直线与圆的位置关系心得体会(模板15篇)
心得体会可以帮助我们总结经验,形成对待问题的有效方式与策略。写心得体会时,我们应该注重细节和文字的精炼,以提高文章的质量和可读性。下面是一些优秀心得体会的范文,供大家共同学习和进步。
直线与圆的位置关系心得体会篇一
:通过观察、实验、讨论、合作研究等数学活动使学生了解探索问题的一般方法;由观察得到“圆心与直线的距离和圆半径大小的数量关系对应等价于直线和圆的位置关系”从而实现位置关系与数量关系的转化,渗透运动与转化的数学思想。
:创设问题情景,激发学生好奇心;体验数学活动中的探索与创造,感受数学的严谨性和数学结论的正确性,在学习活动中获得成功的体验;通过“转化”数学思想的运用,让学生认识到事物之间是普遍联系、相互转化的辨证唯物主义思想。
二、教学重、难点。
难点:学生能根据圆心到直线的距离d与圆的半径r之间的数量关系,揭示直线与圆的位置关系;直线与圆的三种位置关系判定方法的运用。
三、教学设计。
问 题。
设计意图。
师生活动。
2.图形中的圆与直线的位置都是一样的吗?
师:让学生之间进行讨论、交流,引导学生观察图形,导入新课.
生:看图,并说出自己的看法.
师:引导学生利用类比、归纳的思想,总结直线与圆的位置关系的种类,进一步深化“数形结合”的数学思想.
问 题。
设计意图。
师生活动。
使学生回忆初中的数学知识,培养抽象概括能力.
师:引导学生从几何的角度说明判断方法和通过直线与圆的方程说明判断方法.
生:利用图形,寻找两种方法的数学思想.
师:指导学生阅读教科书上的例1.
生:阅读科书上的例1,并完成教科书第128页的练习题2.
师;分析例1,并展示解答过程;启发学生概括判断直线与圆的位置关系的基本步骤,注意给学生留有总结思考的时间.
生:交流自己总结的步骤.
师:展示解题步骤.
7.通过学习教科书上的例2,你能说明例2中体现出来的数学思想方法吗?
进一步深化“数形结合”的数学思想.
师:指导学生阅读并完成教科书上的例2,启发学生利用“数形结合”的数学思想解决问题.
问 题。
设计意图。
师生活动。
8.通过例2的学习,你发现了什么?
明确弦长的运算方法.
师:引导并启发学生探索直线与圆的相交弦的求法.
生:通过分析、抽象、归纳,得出相交弦长的运算方法.
9.完成教科书第128页的练习题1、2、3、4.
师:引导学生完成练习题.
生:互相讨论、交流,完成练习题.
10.课堂小结:
教师提出下列问题让学生思考:
作业:习题4.2a组:1、3.
直线与圆的位置关系心得体会篇二
20xx.11.17早上第二节授课班级:初三、1班授课教师:
过程与方法目标:
2.通过例题教学,培养学生灵活运用知识的解决能力。
情感与态度目标:让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。
利用多媒体放映落日的动画,初中数学教案《数学教案-直线和圆的位置关系(公开课)》。引导学生从公共点个数和圆心到直线的.距离两方面体会直线和圆的不同位置关系。
学生看投影并思考问题。
调动学生积极主动参与数学活动中.。
探究新知。
1、通过观察直线和圆的公共点个数得出直线和圆相离、相交、相切的定义。
布置作业。
1、课本第101页7.3a组第2、3题。
2、课余时间,留心观察周围事物,找出直线和圆相交,相切,相离的实例,说给大家听。
直线与圆的位置关系心得体会篇三
1.由日落的三张照片(太阳与地平线相离、相切、相交)引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到生活之中处处有数学。
2.在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。
3.新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生被动的接受,对概念的理解不是很深刻,可以改为让学生下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。
2.虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。
直线与圆的位置关系心得体会篇四
从教学以来,我一直不断的学习和研究如何使学生在数学课堂中高效的学习,在探索过程中我发现教师要想让学生学好数学,必须高度重视学生的主动参与课堂学习,让学生亲身体验学习知识的过程,引导学生在发现问题、分析问题、解决问题的同时,培养学生的自主学习能力和创新意识。《直线与圆的位置关系》是高中学习中一个重要的内容,下面我详细总结一下我讲的这节课。
首先从实际生活出发,引用古诗句“海上升明月,天涯共此时”及海上日出的多媒体展示,引导学生回忆直线和圆的位置关系及判定方法,通过对已有研究方法的揭示,增强学生运用迁移方法研究新问题的意识;接着借助多媒体引出三个问题,让学生运用初中的知识判断一下直线和圆的位置关系,巩固学生初中所学内容更好的为本节课的学习打下基础,从而引导学生揭示出直线与圆的位置关系与公共点的个数之间存在着对应关系的本质特征;最后,引入轮船遇到台风的实际问题,让学生体会源自生活的数学,思考解决实际问题的方法,在数与形的相互转化过程中思考问题。
在我的引导下,提示学生先用初中所学内容解决轮船遇台风问题,学生很轻易的把这个问题解决了,紧接着我又趁热打铁,提出一般的`三角形中这个方法是否可以,由此得到由高中知识解决直线与圆的位置关系的方法:几何法,代数法。为此,我以问题为导向,以探究问题的方式引导学生自学自悟,为学生提供了自主合作探究的舞台,让学生思维在数学中自由翱翔。通过一系列问题学生不仅加深了对判定直线与圆的位置关系的方法的理解,更重要的是使学生学会运用联想、化归、数形结合等思想方法去研究问题,促进学生在学会数学的过程中顺利地向会学数学的方向发展。
为了提高学生的学习兴趣,让学生有目的的去学,提高学生的学习能力,这节课设置了大量问题,使学生充分地实践与探索,不断地归纳与总结,引导学生发现规律、拓展思路。在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化。
适量的练习、课后作业及时巩固了学生的学习,学生需通过动手动脑来完成,使学生对知识点的学习由课内延伸到课外。
当然,这节课有成功之处,也有很多不足,比如,尽管准备的很充分,但是还是有点紧张;虽然我在设计本节课时是想体现学生自主探究的原则,但是在一些问题提出之后,没有给予学生足够的时间思考,限制了学生的思维。此外,对学生引导的语言概括及对学生及时性鼓励的不是太好,学生的积极性及配合并不高。
在今后的教学中,我会继续不断的学习,提高自己的教学水平,真正让学生学会数学、学好数学,使学生的各项能力在数学学习中得到更好的发展和提高,我相信在将来的教学中,我会做得越来越好,真正成为一名合格的教师。
直线与圆的位置关系心得体会篇五
《直线和圆的位置关系的复习》一课的教学,可以说非常成功。教学设计充分体现了新的教学理念,重点突出、层次清楚、构思新颖,整个教学过程教师采用多样化的呈现方式为学生搭建参与探究的平台,高度重视学生的主动参与,有意识地为学生创设了良好的数学交流情境。注意学生的情感与态度,知识与技能的形成和发展,使每个学生都有表现的机会和获得成功的体验。
由于本节课综合性强,涉及到的知识面广,对学生的能力水平要求高。教师结合本节课的教学目标,突出重点,突破难点。采用教师启发引导,学生合作交流的方式来组织本节课的教学。注重解题思路分析和方法引导,善于引导学生寻找图形中的数量关系,选用适当的知识和方法正确解答问题。
在学习知识的同时,注意数学思想方法的渗透。在教学中,数学知识是一条明线,数学思想方法是一条暗线。崔老师在引导学生学习的同时,教给学生思考方法、学习方法和解决问题的方法,为学生未来发展服务,让学生在脑海里留下数学意识,长期下去,学生将终身受用。
板书条理分明,布局合理,文字与图形完美结合,板书设计不仅让学生对直线和圆的位置关系图形的特征一目了然,而且也便于揭示它们之间的区别和联系。体现了板书的形式美和简洁美,真正使板书起到了画龙点睛的作用。
充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使题意理解更清楚,结论更准确。
教师教态自然,语言清晰,数学语言表述准确,操作演示熟练,提问率高,体现素质教育面向全体学生的要求。
教师注意培养学生的自信心,在教学过程的设计上体现了层次性和梯度性。防止学生对一些问题出现畏惧情绪,鼓励学生敢于知难而进,让学生树立战胜困难的勇气和决心。例题的设计,按照由易到难的顺序呈现,关于直线和圆的复习教学中能利用一个图形提出尽可能多的问题,并尽可能的覆盖到圆的大多数知识,尽可能的加强知识间的横纵的联系,尽可能渗透多种数学思想和方法,最大限度的榨取它的利用价值,达到了一线串珠的目的。体现了综合性例题的大容量、大综合的特点,非常有效地达成本节课的教学目标。
直线与圆的位置关系心得体会篇六
本节课研究圆与圆的位置关系,重点是研究两圆位置关系的判断方法,并应用这些方法解决有关的实际问题。《圆与圆的位置关系》在旧教材中比重不大,但是在新课标中,被作为一个独立的章节,说明新课标对这一章节的要求已经有所提高。教材是在初中平面几何对圆与圆的位置关系的初步分析的基础上得到圆与圆的位置关系的判断方法,北师大版教材中着重强调了根据圆心到直线的距离与圆的半径的关系进行判断,对用方程的思想去处理位置关系没作要求,但用方程的思想来解决几何问题是解析几何的精髓,是平面几何问题的深化,它将是以后处理圆锥曲线的基本方法,因此,我增加了用方程的思想来分析位置关系,这样有利于培养学生数形结合、经历几何问题代数化等解析几何思想方法及辩证思维能力,其基本思维方法和解决问题的技巧在今后整个圆锥曲线的学习中有着非常重要的意义。
作为解析几何的一堂课,判断圆与圆的位置关系,体现的正是解析几何的思想:用方程处理几何问题,用几何方法研究方程性质。所以我在教材处理上,对判断两圆位置关系用了方程的思想和几何两种方法,两种方法贯穿始终,使学生对解析几何的本质有所了解。
第一,学生学习新知识必须在已有知识和经验的基础上自主建构与形成。所以,我一开始便提出了三个问题,即复习此节相关的知识点,通过问题解决,以旧引新,提出新的问题,以类比的方法研究圆与圆的位置关系。配合几何画板的动画演示,启发学生思考当初是怎样研究判断直线与圆的位置关系的方法?这种方法是不是同样可以运用到研究圆与圆的位置关系上来?能不能用来判断圆与圆的位置关系?使学生很自然地从直线与圆的位置关系的判断方法类比到圆与圆的位置关系的判断方法。
第二,新的课程标准非常重视学生的自主探究,这是学习方式的一次革命,老师的教授过程固然重要,但学生对知识的掌握是在学生自己对知识有体验、有独立的思考和探讨的基础上,才能成为可能。所谓“学在讲之前,讲在关键处”,学生先有一个对知识的认识过程,老师再在关键处进行讲解,使学生真正完成对知识感知、形成和巩固的过程,才是对知识最好的吸收。
第三,学生的学习是在教师引导下的有目的的学习,从而教学的过程就是在教师控制下的学生自主学习和合作探究学习的过程,这个过程中的关键点是怎么样有效地控制学生自主学习和合作探究学习的时间和空间,在教学的过程中,我较好地处理了学生学习的空间与时间,既留给学生充分思考与探索的时间与空间,又严格限定时间,由此培养学生思维的敏捷性,提高课堂效率。
对于问题探究的题型选择的一些思考:
第二个问题研究是研究一个半径变化的圆与定圆相切,求题中参数变化的问题,这道题中同样要注意的是相切的两种情况,并且对于内切,要充分结合数形结合的思想,判断出两圆的半径大小关系。两题都有一定难度,处理时必须牢牢掌握知识,灵活运用。
2、时间把握。课前复习是有必要的,是为了学生类比旧知识,联想新知识,但复习旧知识的时间应该限定在三分钟以内,复习时间长会导致巩固练习的时间不足和问题展开不够充分。
3、限时训练。限时训练的目的是为了让学生更有效率地做题,限定时间过长或是过短都不利于学生提高数学能力,这点还有待研究。
直线与圆的位置关系心得体会篇七
"思之不慎,行而失当”,“学然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自强也。”反思意识人类早就有之。作为教师,在教学中也应适时反思教学过程的得与失。
在《直线和圆的位置关系》一课教学后,感受颇多,现分享如下:
开课时,借助微机展示“圆圆的落日慢慢从海平面升起”的动画,从而展现直线与圆的位置关系。由此引入课题——直线与圆的位置关系,学生比较感兴趣,充分感受生活中的数学知识,体验数学来源于生活。然后提出问题,引导学生大胆猜想,思考,发现三种位置关系,激发学生学习兴趣,营造探索问题的氛围。同时让学生从生活中“找”数学,“想”数学,体会到数学知识无处不在,应用数学无处不有。这也符合“数学教学应从生活经验出发”的新课程标准要求。
在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生用类比的方法来研究直线与圆的位置关系,在研究过程中,采用小组讨论的方法,给予学生足够的探索、交流的时间,培养学生互助、协作的精神,让学生在相互讨论中,集思广益,形成思维互补,从而使概念更清楚,结论更准确。 最后由学生小结这一知识点,我板书在黑板上,培养学生用数学语言归纳问题的能力,同时感受收获知识的快乐。
在新知教授完毕,知识升华这块,我安排了一道实际问题,一辆火车的噪首会不会影向处在与铁路相交的另一条公路旁的学校?如果会影响,影响的时间有多长?新课标下的数学强调人人学有价值的数学,人人学有用的数学,由于此题要学生回到生活中去运用数学知识解决生活中遇到的问题,学生的积极性高涨,都急着讨论解决方案,使乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
一堂课教学下来,也发现有诸多不妥之处,让我认识到自己需要继续努力。归纳主要有以下三点:
1、教师在课堂应当以引导者的身份出现,把课堂和讲台让位于学生,让“教师的教”真正服务于“学生的学”,而我在这一节课中因为一方面担心学生在自主研究知识的形成时会浪费时间,另一方面担心会产生意想不到的或者课前备课时没有考虑到的回答,总是把自己的思想强加给学生,比如学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生只是被动的接受,这样就会对概念的理解不是很深刻。这里可以改为让学生自己下定义,教师适当放手,以师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。
2、有些课堂提问欠合理化、科学化,提问随意性大,缺乏针对性和启发性,导致课堂教学引导不力,问题缺乏精心安排这就使得课堂存在着不少“徒劳的提问”。让课堂时间分配的不太合理。今后应该把一些提问设计再提炼,能达到精而准。
3、在处理课后练习时,做的不够细致,这一环节是对前面探究新知识是否掌握的一个小测试,重在帮助学生掌握方法,而我在讲解练习时,只展示了解题思路,并没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。这里教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,巩固和扩大知识,吸收、内化知识,充分体现"授人以鱼不如授人以渔"。
总之,这是我对自己本节课的一些教学反思,或者说是对新课程理念的浅薄认识。
直线与圆的位置关系心得体会篇八
从教学以来,我一直不断的学习和研究如何使学生在数学课堂中高效的学习,在探索过程中我发现教师要想让学生学好数学,必须高度重视学生的主动参与课堂学习,让学生亲身体验学习知识的过程,引导学生在发现问题、分析问题、解决问题的同时,培养学生的自主学习能力和创新意识。《直线与圆的位置关系》是高中学习中一个重要的内容,下面我详细总结一下我讲的这节课。
首先从实际生活出发,引用古诗句“海上升明月,天涯共此时”及海上日出的多媒体展示,引导学生回忆直线和圆的位置关系及判定方法,通过对已有研究方法的揭示,增强学生运用迁移方法研究新问题的意识;接着借助多媒体引出三个问题,让学生运用初中的知识判断一下直线和圆的位置关系,巩固学生初中所学内容更好的为本节课的学习打下基础,从而引导学生揭示出直线与圆的位置关系与公共点的个数之间存在着对应关系的本质特征;最后,引入轮船遇到台风的实际问题,让学生体会源自生活的数学,思考解决实际问题的方法,在数与形的相互转化过程中思考问题。
在我的引导下,提示学生先用初中所学内容解决轮船遇台风问题,学生很轻易的把这个问题解决了,紧接着我又趁热打铁,提出一般的三角形中这个方法是否可以,由此得到由高中知识解决直线与圆的位置关系的方法:几何法,代数法。为此,我以问题为导向,以探究问题的方式引导学生自学自悟,为学生提供了自主合作探究的舞台,让学生思维在数学中自由翱翔。通过一系列问题学生不仅加深了对判定直线与圆的位置关系的方法的理解,更重要的是使学生学会运用联想、化归、数形结合等思想方法去研究问题,促进学生在学会数学的过程中顺利地向会学数学的方向发展。
为了提高学生的学习兴趣,让学生有目的的去学,提高学生的学习能力,这节课设置了大量问题,使学生充分地实践与探索,不断地归纳与总结,引导学生发现规律、拓展思路。在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化。
适量的练习、课后作业及时巩固了学生的学习,学生需通过动手动脑来完成,使学生对知识点的学习由课内延伸到课外。
当然,这节课有成功之处,也有很多不足,比如,尽管准备的很充分,但是还是有点紧张;虽然我在设计本节课时是想体现学生自主探究的原则,但是在一些问题提出之后,没有给予学生足够的时间思考,限制了学生的思维。此外,对学生引导的语言概括及对学生及时性鼓励的不是太好,学生的积极性及配合并不高。
在今后的教学中,我会继续不断的学习,提高自己的教学水平,真正让学生学会数学、学好数学,使学生的各项能力在数学学习中得到更好的发展和提高,我相信在将来的教学中,我会做得越来越好,真正成为一名合格的教师。
将本文的word文档下载到电脑,方便收藏和打印。
直线与圆的位置关系心得体会篇九
节课的教学,我认为成功之处有以下几点:
1.由日落的三张照片(太阳与地平线相离、相切、相交)引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到生活之中处处有数学。
2.在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。
3.新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:
1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生被动的接受,对概念的理解不是很深刻,可以改为让学生下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。
2.虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。
直线与圆的位置关系心得体会篇十
“思之不慎,行而失当”,“学然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自强也。”反思意识人类早就有之。作为教师,在教学中也应适时反思教学过程的得与失。
开课时,借助微机展示“圆圆的落日慢慢从海平面升起”的动画,从而展现直线与圆的位置关系。由此引入课题——直线与圆的位置关系,学生比较感兴趣,充分感受生活中的数学知识,体验数学来源于生活。然后提出问题,引导学生大胆猜想,思考,发现三种位置关系,激发学生学习兴趣,营造探索问题的氛围。同时让学生从生活中“找”数学,“想”数学,体会到数学知识无处不在,应用数学无处不有。这也符合“数学教学应从生活经验出发”的新课程标准要求。
在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生用类比的方法来研究直线与圆的位置关系,在研究过程中,采用小组讨论的方法,给予学生足够的探索、交流的时间,培养学生互助、协作的精神,让学生在相互讨论中,集思广益,形成思维互补,从而使概念更清楚,结论更准确。最后由学生小结这一知识点,我板书在黑板上,培养学生用数学语言归纳问题的能力,同时感受收获知识的快乐。
在新知教授完毕,知识升华这块,我安排了一道实际问题,一辆火车的噪首会不会影向处在与铁路相交的另一条公路旁的学校?如果会影响,影响的时间有多长?新课标下的数学强调人人学有价值的数学,人人学有用的数学,由于此题要学生回到生活中去运用数学知识解决生活中遇到的问题,学生的积极性高涨,都急着讨论解决方案,使乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
一堂课教学下来,也发现有诸多不妥之处,让我认识到自己需要继续努力。归纳主要有以下三点:。
1、教师在课堂应当以引导者的身份出现,把课堂和讲台让位于学生,让“教师的教”真正服务于“学生的学”,而我在这一节课中因为一方面担心学生在自主研究知识的形成时会浪费时间,另一方面担心会产生意想不到的或者课前备课时没有考虑到的回答,总是把自己的思想强加给学生,比如学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生只是被动的接受,这样就会对概念的理解不是很深刻。这里可以改为让学生自己下定义,教师适当放手,以师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。
2、有些课堂提问欠合理化、科学化,提问随意性大,缺乏针对性和启发性,导致课堂教学引导不力,问题缺乏精心安排这就使得课堂存在着不少“徒劳的提问”。让课堂时间分配的不太合理。今后应该把一些提问设计再提炼,能达到精而准。
3、在处理课后练习时,做的不够细致,这一环节是对前面探究新知识是否掌握的一个小测试,重在帮助学生掌握方法,而我在讲解练习时,只展示了解题思路,并没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。这里教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,巩固和扩大知识,吸收、内化知识,充分体现”授人以鱼不如授人以渔"。
总之,这是我对自己本节课的一些教学反思,或者说是对新课程理念的浅薄认识。
直线与圆的位置关系心得体会篇十一
已知直线都是正数)与圆相切,则以为三边长的三角形是________三角形.
三、解答题。
当为何值时,直线与圆有两个公共点?有一个公共点?无公共点?
四、填空题。
若直线与圆相切,则实数的值等于________.
圆心为且与直线相切的圆的方程为________.
直线与圆相切,则实数等于________.
直线与圆相切,则________.
过点作圆的切线,且直线与平行,则与间的距离是________.
过点,作圆的切线,则切线的条数为________条.
过点的圆与直线相切于点,则圆的方程为________.
五、解答题。
过点作圆的切线,求此切线的方程.。
圆与直线相切于点,且与直线也相切,求圆的方程.。
六、填空题。
由直线上的一点向圆引切线,则切线长的最小值为_____________.
七、解答题。
求满足下列条件的圆的切线方程:
(1)经过点;
(2)斜率为;
(3)过点.。
已知圆的方程为,求过的圆的切线方程.。
八、填空题。
直线被圆截得的弦长等于________.
直线被圆截得的弦长等于________.
直线被圆所截得的弦长为________.
圆截直线所得弦的长度为4,则实数的值是________.
设直线与圆相交于两点,若,则圆的面积为________.
直线被圆截得的弦长为________.
直线被圆所截得的弦长为________.
圆心坐标为的圆在直线上截得的弦长为,那么这个圆的方程为________.
过点的直线被圆截得的弦长为,则直线的斜率为________.
过原点的直线与圆相交所得弦的长为2,则该直线的方程为________.
九、解答题。
圆心在直线上,圆过点,且截直线所得弦长为,求圆的方程.。
十、填空题。
过点作圆的弦,其中最短弦的长为________.
十一、解答题。
已知圆,直线.
(1)求证:对,直线与圆总有两个不同的交点;
(2)若直线与圆交于两点,当时,求的值.。
设圆上的点关于直线的对称点仍在圆上,且直线被圆截得的弦长为,求圆的方程.。
已知圆,直线.。
证明:不论取什么实数,直线与圆恒交于两点。
求直线被圆截得的弦长最小时的方程,并求此时的弦长。
十二、填空题。
圆上到直线的距离等于1的点有________个.
在平面直角坐标系中,已知圆上有且仅有四个点到直线的距离为1,则实数的取值范围是________.
设圆上有且仅有两个点到直线的距离等于1,则圆半径的取值范围是________.
直线与曲线有且只有一个公共点,则b的取值范围是_________。
若直线与圆恒有两个交点,则实数的取值范围为________.
已知点满足,则的取值范围是________.
若过点的直线与曲线有公共点,则直线的斜率的取值范围为。
直线与圆的位置关系心得体会篇十二
在本届贵阳市中青年教师教学研讨会中,修文中学提出打造有自己特色的“良知高效课堂”,整个课堂进程分四步八环节。本人承担的是直线与圆的位置关系这一堂课与大家交流,有不足之外请老师们批评指正。
1、教材地位。
从知识结构来看,直线与圆的位置关系是对圆的方程应用的延续和拓展,又是后续研究圆与圆的位置关系和直线与圆锥曲线的位置关系等内容的基础。在直线与圆的位置关系的判断方法的建立过程中蕴涵着诸多的数学思想方法,这对于进一步探索、研究后续内容有很强的启发与示范作用。
2、学生情况。
对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交。从直线与圆的直观感受上,学生懂得从圆心到直线的距离与圆的半径相比较来研究直线与圆的位置关系。本节课,学生将进一步挖掘直线与圆的位置关系中的“数”的关系,学会从不同角度分析思考问题,为后续学习打下基础。另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。
3、教学目标。
新课程标准的要求是能根据直线与圆的方程判断其位置关系(相交、相切、相离),体会用代数方法处理几何问题的思想,感受“形”与“数”的对立和统一;初步掌握数形结合的思想方法在研究数学问题中的应用。
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,本节课教学应实现如下教学目标:
4、知识与技能。
直线与圆的位置关系心得体会篇十三
重点:的性质和判定。因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究的基础。
难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解。
3.教法建议。
本节内容需要一个课时。
(2)在中,以“形”归纳“数”,以“数”判断“形”为主线,开展在组织下,以学生为主体,活动式.
第12页。
直线与圆的位置关系心得体会篇十四
三、目的分析:
1、知识目标:
2、能力目标:
要使学生体会用代数方法处理几何问题的思路和“数形结合”的思想方法。
四、教法分析:
1、教学方法:启发式讲授法、演示法、辅导法。
2、教材处理:
(1)例题1(1)(2)用两种不同的办法求解,让学生自己体会这两种方法。
通过老师引导和让学生自己探索解决,反馈学生的解决情况。
(2)增加一个过一点求圆的切线方程的题型,帮助学生增加对直线与圆的认识。
3、学法指导:本节课的学法是继续指导学生把新问题转化为已有知识解决的化归思想。
4、教具:多媒体电脑、投影仪、自做多媒体。
五、过程分析:
教学。
环节。
教学内容。
设计意图。
新课引入。
1、学生观察日出照片,把观察到的情况用自己的语言说出来,抽象出几何图形,在学生回答的基础上,通过多媒体演示圆与直线的三种位置关系。让学生感受到数学产生于生活,与生活密切相关,并能使学生更好的直观感受直线和圆的三种位置关系。然后引入本节课的课题。
2、在上一章,我们在学习了直线的方程后,研究了点和直线、直线与直线的位置关系,本章我们已经学习了圆的方程,现在我们要研究直线与圆以及圆与圆的位置关系。
1数学产生于生活,与生活密切相关。
2、以实际问题引入有利于激发学生学习数学的兴趣,有利于扩展学生的视野。
新课讲解。
一、知识点拨:
答:把圆心到直线的距离d和半径r比较大小:
直线与圆的位置关系心得体会篇十五
并深刻剖析直线是圆的切线的判定条件和直线与圆相切的性质;对重要的结论及时。
(2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学。
新课程理念及新基础教育理念都提倡“把课堂还给学生,让课堂充满生命活力”,让学生真正“动起来”,动不应当是表面的、外在的,而应当使学生的思维处于活跃状态,积极思考问题,这种内在的、深层的动,更要落实,动静结合,收放适度,动得有序,动而不乱。课堂教学要的不是热闹场面,而是对问题的深入研究和思考。首先要设计好问题,针对不同意见和问题引导学生展开讨论、辩论,抓住学生发言中的问题,及时给以矫正。当教师提出问题让学生探索时,学生自己寻找答案时,要放手让学生活动,但要避免学生兴奋过度或活动过量。今后再教学本节课仍应倡导提高学生的问题意识,以对问题的探究来构筑本节课教学的主题。但是,教师待学生的问题提完后,与学生一道对问题进行归类,找出学生思维和知识的核心问题,以此组织课堂教学,并相机解决其他问题。仍应放权给学生,给他们想、做、说的机会,让他们讨论、质疑、交流,围绕某一个问题展开辩论。教师应当给学生时间和权利,让学生充分进行思考,给学生充分表达自己思维的机会。但是,应关注学生的参与程度,有的学生的参与只是一种表面上的行为参与。要看学生的思维是否活跃,关键是学生所回答的问题、提出的问题,是否建立在一定的思维层次上,是否会引起其他学生的积极思考,还是学生的自我需要。也就是说我们要关注学生思维的状态与学习互动的状态。