会更好一些,这样显得重难点突破,集中力量突破,数学课堂的效率才能够得到更好的提高。
数学组合图形教学设计篇二
1、通过拼图活动,让学生了解组合图形的特点。
2、在自主探索的活动中,理解计算组合图形面积的多种方法。能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题,同时通过各活动培养学生的空间观念。
重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个小图形所需的条件。
难点:选择有效的方法解决问题。
本节课是在学生原有的求基本图形面积基础上,进一步探讨研究组合图形的面积,也是日常生活中经常需要解决的问题。因此,我设计时主要是让学生自主探索,在实际生活情境中领会转化的数学思想,先把基本图形拼成组合图形,再独立找出计算时所需要的条件,进一步体会、掌握计算组合图形的多种方法,并能够在比较的基础上选择最有效的方法进行计算,从而解决实际问题。
一、激发兴趣、复习铺垫。
学生落座后。
学生介绍:这个图案是由()()()拼成的。
师:这几幅作品有什么共同的特点呢?(kj出现拼出的图形)。
生1:都有三角形。
师:这是你的发现,还有呢?
生2:都是拼成的。
师:还有吗?
生3:都是以前学过的图形拼成的。
生:都是用以前学过的基本图形拼成的,
师:说的真好,真是一个善于观察的孩子!
师:像这样,由几个简单的基本图形拼成的图形,我们就叫它组合图形。(显示只有线条的图形)。
出示课题:组合图形。
问学生:这是什么图形?(组合图形)为什么?(它是由几个简单的基本图形拼成的)真是个聪明的孩子!谁能说说,这个组合图形是由哪几个基本图形拼成的?(学生回答后,点击课件显示虚线)。
师:好,这节课我们就一起来学习(补充课题:)组合图形的面积。
二、新授。
(kj)出示房屋的图片,再出示侧面墙。
生:房子的侧面。
师:老师要粉刷这面墙,要买多少涂料?需要知道什么呢?
师:这个组合图形是由一个三角形和一个长方形组合而成的。求墙壁的面积就是把三角形面积和长方形面积相加。
师:要求它的面积,我们需要知道什么条件?
生:回答。
有的说测量所有的边,有的说不用全测量。
(预设)师:哪些数据我们必须测量,哪些是没有必要的?
师:三角形的底为什么不测量呢。
师:他说的你同意吗,谁再来说说。
师:看来在解决问题时,只有善于思考,才能找到更简洁的办法。
师:根据同学们的讨论,老师已经把数据测量出来了,请你计算出这面墙的面积(学生独立完成)。
师:谁愿意来汇报汇报。
(让学生利用投影)说出计算过程,并给予评价,强调注意单位名称和答题。
生:计算一下客厅的面积就可以了。
师:那就请同学们在练习纸上画一画,再算一算吧。
学生汇报。
师问:哪个小组愿意汇报?
1、生:我们是将这个组合图形分成两个长方形。
生:因为这个图形不能直接求它的面积,只有把它转变成以前学过的平面图形才能计算它的面积。
师:真会动脑筋!(指课件)是的,当不能直接求一个组合图形面积时,可以将它转化成以前学过的基本图形来计算。(板书:转化。)。
师:还有谁想到这种方法了。你们真是跟老师心有灵犀,老师也想到了这种方法。(贴)。
还有其他方法你想说说吗。
2、生:我是在这个组合图形的右上角补上一个正方形,使它变成一个大长方形。
生:我也是认为不能直接求这个组合图形的面积,所以先把它转化成长方形,再减去补上的小正方形的面积就是组合图形的面积。
师:剪掉的是正方形吗?你怎么知道的?
师:这位同学考虑问题很周全!他想到了这种方法,
还有其他想法吗?
3、生:我的方法是将这个组合图形分成一个长方形和一个正方形。
师:这也是一个很好的想法,还有不一样的方法吗?
4、生:我的方法是将这个组合图形分成两个梯形。
师:这个主意非常好?哪个小组还想还有补充?
5、生:我们小组同学把这个组合图形分成了2个长方形和一个正方形。、
6、生:我们把这个组合图形分成了2个三角形和一个梯形。
师:在能分出两个基本图形就能够求出组合图形面积的情况下,还有必要分第三个吗?
大家真是善于动脑的孩子,还哪个小组想汇报?
7、生:我们的方法是把这个组合图形剪开,把它拼成一个长方形。
师:你是怎么知道把上面的小长方形剪下来,移到右边就正好能拼成一个大的长方形呢?
师:这也是一种好方法,(边说边剪,贴到黑板上)。
学生说理由。
生:哪几个哪几个是一类,(把同一类的放到一起,)。
师:同学们把这些归为了一类,那我们把这样的方法叫做分割法。
数学组合图形教学设计篇三
人教版义务教育课程标准实验教科书,数学五年级上册第五单元92~94页。
组合图形面积的计算放在多边形面积计算最后学习,有利于综合运用平面图形面积计算的知识,进一步发展学生的空间观念。
1、认识组合图形。
由于实际生活中,我们见到的物体表面,许多是由我们已学过的正方形、长方形、平行四边形、三角形和梯形组合成的图形,所以教材紧密结合生活实际认识组合图形。
教学中,可以使用教材中的实例,也可以应用学生身边的实例;观察实物注意从易到难;找生活中的组合图形时,要强调从物体的表面上找,不要与立体组合图形混淆。
2、学习组合图形面积的计算,因为限于简单的组合图形,教材主要安排2~3个简单图的形组合。由于一个图形可以有不同的分解方法,教材展示了两种计算方法。
教学时,可让学生合作探究,通过试做、交流、讨论、展示,使学生明确计算组合图形面积的基本思路,即可以把组合图形分割成我们已经会计算面积的简单图形,分别计算出他们的面积,再求和,或者把原图添补成我们已经会计算面积的简单图形,再减去所添补图形的面积,也就是添补求差法,同时也要让学生认识到要根据已知条件对图形进行分解,不是任意分解都能计算的。鼓励学生用不同的方法去计算,然后交流各自的算法,尽量考虑用简便的方法计算。
1、认识简单的组合图形,会把组合图形分割成学过的平面图形并计算出面积,渗透转化思想。
2、综合运用平面图形面积计算的知识,感受解决问题策略多样性,培养学生尝试选用简便方法解决问题的意识。
3、培养学生的认真观察、合作学习、独立思考的能力,进一步发展学生的。空间观念,激发学生探索数学问题的积极性。
教学重点:能根据组合图形的特点,有效地选择计算方法。教学难点:算面积时,能结合生活实际,把组合图形有效地转化成已学过的图形。
教具准备:课件、卡纸。教学过程:
1、玩摸一摸的游戏,看摸出的是什么图形,说出它的名称和面积的计算方法?让学生回答后把它贴在黑板上。
3、找出它们的共同点:都是由简单的图形组合成的,像这样的图形叫做组合图形。随即板书:组合图形。
(一)组合图形的分割。
1、课件展示组合图形,你能一眼就看出它是由哪些图形组成的吗?
让学生回答后总结:为了能够更清楚地看出是由哪些图形组合而成的,可以在原图上画上辅助线(用虚线)。
2、让学生独立分割几个简单的组合图形并交流展示。
1、小组合作学习。要求:先说一说可以怎么画辅助线,再试着分别用不同的方法来算一算它的面积,算完后互相检查检查。
2、交流展示。
3、总结提升。
方法:分割法(求和),添补法(求差),渗透转化的思想。图形分割要合理,分得越简洁,解决问题的方法就越简便,还要考虑到已知条件,如果分后已知条件都找不到了,就肯定算不出组合图形的面积。
(三)练习巩固。
2、交流展示。
(四)拓展提升。
2、分析要注意的问题:门上的玻璃不刷漆,要算出刷漆的面积得先算出整个长方形的面积再减去中间小正方形的面积,还要考虑到门的两面都要刷漆。
全课解析:
本节课是在学生学习了基本平面图形面积的基础上进行教学的。在教学过程中,体现以学生为主体、教师为主导的教学理念。以充分发挥学生主体地位为主线,以培养学生能力为宗旨展开教学,具体体现以下三点:
通过学生自己摆一摆,明白什么样的图形是组合图形。通过课件展示,和学生动手分割,使学生感知生活中许多实物的表面都是由几个简单图形组成的,使学生进一步加深对组合图形概念的理解,体现数学知识与现实的联系。
以计算简单组合图形的面积为载体,以小组合作学习为方法,引导学生通过观察图形、动脑思考、说一说、分一分、算一算、汇报交流、总结提升等过程,探究出组合图形面积的计算方法,体现重视学生的思维过程;体现算法多样性,为学生提供充分的参与空间;体现对学生思维能力的培养,发展学生的空间观念,提高学生解决问题的能力。
紧密联系生活实际,通过算墙面面积和给门刷漆这两个不同层次的问题,提高学生结合生活实际灵活解决问题能力,发展学生的空间观念和多角度思考问题的能力。
数学组合图形教学设计篇四
1、复习巩固各种图形面积的计算方法,明确组合图形是由几个简单图形组合而成,求组合图形的面积就是求几个简单图形的面积的和或差的计算,提高学生的识图能力,分析综合能力和空间想象能力。
2、通过实践操作、练习,提高观察、分析能力和解题的灵活性;能正确地分析图形。
3、培养学生的合作、探究意识及创新精神,及积极参与数学学习活动的习惯。
组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的隐含数据条件,鼓励学生一题多解。
我校是北京市海淀区的一所学校,多媒体设施比较齐全,可以进行课件演示及实物投影多媒体辅助教学,而且是北师大版新世纪五年级教材的实验学区。
组合图形面积是由直观走向抽象的一节内容,重在方法的挖掘。在教学中,不能以教师为中心来死搬硬套教材,应合理地利用了教材资源。使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力,然后逐步展开有层次的思维训练,开阔学生的思维空间,鼓励学生积极探索。
(一)观察动画,复习旧知,引出新知。
1、观察动画,分析引入。
(媒体出示由基本图形拼成的太阳、狗、房子、小鸡、花草树木等)。
师:观察这幅图画,你发现了什么?
生:很多的基本图形,组成了很多的图形)。
师:这些由基本图形组合而成的图形,就叫做组合图形。
师:还记得我们都学过哪些基本图形吗?
(随着学生回答,按学习的顺序贴各个基本图形)。
问:那谁还记得这些基本图形的面积公式?
(随着学生回答,在各个基本图形后面写公式)。
(二)动手拼图,初探方法。
1、自拼图形,分析要素。
师:拿出你的学具袋和做题纸。请一位同学来给大家读读要求吧。
请你从学具中任选两个基本图形,拼出一个组合图形,粘在答题纸的方框内。
边做边思考:
师:你拼的组合图形由什么基本图形组成的?这些基本图形的要素是什么?
(学生活动,教师巡视,指导画高。)。
2、展示图形,分析条件。
(学生分别介绍所拼的组合图形后,教师选择其中的一个作重点分析。)。
师:现在,我们来看右面的组合图形(见右下图),它是由一个三角形和一个长方形组成的。有一条边既做三角形的底又做长方形的长,是公共边。
(强调公共边:既做长方形的长,又作三角形的底。)。
3、打开思路,探索面积。
生:分另计算三角形与长方形的面积,然后相加。
师:谁能说一说具体的计算过程?
数学组合图形教学设计篇五
2、通过动手、动脑、剪剪、拼拼和想象,培养学生动手操作的技能,发展观察能力、空间观念和思维的灵活性。
3、利用七巧板组合图形,并求出面积。教学重、难点:用割补法求组合图形的面积。
小剪刀一把。
长方形纸若干张。
师:大家跟我一起拿出一张长方形纸片:你能用一刀剪出两个其他图形吗?动手试试。(生剪师巡视,主要分清把长方形剪成两个基本图形或一个基本图形和一个不规则图形的同学。)。
生汇报:我把长方形分成了一个三角形和梯形?(说面积公式)。
我把长方形分成了一个三角形和??(说不清楚是什么图形)师展示这个图形:
(一个长方形的角落剪去一个三角形)师:这个图形叫什么图形呢?
方案1:生自己回答:这是一个长方形和梯形组成的。
师:哦!你是怎么分的?还可以怎么分?(让学生动手折一折)。
方案2:生不能回答,师提示:我们刚才把一个长方形分成了。
一个三角形和一个梯形,还把它分成了两个长方形,还有??那这个图形,我们可以把它分成我们已经学过的图形吗?(生回答,并折给大家看)。
最后把图形粘贴在黑板上得出:像这样由几个基本图形组成的,我们把它叫作组合图形,这节课我们重点就来研究组合图形的面积(板书组合图形的面积)。
1、重点突破。
师:如果老师临时给这个组合图形的边标上数据,(边说边根据图形的长短标上数据)你能求出这个组合图形的面积吗?自己动手算一算,有困难的可以请教同桌和老师。
展示学生的做法,并请他说说思考过程。
生汇报:先把它分割成长方形和梯形,然后把它们的面积加起来??师:用剪刀剪的方法有的时候不太方便操作,我们可以用加辅助线的方法来把组合图形进行分割。(辅助线用虚线来画)。
师:还有其他方法吗?
师小结:同学们真能干,有的把组合图形分割成我们学过的几个基本图形,再把它们的面积加起来,有的补上一个我们学过的基本图形,然后面积相减,用了很多种方法,但有一点是相同的,你能看出来是什么吗?(求出来的面积是一样的。)。
2、基本练习。
老师遇到了一个生活中的实际问题,想请同学们两人一组帮忙解答,看看哪个小组的方法最多?(汇报)。
在以后求组合图形面积的时候,你可以选择你认为最简单的方法来求。
3、实践活动。
师:其实,在我们的身边很多物体的面都是组合图形,你能找出来吗?
出示队旗:其实,我们的中队旗就是一个组合图形。
(1)估一估:请你估一估,我们中队旗的面积大约是多少?想一想,找同学来回答。
(3)算一算:为了节省时间,有些数据我已经帮你们量过了(出示带有数据的中队旗)。
用你认为简单的方法进行计算。先做好的小组上来板书。
反馈:你们是怎么思考的?
师:跟你们估计的结果比较一下,看谁估计的最正确,掌声送给他!
三、四人小组。
希望同学们把我们所学的知识充分的利用到我们的生活当中,去解决生活中出现的有关问题。
教学中我充分发挥学生的主体作用,相信学生的能力,热情鼓励学生的探索活动,给予学生充足的时间和思维空间。由学生合作探索简单组合图形面积的计算方法,肯定学生积极的探究活动,使学生有更多的发展空间,尽最大限度地发展学生的观察思考探究能力,增强了学生学习数学的兴趣。在探索组合图形面积的过程中,注重让学生通过动手操作、观察、推理等手段,分析探索组合图形,利用已有的知识解决问题,达到了良好的教学效果。
数学组合图形教学设计篇六
北师大版五年级上册数学教科书第75页。
主要设计理念是:一是以学生为课堂学习的主体,关注学生已有的学习基础和学习经验,选择适合学生的学习素材、设计适合学生的教学活动,让学生自主的投入学习,教师是学生课堂学习的引导者、合作者。二是以活动为课堂教学的载体,注重学习情境创设,引导学生主动进行观察、实验、猜测、验证、推理与交流等数学活动,去探究数学知识,亲历数学知识探索过程,感受成功的快乐。三是以问题为思维训练的源泉,教学中注重引导学生发现问题、提出问题和解决问题,在解决问题中激活思维。四是以生活为学习数学的基础,数学生活化,让学生在生活中感知数学知识,从生活中发现数学问题,在生活经验的基础上解决数学问题,并用所学知识解决生活中实际问题。
学生在三年级时学习了长方形与正方形的面积,在本册的第二单元,学生又学习了平行四边形、三角形与梯形的面积计算。在此基础上学习组合图形,学习此部分知识,一方面可以巩固已学的基本图形,另一方面将所学的知识进行综合运用,提高学生综合解决问题的能力。在学生探索问题,解决问题的过程中渗透数学转化的思想,在学生灵活运用多种方法解决问题的过程中培养学生优化的意识,从而培养学生思维的灵活性。
五年级的学生正在经历自主高效的实验,学生无论从自学能力,还是课堂的积极探索都有了喜人的变化,学生学习方式的变化更加促使老师要以学定教,学生在学习的过程中可能会有这样或那样的问题,特别是本节课要探究多种方法解决问题,虽然学生已经在三年级时学习了长方形与正方形的面积,在本册的第二单元,学生又学习了平行四边形、三角形与梯形的面积计算。但对于组合图形面积的计算学生可能在解决此问题的策略——即数学的转化的思想上没有充分地认识,另外学生在理解用多种方法解决问题时没有优化方法的意识,需要教师的引导与点拨,但我相信学生在老师的引导下会完成本节课的任务。
1.在自主探索的活动中,理解计算组合图形面积的多种方法。
2.能根据各种组合图形的条件,有效地选择计算方法并进行正确地解答。
3.能运用所学的知识,解决生活中组合图形的实际问题。
选择有效的方法解决实际问题。
【】。
多媒体课件。
【】。
课前谈话:
老师很高兴能和大家一起来上这节课。我相信:我们五x班全班同学都能把最精彩的一面展示出来。你们喜欢数学吗?想不想把数学学得verygood非常棒!老师告诉你学好数学的小诀窍:认真听,用心想,积极说。能不能做到这三点?让我们带着自信走进课堂!
【设计意图】简单的几句话,拉近了学生与老师的距离,关注学生的情感体验,同时渗透良好的学习习惯的培养。九个字书写在黑板上以提示学生。
一、课题导入。
1.老师今天给大家带来了一些漂亮的图片,来欣赏一下。
(多媒体出示小鱼图、火箭、房屋平面设计图、中队队旗等生活中的组合图形。)。
2.教师小结:上面的每个图形都是由我们学过的图形组成的,像这样由几个简单的图形组成的图形叫组合图形。这节课,我们就来研究组合图形的面积。(板书课题)。
【设计意图】:课开始,充分发挥多媒体的优势,呈现学生熟悉的、生活中的组合图形,给学生视觉上的刺激。唤醒学生的已有认知,激发学生的求知欲。
二、展示目标,师生共同解读目标。(关键词:理解方法,解决问题)板书关键词。
【设计意图】:使学生明确本节课所学内容,确立所要达成的目标。
三、自主探究,获取新知。
1.联系生活,提出问题。
(1)小华家新买了住房,计划在客厅铺地板。请你估计他家至少买多少平方米地板,再实际算一算。(出示课件)客厅平面图。
【设计意图】:在实际问题情境中激发学生探索问题的兴趣,从而产生自主学习的动机。
2.自主探究,解决问题。
教师课件出示导学提纲:阅读教材第75页,思考下列问题。
(1)我们已经学过哪些图形的面积?怎样求它们的面积?
(2)请你估一估小华家至少买多少平米的地板?试说出你的理由?
(3)计算地板面积,你还有哪些办法?尝试用画图的方法说明~。
3.学生先自学然后组内交流。
(教师预设):
a.学生可能转化的图形有:
b.学生可能会运用多种方法求出客厅的面积,但是不清楚解决此问题的策略——即转化的数学思想。
4.教师深入到小组与学生共同研究问题,了解学生的自学情况。
5.学生在学习单的正面尝试解答,老师巡视,让学生把不同的转化方法展示到黑板上。
四、展示汇报:
1.各组按展示到黑板上的转化方法做汇报,学生讲解自己的思路。
【设计意图】计算组合图形的面积最重要的一步是运用转化思想把图形分割或添补成几个基本图形。把转化的过程和计算的过程分解开来进行,有效地突破了难点,在学生在转化的过程中思维真正的动起来。上黑板贴出学生的探究结果,让学生讲解自己的思考过程,也许学生表达的不完整,但毕竟是学生自己思考的结果,所以应该给予肯定,以激发学生的学习积极性,渗透一题多解的方法,培养学生思维的灵活性。
2.计算面积。
学生分组用一种方法计算图形的面积,最后全班订正。(在学习单背面完成)。
教师预设点拨:观察上面的几种方法,你认为哪些方法更简单一些?你是怎样想的?
教师预设点拨:
推导平行四边形和三角形的面积公式,计算异分母分数相加减时我们都用到转化思想。今天我们学习组合图形的面积时又运用了转化的策略,看来数学的转化的思想很重要。
【设计意图】在经历了分割图形或添补图形的思考过程,并对几种方法进行比较优化以后,再动手计算,给学生提供了再一次选择解决方法的机会,比较出几种方法的特点,培养学生的质疑能力,提高学生的思维灵活性。
五、达标检测:
1.(基本题)下面的各个图形可以转化成哪些已学过的图形?(教材76页练一练第一题)。
2.(必做题)试试:你知道这个图形的面积吗?
(每小格长度是1厘米)。
【设计意图】让学生在认真观察的基础上,用割补的方法把图形转化成一个长方形,对转化的思想有更深刻的认识。
4.(必做题)如图,有一面墙,粉刷这面墙每平方米需要0.15千克涂料,一共要用多少千克涂料?(教材76页练一练第二题)。
六、拓展延伸。
1.下图是由两个正方形组成,求阴影部分的面积。(单位:米)。
2.用组合图形面积的计算方法,可以解决生活中的很多问题……如中队队旗,有兴趣的同学课下可以量一量、算一算中队队旗的面积。
七、学教反思。
1.学习本课你有哪些收获?
2.你觉得这节课你表现怎么样?给自己评价一下!
数学组合图形教学设计篇七
《课程标准》对于图形计算的要求是注重使学生探索现实世界中有关空间与图形的问题;注重使学生通过观察、操作、推理等手段,逐步认识简单几何体和平面图形的形状、位置、大小关系及变化,发展学生的空间观念。计算组合图形面积的基础是已学的各种平面图形的特征和它们的面积计算公式。在组合图形中,有的已知条件是隐蔽的,需要学生运用已学的知识,根据图形特点,先把它找出来或推算出来,再计算面积。使学生通过观察、操作、推理等手段,感受生活中空间与图形的问题。本节课并不是要教会学生求几个组合图形的面积,而是让学生体会到割补、转化的方法是求未知平面图形面积的重要策略。当学生真正获得了策略的知识、方法的知识的时候,就能举一反三、触类旁通。
通过这一堂课的教学,我感受最深的是:课堂教学是由学生、教师和教材组成的整体,只有发挥这个整体中各个部分及其相互关系的功能,才能取得最佳课堂教学效果。在教学中不能以教师为中心来死搬硬套教材,而应把学生推到学习活动的中心。本堂课创造性地对教材实施了“由静态的信息变为动态的过程”的再加工重组,较合理地利用了教材资源。在教学中,通过让学生观察几个组合图形,再说说分别是由哪几个基本图形组成的,从而理解什么叫组合图形。在此基础上,给出小明家的客厅,然后让学生想一想、画一画,动一动,把这个组合图形割补成我们学过的几个基本的图形。在这个教学环节中,我给学生留下充足的想象空间,使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力。然后再紧紧围绕“最佳求面积的方法”这个思维策略思想,逐步展开有层次的思维训练。尽管还是课本的内容,但却演绎出别样的精彩,学生也在其中品尝了学习的欢悦和成功。教材在这儿已经完全成为学生驾驭学习的'工具和成长的阶梯了,真正是为学生的学习服务,这也许就是教材重组的意义所在吧!
数学组合图形教学设计篇八
1.明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2.能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3.渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形所需的条件。
选择有效的计算方法解决实际问题。
ppt课件、简单图形的面积整理表、铅笔和三角板等学习用具、彩粉笔。
一、创设情境,生成问题。
老师准备了几幅漂亮的图片,我们一起来欣赏一下,好吗?
图一图二图三。
请大家仔细观察,这些物品的表面有哪些我们已经学过的图形?(逐一分析,然后重点展示中队旗)它们有什么共同特点呢?(学生口答)。
介绍:上面这些图形都是由几个简单图形组合而成的,这样的图形叫组合图形。
二、探索交流,解决问题。
1.谈话引入。
师:我现在想要做一面中队旗需要多少布呢?也就是求什么?
生:求中队旗的面积,也就是计算出组合图形的面积。
2.独立思考,分组讨论。
师:请大家独立思考:组合图形可以转化成哪些学过的图形,怎样计算出组合图形的面积?有了想法之后,和你的同桌说一说。
生独立思考,同桌交流。
3.汇报交流。
(1)师:谁来说一说你的想法?
生:分割成两个梯形。
生:能,因为梯形的上底、下底和高我们都能知道。
(2)师:大家想想,还有不同的做法吗?
生:能,用长方形的面积减去三角形的面积,长方形的长和宽,三角形的底和高都是已知的。
《组合图形的面积》教学设计《组合图形的面积》教学设计(3)生:分割成一个大梯形和一个三角形。
(4)生:分割成一个正方形和两个三角形。
生:能求出组合图形的面积。用正方形的面积加上两个三角形的面积。
4.独立计算。
师:下面就请大家选择一种你喜欢的方法,快速的计算出组合图形的面积。
指名板演。集体订正。
5.小结。
师:刚才我们用好几种方法求出了中队旗的面积,这些计算方法有什么共同特点呢?
生:都是把一个组合图形转化成几个简单图形。
师:数学中我们习惯用分割法或添补法,先用辅助线把一个复杂的组合图形转化成几个比较简单的图形的和或差。如果没有要求用多种方法的,我们尽量选择最简单的方法来计算。画辅助线时要注意画虚线,还要用铅笔和直尺作图。
板书:转化成简单图形。
6.我们学习了这么多组合图形知识,请你说一说生活中哪些地方有组合图形。
三、巩固应用,内化提高。
1.师:同学们的表现真了不起。咱们学校有个老师家这几天装修房子,要刷新墙体。刷新墙体的工人工资是用平方米来计算的,请你们帮忙算一算。(课件出示例4)。
(先让学生思考,再动手计算。然后交流汇报。)。
方法一:
这个组合图形分成一个正方形和一个三角形,分别计算出正方形和三角形的面积,最后算出它们的面积和,就可以求出这个图形的面积。
方法二:先把这个图形补上两个三角形,看作一个长方形,先算出长方形面积后,再减去两个小三角形的面积。
方法三:把这个图形从顶点向下作一条垂线,就分成两个梯形,这两个梯形面积是相等的,所以只要求出一个梯形的面积再乘以2,就得到这个组合图形的面积。
师:请同学们观察这几种解法,它们有什么相同的地方?
小结:使用了分割法或添补法,作辅助线把组合图形转化成简单图形来计算面积。
师:非常感谢大家为老师解决了难题。在日常生活中,到处都有组合图形,我们计算面积时,先用辅助线把它进行割、补、拼转化成简单的图形,再计算出该组合图形的面积就方便多了。这些方法中有的简单,有的繁琐,如果没有要求多种方法的,我们尽量选择最简单的方法来计算。
师:图中菜地由哪些简单图形组成的?计算每个简单图形的条件是多少?
学生独立计算,集体订正。
四、回顾整理,反思提升。
师:这节课你有什么收获?
分割法或添补法(转化):分解成简单图形。
数学组合图形教学设计篇九
图形的组合学习有利于培养孩子的想象,在数学学习中我们会较多的学习图形,下面小编给大家提供了小学数学人教版五年级上册第五单元《组合图形面积》教学设计,大家可以参考阅读,更多详情请关注应届毕业生考试网。
1、让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
2、感受计算组合图形面积的必要性,产生积极的数学学习情感。渗透转化的数学思想和方法。
1、重点:掌握组合图形面积的计算方法。
2、难点:理解计算组合图形面积的多种方法。
3、关键:学会运用“分割”与“添补”的方法计算组合图形的面积。
1、同学们,我们学过哪些平面图形?它们的面积计算公式是怎么样的?
2、出示两幅由七巧板拼成的图形,你们能看出它们分别是由哪些图形拼成的吗?像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。
3、组合图形在我们生活中的'应用很广泛,今天,我们就结合一个生活中的例子来学习组合图形的面积计算。(板书:组合图形的面积计算)
1、出示计算客厅面积问题:
小华家新买了住房,计划在客厅铺地板,请你算一算他家客厅的面积是多少平方米?
2、请学生们观察这个图形,然后自己先想一想该怎么计算?
3、小组合作交流,讨论解决组合图形面积计算问题。
学生可能出现“分割法”和“添补法”
“分割法”即将上述图形分割成几个基本图形。
4、讨论“分割法”
1)对于“分割法”需要与学生讨论其合理性,要让学生明确:分割的图形越简洁,其解题的方法也将越简单。
2)要考虑分割的图形与所给条件的关系。有些图形分割后找不到相关的条件就是失败的。
5、讨论“添补法”
1)为什么要补上一块?
2)补上一块后计算的方法是怎样的?
(让学生都理解这一算法)
6、先归纳出两大类的方法“合并求和”、“去空求差”。
小结:谁来总结一下,组合图形的面积应该怎么计算?
计算组合图形的面积,我们一般是先把它们分割成基本图形,如长方形、正方形、三角形、梯形等,然后再用“合并求和或去空求差”的方法来计算它们的面积。
看来同学们学得都很不错,现在老师还有几道题想考考大家。
1、先来一题热身题,出示书本试一试。
2、一展身手,挑战开始。
右图表示的是一间房子侧面墙的形状,它的面积是多少平方米?
可以采取学生独立解决与合作交流的形式
如果你不会做,可以和你的同桌讨论交流一下。
3、挑战本领
可以采取学生独立解决与合作交流的形式
4、求图形阴影部分的面积。
5、有两个边长是8cm的正方形放在桌面上,求被盖住的桌面的面积。(机动)
可以先四人小组讨论,然后在进行计算。
在日常生产和生活中,有些多边形的面积不能直接用公式计算,可以把它划分成几个已经学过的图形,先分别计算它们的面积,再求出这个多边形的面积。老师把方法归纳成十二个字“一分图形、二找条件、三算面积”
数学组合图形教学设计篇十
欣赏夏加尔作品《我和我的村庄》,讨论:
这幅画上画了什么?
你感觉与以前看到的作品有什么不同?有什么感受?
你能用自己带来的这些物品进行魔术组合吗?
展示组合得巧妙的作品。
板书课题。学生欣赏。
学生思考、回答问题。
课前搜集自己身边的小发卡、造型新颖的糖果、学习用具等物品放在一张纸上小组同学互相摩,分析哪些部分组合得巧妙。
1、课本上的这些作业是怎样进行的魔术组合的?
2、你认为哪些地方组合的巧妙?
3、你还想怎样组合?
教师用课件演示几种与课本不同的组合方法。学生实践课后拓展,巡视辅导。
组织学生小结、评价。
展示几种利用废弃物组合的新形象,引导学生回家可以试一试。
同学之间互相介绍、评价自己及他人的作品。
可以单色绘画,也可用彩色表现。
1、展示学生作业,请学生互相介绍,评价自己或他人的作品。
2、提出改进意见。学生互相介绍、评价自己或他人的作品。
数学组合图形教学设计篇十一
教学目标:
1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
4、在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。
重点、难点。
重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个小图形所需的条件。
难点:如何选择有效的计算方法解决问题。
教具准备:多媒体课件和组合图形图片。
设计意图:
本节课是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,进一步探讨研究图形的面积,也是日常生活中经常需要解决的问题。因此,我设计时主要是让学生自主探索,在具体的情境中领会转化的数学思想,体会并掌握计算组合图形的多种方法,并能够在比较的基础上选择最有效的方法解决实际问题。
教学过程:
一、激发兴趣、复习铺垫。
生:猪八戒!
师:你们都知道了?对,就是猪八戒。听说,猪八戒取经回来后,在高老庄建起了一座新楼房,咱们一起去看看。
(课件出示猪八戒和他的新楼房,猪八戒说:欢迎!欢迎!同学们,这是我的新房,漂亮吧?)。
师:同学们,从这座楼房中可以找到哪些平面图形?
生1:从楼房的屋顶可以找到三角形。(课件闪烁演示)。
师:你会求三角形的面积吗?
课件出示三角形面积计算公式。
生2:从窗户的上面可以找到梯形。(课件闪烁演示)。
师:你知道怎么求梯形的面积吗?
课件出示梯形的面积计算公式。
生3:从墙壁可以找到长方形。
生:你知道长方形的面积计算公式吗?
课件出示长方形面积计算公式。
放大窗户、门的平面图。
师:请再找一找这个窗户是由哪些图形组成的?
生:这个窗户是由长方形和梯形组成的。
师:你观察得真仔细!那这个门呢?
生:它是由三角形和长方形组成的。
师:你的眼睛真亮!请再观察这两个图形,它们有什么共同的特征呢?
生1:它们都有长方形。
生2:它们都是由多个平面图形组成的。
师:说得真好!像这样由两个或两个以上简单的平面图形组合而成的图形我们把它称为组合图形(板书“组合图形”),今天我们就一起来探究组合图形面积的计算(再后面添上“的面积”)。
二、创设情境、探究新知。
师:猪八戒的新楼房已经建起来了,里面正在装修,我们就随着八戒一起到里面看看吧。
(课件出示客厅和猪八戒,他说:这是我家的客厅!我打算给它铺上漂亮的瓷砖。你们来得真巧,快来帮我算算,我至少需要买多少平方米的砖呢?)。
课件出示客厅的平面图。
师:请同学们先估一估这个地板的面积有多大呢?
生1:30平方米。
生2:42平方米。
生3;40平方米。
教师板书这些数据。
师:同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证。请同学们观察这个图形,你打算用什么方法求它的面积?(停顿)请把你的想法用虚线在图中表示出来。
生动手画图。
教师选择有两种方法展示。
指定第一种方法,师问:这是谁的作品?能说说你的想法吗?
生:我是将这个组合图形分成两个长方形。
师追问:为什么要分成两个长方形?
生:因为这个图形不能直接求它的面积,只有把它转变成以前学过的平面图形才能计算它的面积。
生:我是在这个组合图形的右上角补上一个正方形,使它变成一个大长方形。
师:为什么要再补上一个图形呢?
生:我也是认为不能直接求这个组合图形的面积,所以先把转化成长方形,再减去补上的小正方形的面积就是组合图形的面积。
师:这位同学考虑问题多周全啊!和他想法一样的请举手,其他同学还有别的想法吗?
生:我的方法是将这个组合图形分成一个长方形和一个正方形。
师:这也是一个不错的想法,谁的想法和他相同呢?还有不一样的方法吗?
生:我的方法是将这个组合图形分成两个梯形。
师:这个主意很不赖吗?哪些同学想的和他一样呢?还有补充的吗?
…
学生说完后师课件出示较为简便的前四种方法。
师:老师将大部分同学的方法归纳了出来,请看。
并指着前三种方法问:请同学们观察这三种方法,它们有什么相同的特点呢?
生:它们都是把这个组合图形分成两个小图形。
师:你的眼睛真亮!像这样的方法我们把它称为“分割法”,它是计算组合图形常用的方法之一。
板书:分割。
指着第四种方法说:而这种再补上一个小图形的方法,我们把它叫做“添补法”,它也是计算组合图形常用的一种方法。
板书:添补。
师指着板书:其实不管是用分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成以学过的平面图形。
师:现在你会计算这个组合图形的面积吗?请根据下面的提示求出这个图形的面积。(全班齐读):
要算每个小图形的面积分别需要哪些条件?请找一找,并标出来。
生独立计算。
师:同学们,现在可以交流了吗?请把的计算方法和你的同桌交流交流,好吗?
学生互相说计算方法。
师:同学们,现在我们全班共同来交流,哪位同学先来说说你的计算方法?
生1:我是计算分成两个长方形的这种方法的。要求上面这个小长方形的面积必须先求出它的宽,所以第一步先求上面小长方形的宽,第二步再求这个小长方形的面积,接着求下面大长方形的面积,再把它们的面积加起来就是这个组合图形的面积。
师:这位同学的表达多流利啊!那其他同学还有没有疑问的地方想问他的?
生2:我想问你一个问题,你是怎么求出小长方形的宽的?
生1:我可以回答你的问题,我是用左边这条长边减去大长方形的宽算出来的。
师:现在你清楚了吗?还有问题吗?
生2:没有了,谢谢你!
师:其他同学有想问的吗?(没有)老师将这位同学的方法用动画演示了出来,请看。
课件演示,教师随着演示小结计算过程。
师:还有哪位同学也想上来说的?
生3:我是用添补方法来计算的。先求出这个大长方形的面积;接着求补上去的小正方形的面积,然后用大长方形的面积减去小正方形的面积就是组合图形的面积。
师:对于这位同学的计算方法,你们有什么想要问他的?
生4:你是怎么知道补上去的这个图形是正方形呢?
生3:因为我用长方形的长减去上面的这条较短的边,算出来是它的长是3米;用长方形的宽减去右边这条较短的边,算出它的宽也是3米,所以它是一个正方形。
师:你同意他的说法吗?
生4:同意。
师:还有想要问的吗?
生6:为什么计算这个组合图形的面积要用大长方形的面积减去小正方形的面积呢?
生3:因为这个小正方形是补上去的,所以应该扣去,才是组合图形的面积。
师:同学们觉得他说得好吗?那就不要吝啬你们的掌声。
师:老师也将这位同学的计算方法用动画演示出来,请同学们跟着动画一起说说计算过程。
师演示课件,生齐说计算过程。
师:同学们还有不同的计算方法吗?
生7:我是将这个组合图形分割成一个长方形,一个正方形,先求出长方形的面积,再求出正方形的面积,然后把它们的面积加起来。
生8:我是将这个组合图形分割两个梯形,分别求出两个梯形的面积,再把它们的面积加起来。
师:同学们为什么不选择分割三个小图形的方法来计算面积呢?
生:因为分成两个图形计算面积比分成三个图形计算面积要简便多了。
师:是啊,分成的图形越少,计算面积时就越简便,所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。
师:同学们现在我们已经计算出了这个组合图形的面积,请把计算出的正确答案与刚才同学们估计的数据比较一下,谁最接近呢?(表扬最接近的同学)。
3、归纳算法。
师:同学们,刚才我们帮猪八戒计算出了客厅的面积即组合图形的面积。现在一起来回忆计算组合图形面积的计算过程。
师生齐说:刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。
三、实际应用。
1、看图填空。
生:长方形的长是5米。
师:你怎么知道长方形的长是5米?
生:因为平行四边形的对边相等,而平行四边形的一条底也是长方形的长,所以我知道长方形的长是5米。
生:三角形的底是6米,高是5米。
师:能说说你是怎么知道的吗?
生:用正方形的右边的边长减去左边的这条4米的边等于6米是三角形的底;用正方形下面的边长减去上面的这条边5米等于5米就是三角形的高。
师:说得真好!对直角三角形的两条直角边就是它的底和高。
师:同学们帮八戒解决了难题相信八戒会很感激大家,咱们一起听听他怎么说。
师:请同学们帮八戒再算算吧。
生动手独立计算。
师:同学们可以交流了吗?哪位同学来简单地介绍你的解题思路?
生1:我用分割的方法把这个组合图形转化成一个长方形和一个梯形,分别求它们的面积,再把它们的面积加起来就是组合图形的面积。
生2:我用添补的方法把这个组合图形转化成一个大长方形和一个三角形,分别求出它们的面积,再用长方形的面积减去三角形的面积就是组合图形的面积。
生:一样!
师:是啊,同一个组合图形可以用多种不同的方法来计算面积,但都不能改变答案的唯一性。
师:同学们以自己的聪明才智帮八戒又解决了一个难题,咱们再听听他怎么说。
师:这是屏风的平面图,请同学们完成下面的两个问题。
(1)这个屏风的面积是多少平方米?
(2)如果每平方米玻璃需100元,这块玻璃一共需要多少元?
生独立算完后指名汇报。
生:我是用添补的方法把这个组合图形转化成一个长方形和一个三角形,用长方形的面积减去三角形的面积就是这个组合图形的面积,然后用组合图形的面积乘以10,就算出了一共需要300元。
师:和他方法一样的请举手?为什么你们都选择添补的方法呢?
生:因为用分割的方法以知条件不够,不能求出组合图形的面积。
师:是啊,计算组合图形的面积并不是所有的方法都适用的,咱们要学会根据条件选择合理的方法。
师:同学们,老师今天真正领略了你们的风采,相信八戒也是这样认为的,咱们再一起听听他怎么说。
课件出示猪八戒说:谢谢了,同学们!谢谢了,聪明的孩子们!俺老猪在这里祝你们学习进步!
四、拓展延伸。
师:老师也祝同学们学习进步!请同学们课后在身边的事物中找一个组合图形,并想办法求出它的面积。
数学组合图形教学设计篇十二
作为一位杰出的教职工,往往需要进行教学设计编写工作,教学设计是实现教学目标的计划性和决策性活动。如何把教学设计做到重点突出呢?以下是小编帮大家整理的五年级上《组合图形面积》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
1.明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2.能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3.渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形所需的条件。
选择有效的计算方法解决实际问题。
ppt课件、简单图形的面积整理表、铅笔和三角板等学习用具、彩粉笔。
一、创设情境,生成问题
老师准备了几幅漂亮的图片,我们一起来欣赏一下,好吗?
图一图二图三
请大家仔细观察,这些物品的表面有哪些我们已经学过的图形?(逐一分析,然后重点展示中队旗)它们有什么共同特点呢?(学生口答)
介绍:上面这些图形都是由几个简单图形组合而成的,这样的图形叫组合图形。
板书:组合图形
师:今天,我们就来探究组合图形面积的计算。
补充板书:组合图形的面积
二、探索交流,解决问题
1.谈话引入
师:我现在想要做一面中队旗需要多少布呢?也就是求什么?
生:求中队旗的面积,也就是计算出组合图形的面积。
2.独立思考,分组讨论
师:请大家独立思考:组合图形可以转化成哪些学过的图形,怎样计算出组合图形的面积?有了想法之后,和你的同桌说一说。
生独立思考,同桌交流。
3.汇报交流
(1)师:谁来说一说你的想法?
生:分割成两个梯形。
《组合图形的面积》教学设计《组合图形的.面积》教学设计
生:能,因为梯形的上底、下底和高我们都能知道。
(2)师:大家想想,还有不同的做法吗?
《组合图形的面积》教学设计生:添补成一个长方形。
《组合图形的面积》教学设计
生:能,用长方形的面积减去三角形的面积,长方形的长和宽,三角形的底和高都是已知的。
《组合图形的面积》教学设计《组合图形的面积》教学设计(3)生:分割成一个大梯形和一个三角形。
(4)生:分割成一个正方形和两个三角形。
《组合图形的面积》教学设计《组合图形的面积》教学设计
生:能求出组合图形的面积。用正方形的面积加上两个三角形的面积。
《组合图形的面积》教学设计(课件分别演示各种方法)
4.独立计算
师:下面就请大家选择一种你喜欢的方法,快速的计算出组合图形的面积。
指名板演。集体订正。
5.小结
师:刚才我们用好几种方法求出了中队旗的面积,这些计算方法有什么共同特点呢?
生:都是把一个组合图形转化成几个简单图形。
师:数学中我们习惯用分割法或添补法,先用辅助线把一个复杂的组合图形转化成几个比较简单的图形的和或差。如果没有要求用多种方法的,我们尽量选择最简单的方法来计算。画辅助线时要注意画虚线,还要用铅笔和直尺作图。
板书:转化成简单图形。
6.我们学习了这么多组合图形知识,请你说一说生活中哪些地方有组合图形。
三、巩固应用,内化提高
1.师:同学们的表现真了不起。咱们学校有个老师家这几天装修房子,要刷新墙体。刷新墙体的工人工资是用平方米来计算的,请你们帮忙算一算。(课件出示例4)
师:怎样才能计算出这个组合图形的面积呢?
(先让学生思考,再动手计算。然后交流汇报。)
方法一:
这个组合图形分成一个正方形和一个三角形,分别计算出正方形和三角形的面积,最后算出它们的面积和,就可以求出这个图形的面积。
方法二:先把这个图形补上两个三角形,看作一个长方形,先算出长方形面积后,再减去两个小三角形的面积。
方法三:把这个图形从顶点向下作一条垂线,就分成两个梯形,这两个梯形面积是相等的,所以只要求出一个梯形的面积再乘以2,就得到这个组合图形的面积。
师:请同学们观察这几种解法,它们有什么相同的地方?
小结:使用了分割法或添补法,作辅助线把组合图形转化成简单图形来计算面积。
师:非常感谢大家为老师解决了难题。在日常生活中,到处都有组合图形,我们计算面积时,先用辅助线把它进行割、补、拼转化成简单的图形,再计算出该组合图形的面积就方便多了。这些方法中有的简单,有的繁琐,如果没有要求多种方法的,我们尽量选择最简单的方法来计算。
师:图中菜地由哪些简单图形组成的?计算每个简单图形的条件是多少?
学生独立计算,集体订正。
四、回顾整理,反思提升
师:这节课你有什么收获?
组合图形的面积
分割法或添补法(转化):分解成简单图形。
数学组合图形教学设计篇十三
教学目标:
1、在自主探索的活动中,理解计算组合图形面积的多种方法。
2、能根据各种组合图形的条件,有效地选择计算方法进行解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。同时通过活动培养学生的空间观念。学情分析:
教学设计时,充分考虑儿童的原有认知水平及儿童心理发展水平,放手让学生自主探究,注重让学生在观察、操作、合作交流、比较等数学活动中,找出计算组合图形面积的多种方法,并进行优化选择。《组合图形的面积》是学生在已经学习了长方形、正方形、平行四边形、三角形与梯形面积计算的基础上进行教学的。学生已初步具备了一定的空间思维能力,但只局限于对单一图形进行简单分析。本节课可以巩固已有知识,提高学生综合实践能力,有利于进一步发展学生的空间观念,同时让学生在数学思想方法及解决问题的思考策略方面有所发展。教学重点:
在探索活动中,理解组合图形面积计算的多种方法。教学难点:
渗透转化的教学思想,运用新知识解决实际问题的能力。教学过程:
一、课前导入:出示基本图形:
同学们,我们学过哪些平面图形?面积会算吗?选一个说说。
二、引入新课。
1、这是什么图形?那这样的图形能直接计算吗?
出示问题:
师:这个问题,能用你学过的知识想办法解决吗?
2、揭示组合图形的含义并板书课题。(1)这个图形与以前学过的图形有什么不同?
(2)由两个或两个以上的基本图形组合而成的图形,叫做组合图形。
三、自主探索,合作交流。1.出示学习目标:
我能边想边画,在交流中探索组合图形的面积的计算方法。2.独立思考,探究多种解题方法。
(1)出示:校园草坪平面图。
请你算一算这个草坪的面积是多少平方米?
(2)你打算用什么方法求它的面积?请把你自己所有的想法用虚线在图中表示出来。
(3)请选择自己的一种想法进行计算。2.小组合作,交流多种解题思路和方法。
(1)让学生将自己的解题方法在组内进行交流。
(2)分组汇报:展示不同解题思路和方法。
哪个组能给大家介绍你们的方法,并说一说为什么这样做?3.比较归纳,揭示优化解题方法。
(1)揭示计算组合图形面积最常见的“分割法”、“添补法”。
(2)揭示最优的解题方法。
你最喜欢哪种解题方法?为什么?
小结:分成的图形越少,计算面积时就越简单,所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。4.回顾反思,总结计算方法。
你能说说怎样计算组合图形的面积吗?
四、实际应用,拓展延伸。1.学以致用。
(1)p21页练一练(先分成已学过的图形,然后进行计算。)。
(2)出示练习四“第2题”。2.一展身手:练习四第1题。
学生独立完成,指名回答,集体订正。
数学组合图形教学设计篇十四
北师大版五年级数学上册第六单元第一课时《组合图形的面积》。
在三年级学生已经学习了面积和面积单位,学会了长方形与正方形的面积计算方法,在四年级学生初步认识了三角形、平行四边形、梯形的一些特征。本册教材第四单元又学习了平行四边形、三角形、梯形的面积计算方法。这些都为本课的学习奠定了知识基础,积累了相应的操作经验。通过本节课的学习,一方面可以巩固已学的基本图形,将所学知识进行综合应用,提高学生的综合能力,另一方面注重将解决问题的思考策略渗透在其中。
本节课是在学生学习了长方形、正方形、平行四边形、三角形和梯形面积计算的基础上进行教学的。五年级的学生已经初步具备了一定的空间思维能力,但更多的局限于单一图形面积计算。通过直观操作,学生对组合图形的认识不会有困难,应该能通过自主探索、合作交流,达到方法的多样化。但对于方法的交流、借鉴、反思及优化上需要教师的引导。所以要重视课堂活动的有效性,进一步发展学生的空间观念,同时让学生在在数学方法、数学思想数及解决问题的思考策略方面有所发展。
1.在探索组合图形面积计算的方法中,体会割补法的应用。
2.能根据组合图形的条件,灵活运用割补法正确计算其面积。
3.能解决生活中与组合图形有关的实际问题,发展学生的空间思维能力,认识数学的价值。
:理解组合图形面积计算的多种方法,并选择优化方法。
1.基本图形。
(1)我们都学过哪些平面图形?
长方形、正方形、三角形、平行四边形、梯形。
(2)(ppt出示学生说过的基本图形)这些图形的面积怎么计算呢?
(3)我们学过的这些平面图形也叫做基本图形。
分别出示两个组合图形,让学生说一说由几个简单的基本图形拼成的。像这样,由两个或两个以上简单图形拼成的新图形,我们就把它叫做组合图形。(板书“组合图形”)。
1.出示情境信息。
这是老师家客厅的平面图,这是一个什么图形?老师准备给客厅铺上地板,想请大家帮老师算算需要买多少地砖?那老师需要知道什么?(客厅的面积)。
能不能估算出这个客厅的面积呢?
预设一可以看成一个长为7米,宽为6米的一个长方形,面积为42平方米。
这样估算,面积是估大了还是估小了?(估大了)。
预设二可以看成是一个边长为6米的正方形,面积为36平方米。
这样估算,面积是估大了还是估小了?预计学生对于估大了还是估小了不确定,自然导入如何准确的计算这个客厅的面积。
(1)学生先独立思考。
(2)同桌互相说说自己的想法。
合作交流:1.画思考由哪些基本图形组成?
画一画。
2.标标出相应数据。
3.算计算面积。
(同桌讨论、交流。教师在巡视中,重点发现学生中的问题以及闪光点,及时反馈给学生。将学生作业中典型的方法收集起来。)。
4.分析总结思想方法。
(1)数学方法。
将学生中“分割法”示例投影展示,学生讲解方法以及计算过程。小结:像这样,把一个组合图形分割成几个基本图形的方法,叫做分割法。把这几个基本图形的面积加起来,就是这个组合图形的面积。
将学生中“添补法”示例投影展示,学生讲解方法以及计算过程。小结:像这样,把一个组合图形添补成基本图形的方法,叫做添补法。用这个大的基本图形的面积减去增添的小图形面积,就是这个组合图形的面积。
将学生中“割补法”示例投影展示,学生讲解方法以及计算过程。小结:像这样,把一个组合图形中一个基本图形割补至原组合图形的另一处,将这个组合图形转化为面积一样的'基本图形的方法,叫做添补法。新的基本图形的面积就是原来组合图形的面积。
(讲解方法中,每分析一个方法,对应贴一个典型的示例。)。
预设:对于“分割法”、“添补法”学生应该能做出来,但是对于“分割法”,书中没有要求,部分学生可能会想不到。因此,教师要准备出示这个方法,先让学生思考能否这样割补,共同探讨分析可以割补的原因,明确在什么情况下可以用割补法。
(2)数学思想。
不论哪种方法,我们都将新知识“组合图形的面积”转化为已学过的基本图形的面积,用到了转化的思想。
1.把下面各个图形分成已学过的图形。
2.中国少年先锋队的中队旗是五角星加火炬的红旗,如右图。(单位:cm)。
估一估,这面中队旗的面积大约有多大?
计算中队旗的面积,说一说你是怎么想的。
小结方法:分割法、添补法、割补法。
数学思想:转化。
要注意的问题:方法优化-选择简单、易算的方法。
学校要给30扇教室门的正面刷漆。(单位:m)。
需要刷漆的面积一共是多少?
如果刷漆每平方米需要花费5元,那么刷漆共要花费多少元?
课后思考。
如图,有两个边长是8cm的正方形卡片叠在一起,求重叠部分的面积。(单位:cm)。
数学组合图形教学设计篇十五
1.明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2.能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3.渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形所需的条件。
选择有效的计算方法解决实际问题。
ppt课件、简单图形的面积整理表、铅笔和三角板等学习用具、彩粉笔。
一、创设情境,生成问题。
老师准备了几幅漂亮的图片,我们一起来欣赏一下,好吗?
图一图二图三。
请大家仔细观察,这些物品的表面有哪些我们已经学过的图形?(逐一分析,然后重点展示中队旗)它们有什么共同特点呢?(学生口答)。
介绍:上面这些图形都是由几个简单图形组合而成的,这样的图形叫组合图形。
二、探索交流,解决问题。
1.谈话引入。
师:我现在想要做一面中队旗需要多少布呢?也就是求什么?
生:求中队旗的面积,也就是计算出组合图形的面积。
2.独立思考,分组讨论。
师:请大家独立思考:组合图形可以转化成哪些学过的图形,怎样计算出组合图形的面积?有了想法之后,和你的同桌说一说。
生独立思考,同桌交流。
3.汇报交流。
(1)师:谁来说一说你的想法?
生:分割成两个梯形。
生:能,因为梯形的上底、下底和高我们都能知道。
(2)师:大家想想,还有不同的做法吗?
生:添补成一个长方形。
生:能,用长方形的面积减去三角形的面积,长方形的长和宽,三角形的底和高都是已知的。
(3)生:分割成一个大梯形和一个三角形。
(4)生:分割成一个正方形和两个三角形。
生:能求出组合图形的面积。用正方形的面积加上两个三角形的面积。
(课件分别演示各种方法)。
4.独立计算。
师:下面就请大家选择一种你喜欢的方法,快速的计算出组合图形的面积。
指名板演。集体订正。
5.小结。
师:刚才我们用好几种方法求出了中队旗的面积,这些计算方法有什么共同特点呢?
生:都是把一个组合图形转化成几个简单图形。
师:数学中我们习惯用分割法或添补法,先用辅助线把一个复杂的组合图形转化成几个比较简单的图形的和或差。如果没有要求用多种方法的.,我们尽量选择最简单的方法来计算。画辅助线时要注意画虚线,还要用铅笔和直尺作图。
板书:转化成简单图形。
6.我们学习了这么多组合图形知识,请你说一说生活中哪些地方有组合图形。
三、巩固应用,内化提高。
1.师:同学们的表现真了不起。咱们学校有个老师家这几天装修房子,要刷新墙体。刷新墙体的工人工资是用平方米来计算的,请你们帮忙算一算。(课件出示例4)。
(先让学生思考,再动手计算。然后交流汇报。)。
方法一:
这个组合图形分成一个正方形和一个三角形,分别计算出正方形和三角形的面积,最后算出它们的面积和,就可以求出这个图形的面积。
方法二:先把这个图形补上两个三角形,看作一个长方形,先算出长方形面积后,再减去两个小三角形的面积。
方法三:把这个图形从顶点向下作一条垂线,就分成两个梯形,这两个梯形面积是相等的,所以只要求出一个梯形的面积再乘以2,就得到这个组合图形的面积。
师:请同学们观察这几种解法,它们有什么相同的地方?
小结:使用了分割法或添补法,作辅助线把组合图形转化成简单图形来计算面积。
师:非常感谢大家为老师解决了难题。在日常生活中,到处都有组合图形,我们计算面积时,先用辅助线把它进行割、补、拼转化成简单的图形,再计算出该组合图形的面积就方便多了。这些方法中有的简单,有的繁琐,如果没有要求多种方法的,我们尽量选择最简单的方法来计算。
2.课本做一做:新丰小学有一块菜地,形状如右图,这块菜地的面积是多少平方米?
师:图中菜地由哪些简单图形组成的?计算每个简单图形的条件是多少?
学生独立计算,集体订正。
四、回顾整理,反思提升。
师:这节课你有什么收获?
分割法或添补法(转化):分解成简单图形。
(通用10篇)作为一名优秀的教育工作者,时常需要用到教学设计,教学设计是一个系统化规划教学系统的过程。优秀的教学设计都具备一些什么特点呢?以......
(精选10篇)作为一位杰出的教职工,往往需要进行教学设计编写工作,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课......