平方差公式说课稿(汇总18篇)
总结是我们前进的动力和方向标。良好的总结需要有全面的了解与观察。接下来是一些总结的典型样例,希望能给大家带来启发。
平方差公式说课稿篇一
平方差公式是多项式乘法运算中一个重要的公式,是特殊的多项式与多项式相乘的一种简便计算。通过复习多项式乘以多项式的计算导入新课,为探究新知识奠定基础。在重难点处设计问题:“观察以上3个算式的特点和运算结果的特点,对比等号两边代数式的结构,你发现了什么?”让学生发现规律并尝试运用自己的语言来描述。
问题提出后,学生能积极进行分组讨论、交流,各组小组长阐述自己小组讨论的结果。大多数的学生能找出规律,说出大概意思,但是无法用精准的语言完整的描述出来,语言表达无条理、含糊。针对这种情况,在以后的课堂教学过程中要注意加强对学生的逻辑思维能力和语言表达能力的.培养。最后经过师生的共同努力,得出了平方差公式以及公式的特征。
在例题展示环节中,我通过2道例题的运算,训练学生正确应用公式进行计算,体会公式在简化运算中的作用。实践练习的设计,使学生从不同角度认识平方差公式,进一步加强学生对公式的理解。在运用公式时,学生基本掌握运用平方差公式的步骤:首先要判断算式是否符合平方差公式特征,然后再寻找算式中的a,b项,最后运用平方差公式运算。
拓展延伸环节中,学生通过寻找算式中的a,b项,慢慢发现a,b项不仅可以代表数,也可以代表单项式、多项式等代数式,这样设计可以进一步深化学生对字母含义的理解。在学生独立完成练习和堂测中,经过巡视,我发现近三分之一的学生对较复杂的多项式不能准确找出a,b项,特别是b项代表多项式时,负数去括号时出错较多。
最后通过设计递进式的问题串,引导学生自己一步步总结出本节课所学的知识内容,从而培养他们的归纳总结和语言表达能力。
本节课采用学习小组讨论、交流的学习方式,让学优生带动学困生,整体教学效果良好,学生基本掌握平方差公式的运用,对于较复杂的a、b项的运算,在自习课上将加强练习。
平方差公式说课稿篇二
本周x上午我听了x老师一节关于《运用平方差公式进行因式分解》的公开课,x老师以自己扎实的数学基本功,细致严谨的数学解题思路,灵活轻松的师生互动,为我们献上了一节优质的数学课。
x老师针对本章内容所要用上了前面的知识做了细致的.复习。实现了本章节知识点的联系与复习回顾,对接下去的学习做了很好的铺垫。
x老师通过求长方形的面积来引导学生探索、总结出运用平方差公式进行因式分解的法则,利用数形结合,让学生对这个法则的理解更深入,同时突破了难点,体现了以教师为主导、学生自主探究、讨论、合作交流的新课改理念。
x老师通过练习,让学生观察步骤,并做出总结。使学生加深了对知识的理解,学会观察,发现,总结知识。最后x老师还给学生编了个解题的顺口溜,既方便让学生记忆,又能巩固知识。
(1)整节课老师讲得多,学生个别回答较少。
(2)学生的讨论与合作学习还需加强,讨论问题还不够深入,应让学生从合作学习中有所提高,从与它人的交流中碰撞出思维的火花。
(3)还需加强的对知识点的认识,比如为什么要学升降幂,是为了结果的有序,数学的结果需要简洁有序。这样让学生很清楚,有目的的学习效果总是比较好的。
平方差公式说课稿篇三
在探索平方差公式的过程中,发展学生的符号感和推理能力。在计算的过程中发现规律,并能用符号表达,体会数学语言的严谨与简洁。
激发学习数学的兴趣,鼓励学生自己探索,培养学生的合作意识与创新能力。
重点。
难点。
一、复习导入。
1.回顾多项式乘多项式的法则。
2.创设情境:你能快速地口算下列式子的值吗?
(1);(2).
师生共同想办法,想到能否把数转化成较整的数?
变形成:,
再试试把它当成多项式乘法来算算,有什么发现?
继续用你发现的方法算算,,,成功了吗?
我们把这个有趣的结论整理并推广,就可以得到今天要学习的一个乘法公式,平方差公式。
二、新课讲解。
探究新知。
1.观察相乘的两个多项式有什么特点?运算的结果有什么特点?
讨论交流后总结出:两个数的和与这两个数的差的积,等于这两个数的平方差。
2.把式子里具体的数换成字母表示的数,结论还成立吗?
3.从上面的计算中你有什么发现呢?
引导学生发现对于不同形式的两个数,都有它们的和与它们的差的积都等于它们的平方差!用公式表示就是:,这里字母是任意形式的两个数。这个公式叫做平方差公式。
下列多项式乘法中,能用平方差公式计算的是_______________(填写序号)。
(1);(2);(3);
(4);(5);(6).
学生分组讨论交流,归纳什么情况下可以使用平方差公式。通过讨论,对平方差公式的理解达到一个新的高度:所谓两数和、两数差,从多项式的角度来看,就是有一项相同(),有一项相反(和),只要相乘的两个多项式具备这样的特点,都可以用平方差公式计算。不难判断,上面的式子中(2)、(5)、(6)都可以用平方差公式计算。
三、典例剖析。
师生共同解答,教师板书。初学运用时要写清楚步骤。
学生解答,关注学生是否理解平方差公式,能否正确识别乘法公式里的。
例3.计算:
学生解答,教师巡视,关注学生能否合理变形,灵活运用公式计算。
四、课堂练习。
1.下面各式的计算对不对?如果不对,应怎样改正?
(1);
(1);(2);
(3);(4).
3.计算:
(1);(2);
教师要注意发现学生的错误,组织学生对错误进行分析,对于第1题可以引导学生分析导致错误的原因。
五、小结。
师生共同回顾平方差公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
六、布置作业。
p50第1、6题。
平方差公式说课稿篇四
本周上午我听了史老师一节关于《运用平方差公式进行因式分解》的公开课,史老师以自己扎实的数学基本功,细致严谨的数学解题思路,灵活轻松的师生互动,为我们献上了一节优质的数学课。
史老师针对本章内容所要用上了前面的知识做了细致的复习。实现了本章节知识点的联系与复习回顾,对接下去的`学习做了很好的铺垫。
史老师通过求长方形的面积来引导学生探索、总结出运用平方差公式进行因式分解的法则,利用数形结合,让学生对这个法则的理解更深入,同时突破了难点,体现了以教师为主导、学生自主探究、讨论、合作交流的新课改理念。
史老师通过练习,让学生观察步骤,并做出总结。使学生加深了对知识的理解,学会观察,发现,总结知识。最后史老师还给学生编了个解题的顺口溜,既方便让学生记忆,又能巩固知识。
(1)整节课老师讲得多,学生个别回答较少。
(2)学生的讨论与合作学习还需加强,讨论问题还不够深入,应让学生从合作学习中有所提高,从与它人的交流中碰撞出思维的火花。
(3)还需加强的对知识点的认识,比如为什么要学升降幂,是为了结果的有序,数学的结果需要简洁有序。这样让学生很清楚,有目的的学习效果总是比较好的。
平方差公式说课稿篇五
3、在紧张而轻松地教学氛围内,进一步激发学生的学习兴趣热情。
重点是掌握公式的结构特征及正确运用公式。难点是公式推导的理解及字母的广泛含义。
以教师的精讲、引导为主,辅以引导发现、合作交流。
(一)创设问题情境,引入新课。
1、你会做吗?
(1)(x+1)(x—1)=_____=()()。
(3)(3x+2)(3x—2)=_____=()()。
2、能否用简便方法运算:×(这里需要用到平方差公式,设疑激发学生兴趣。)。
交流上面第1题的答案,引导学生进一步思考:
(合作交流,探究新知:两数之和与这两数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于这两个数的平方差。)。
我们把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到类似形式的多项式相乘时,就可以直接运用公式进行计算。(在此基础上,让学生用语言叙述公式,并让学生熟记。)。
(三)尝试探究。
(四)巩固练习。
(l)(x+a)(x—a)。
(2)(m+n)(m—n)(3)(a+3b)(a—3b)。
(4)(1—5y)(l+5y)(5)998×1002。
(6)395×405。
2、直接写出答案:
(l)(—a+b)(a+b)。
(2)(a—b)(b+a)。
(3)(—a—b)(—a+b)。
(4)(a—b)(—a—b)(5)999×1001。
(6)×(让学生独立完成,互评互改。)。
(五)小结。
2.运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;
(2)有些式子表面不能应用公式,但实质能应用公式,要注意分清a、b。
(学生回答,教师总结)。
(六)作业。
p106习题1—5题。
教学反思。
通过精心备课,本节课在教学中是比较成功的。成功之处在于整个教学流程环环相扣,层层递进,抓住了学生思维这条主线,遵循由浅入深,由特殊到一般的认知规律,引起学生的兴趣。使他们能够积极参与其中,同时,使他们的思维得到了锻炼和发展。不足之处:时间安排不是很合理,前松后紧。课堂上没有给更多的学生提供展示自己思考结果的机会,过于注重“收”,而“放”不够。
平方差公式说课稿篇六
王老师上课时通过学生自己的试算、观察、发现、总结、归纳,得出用平方差公式进行因式分解,这样得出平方差公式后,并且把乘法公式进行对比,通过例题、练习与小结,教会学生如何正确应用平方差公式.这里特别要求学生注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练。王老师放手让学生探索,促进学生主动发展的教学方法贯穿于这节课的始终。
从学生的练习情况来看,许多同学都掌握了这节课的知识,整个课堂中,以学生练为主,王老师能敢于创新、敢于探索,整节课的学习,教师始终是学生学习活动的组织者、指导者和合作者,而学生始终都是一个发现者、探索者,充分发挥他们的学习主体作用。这样大大提高了这节课的效率。
教师讲课语言简捷、清晰,有较强的表达和应变能力,课堂教学基本功好。乘法公式的引入由两种形式的'引入,又形象直观地理解了乘法公式的内在实质。做到以点拨为主的教学。对于公式的牲能严格要求学生理解,并能让学生自己举例符合公式形状的例子,课堂内的练习量、内容及安排上恰当好处,有基本运用公式,有变式运用公式,也有适当的加深应用,满足了不同层次的学生的学习。效果是比较显著的。
平方差公式说课稿篇七
本节课是围绕“引导学生有效预习”的课题设计的,通过预设的问题引发学生思考,在学生的预习基础上回答相关的问题,产生对整式的乘法、提公因式法和公式法的对比。
让学生充分自主的对知识产生探究,同时利用数形结合的思想验证平方差公式;再通过质疑的方式加深对平方差公式结构特征的认识,有助于让学生在应用平方差公式行分解因式时注意到它的前提条件;通过例题练习的巩固,让学生把握教材,吃透教材,让学生更加熟练、准确,起到强化、巩固的作用,让学生领会换元的思想,达到初步发展学生综合应用的能力。
本节课是运用提公因式法后公式法的第一课时——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向应用,它是解高次方程的基础,在教材中具有重要的地位。在教材的处理上以学生的自主探索为主,在原有用平方差公式进行整式乘法计算的知识的基础上充分认识分解因式。明确因式分解是乘法公式的一种恒等变形,让学生学会合情推理的能力,同时也培养了学生爱思考,善交流的良好学习惯。
(一)知识与技能。
2.掌握提公因式法、平方差公式分解因式的综合应用。
(二)过程与方法。
1.经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。
2.通过乘法公式:(a+b)(a-b)=a2-b2逆向变形,进一步发展观察、归纳、类比、概括等能力,发展有条理地思考及语言表达能力。
3.通过活动4,将高次偶数指数向下次指数的转达化,培养学生的化归思想。
4.通过活动1,发现并归纳出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。
5.通过活动4,让学生自己发现问题,提出问题,然后解决问题,体会在解决问题的过程中与他人合作的重要性。
(三)情感与态度。
1.通过探究平方差公式,让学生获得成功的体验,锻炼克服困难的意志,建立自己信心。
平方差公式说课稿篇八
前不久听了我校朱昌荣老师的一节数学课,这节课是朱老师安排的一节乘法公式——平方差公式的新授课,这节课给我留下了深刻的影响。
教师讲课语言清晰,有较强的表达和应变能力,课堂教学基本功好。
乘法公式的引入,使学生既复习了多项式的乘法运算,又形象直观地理解了乘法公式的内在实质。课堂教学中充分体现了以点拨为主的教学。对于公式的性能严格要求学生理解,课堂内的练习量、内容及安排上恰当好处,有基本运用公式,有变式运用公式,也有适当的加深应用,满足了不同层次的学生的学习。
一点建议:
1、引入时,还可以安排得生动一点,可以先设疑,提出问题,让学生探讨,猜想,归纳,以激发学生更高的学习兴趣,或采用多题的多项式乘法运算,当学生感到有些“烦“时,让学生猜想这类运算能否运用简单的结论来得出,从而使学生感到今天要学的内容的重要性,这样学生的学习将更主动。
2、刚才说过语言清晰,但不够精炼,尤其在总结公式特征时,未能用简练的语言描述出特征,以致学生在完成例题和练习题的过程中,对在运用公式之前需要变型的题型,出错率较高。其实平方差公式的特征就是有两项相同,而另两项恰恰是互为相反数或项。相同项在前,相反项在后,结果才能用相同项的平方减去相反项的平方。
3、对于平方差公式的几何意义,敢于让学生大胆上黑板演示是好的,但过程繁琐,缺乏精炼,直观,不能让大部分学生弄懂。这时我们老师应该给出恰当准确的解释。
以上是我的浅显认识,不妥之处,还望朱老师海涵,大家批评。
谢谢。
平方差公式说课稿篇九
本周听了满老师的一节数学课,这节课是满老师安排的一节乘法公式——平方差公式的新授课,这节课给我留下了深刻的影响。
教师讲课语言清晰,有较强的表达和应变能力,课堂教学基本功好。乘法公式的引入,使学生既复习了多项式的乘法运算,又形象直观地理解了乘法公式的内在实质。课堂教学中充分体现了以点拨为主的教学。对于公式的性能严格要求学生理解,课堂内的练习量、内容及安排上恰当好处,有基本运用公式,有变式运用公式,也有适当的加深应用,满足了不同层次的学生的学习。一点建议:
1、引入时,还可以安排得生动一点,可以先设疑,提出问题,让学生探讨,猜想,归纳,以激发学生更高的学习兴趣,或采用多题的多项式乘法运算,当学生感到有些“烦“时,让学生猜想这类运算能否运用简单的结论来得出,从而使学生感到今天要学的内容的重要性,这样学生的学习将更主动。
2、刚才说过语言清晰,但不够精炼,尤其在总结公式特征时,未能用简练的语言描述出特征,以致学生在完成例题和练习题的过程中,对在运用公式之前需要变型的题型,出错率较高。其实平方差公式的特征就是有两项相同,而另两项恰恰是互为相反数或项。相同项在前,相反项在后,结果才能用相同项的平方减去相反项的平方。
3、对于平方差公式的几何意义,敢于让学生大胆上黑板演示是好的,但过程繁琐,缺乏精炼,直观,不能让大部分学生弄懂。这时我们老师应该给出恰当准确的解释。
平方差公式说课稿篇十
通过教学我对本节课的反思如下:
1、本节课我从复习旧知入手,在教学设计时提供充分探索与交流的空间,使学生经历观察,猜测、推理、交流、等活动。对于平方差公式的教学要重视结果更要重视其发现过程,充分发挥其教育价值。不要回到传统的“讲公式、用公式、练公式、背公式”学生被动学习的'局面。我在教学时没有直接让学生推导平方差公式,而是设置了一个做一做,让学生通过计算四个多项式乘以多项式的题目,让学生通过运算并观察这几个算式及其结果,自己发现规律。目的是让学生经历观察、归纳、概括公式的全过程,以培养学生学习数学的一般能力,让学生体会发现的愉悦,激发学生学习数学的兴趣,感觉效果很好。
不足:在学生将4个多项式乘多项式做完评价后,应及时把他们归纳为某式的平方差的形式,以便学生顺理成章的猜测公式的结果。
2、学生刚接触这类乘法,我设计了两个问题(1)等号左边是几个因式的积,两个因式中的每一项有什么相同或不同之处。(2)等号右边两项有什么特点?便于学生发现总结。在这两个二项式中有一项(a)完全相同,另一项(b与—b)互为相反数。右边为这两个数的平方差即完全相同的项的平方减去符号相反的平方。公式中的a,b不仅可以表示具体的数字,还可以是单项式,多项式等代数式。提醒学生利用平方公式计算,首先观察是否符合公式的特点,这两个数分别是什么,其次要区别相同的项和相反的项,表示两数平方差时要加括号。平方差公式(a—b)(a+b)=a2—b2,它是特殊的整式的乘法,运用这一公式可以简捷地计算出符合公式的特征的多项式乘法的结果。我很细地给学生讲了以上特点,学生容易接受,课堂气氛活跃,收到了一定的效果。
3、本节课如能将平方差公式的几何意义简要的结合说明,更能体会数学中数形结合的特点,因时间关系放在下一课时。
4、学生错误主要是:(1)判断不出哪些项是公式中的a,哪些项是公式中的b;(2)平方时忽视系数的平方,如(2m)2=2m2。针对这一点在课堂教学中应着重对于共性的或思维方式方面的错误及时指正,以确保达到教学效果。平方差公式是乘法公式中一个重要的公式,形式虽然简单,学生往往学起来容易,真正掌握起来困难。部分学生只是死记硬背公式,不能完全理解其含义和具体应用。
总之,在以后的教学中我会更深入的专研教材,结合教学目标与要求,结合学生的实际特点,克服自己的弱点,尽量使数学课生动、自然、有趣。
平方差公式说课稿篇十一
平方差公式本节课的重点是要学生明白平方差公式及其推导(含代数验证和几何验证),并能应用平方差公式简化运算,其中关键是要学生明确平方差公式的结构特征,准确找到a、b。为了让学生对平方差公式有个全面的认识和了解。先让学生计算符合平方差公式的两位数乘法,进而将数转化为字母,从代数的角度,利用多项式乘多项式的知识,推导出平方差公式,接着从几何角度让学生加以解释说明。在此基础上,通过分析公式的结构特征,加深对公式的理解。之后,设计了一个“寻找a、b”的环节,通过这个练习进行难点突破。引导学生反思练习过程,得出“谁是a,谁是b,并不以先后为准,而是以符号为准”这一结论。紧接着给出两组例题,考察学生对公式的应用。最后通过一组判断题和补充练习,拓展学生的.思维水平。
为了给学生渗透数形结合的思想,要从代数、几何两个角度证明平方差公式,但是从哪个角度入手,有利于知识的衔接,便于学生理解。最终决定给让学生猜想结论,再用代数方法加以证明,后给出几何解释,符合知识的发生过程。
对于课本中的公式文字说明是“两数和与这两数差的积”的理解:公式中“a、b不仅表示一个数或字母,还可以表示代数式”。但这里说的是“两数”,原因是所有的规律最初都是在具体的数字中发现的,然后才推广到字母。所以这里说的数不再是具体的数,而是代表一个整体;公式中说的“两数和与两数差的积”,从这个角度说,这两项应是完全相同的,差别只在于运算符号上。但由于我们之前介绍过“代数和”,(a+b)(a-b)也可以理解为(a+b)[a(-b)],就像许多教参上说的,是相同项与互为相反数的项,这样就与课本定义发生矛盾。为了避免这个问题,我在介绍公式结构特征时,只说“有一项完全相同,另一项只有符号不同”,学生可以自己去理解。
平方差公式说课稿篇十二
(4)(+3z)(—3z)=_____。
(1)(x+1)(1+x),
(2)(2x+)(—2x),
(3)(a—b)(—a+b),
(4)(—a—b)(—a+b)。
帮助学生理解公式的特征,掌握公式的特征是正确运用公式的关键,除了掌握公式的特征外还有必要理解公式中的字母a、b具有广泛的含义,几字母a、b可以表示具体的数、也可以表示单项式或多项式,由于学生的认知能力有一个过程,教学中应由易到难逐步安排学习这方面的内容。
平方差公式说课稿篇十三
2.经历探索平方差公式的过程,认识“特殊”与“一般”的关系,了解“特殊到一般”的认识规律和数学发现方法,平方差公式第一课时教学反思。
重点:公式的理解与正确运用(考点:此公式很关键,一定要搞清楚特征,在以后的学习中还继续应用)。
难点:公式的理解与正确运用。
教法:自主探究和合作交流。
(1)(x+2)(x-2)(2)(1+2y)(1-2y)(3)(x+3y)(x-3y)。
=x2-22=12-(2y)2=x2-(3y)2。
学生分组讨论,交流,小组长回答问题。
师生共同总结归纳:
即两数和与两数差的积,等于它们的平方差。
(1)一组完全相同的项;
(2)一组互为相反数的项。
2.例题。
(1)(5+6x)(5-6x)(2)(-m+n)(-m-n)。
3.公式应用。
(1)(a+2)(a-2)(2)(-x+2y)(-x-3y)。
两个学生板演,其余学生在练习本上自己独立完成。
老师巡视,辅导学困生。
1.计算(1)(a+1)(a-1)(a2+1)(2)(a+b)(a-b)(a2+b2)。
师生共同分析:此题特征,两次利用平方差公式,教学反思《平方差公式第一课时教学反思》。
学生在练习本上独立完成,同桌互相检查。
2.(ab)(-ab)=?能用平方差公式吗?它的a和b分别是什么?
学生分组讨论交流,独立完成运算。
1、(ab+8)(ab-8)2、(5m-n)(-5m-n)。
3、(3x+4y-z)(3x-4y+z)4、(a+b)(a-b)(a2+b2)。
2、运用公式要注意的.问题:
(2)公式中的a、b可以代表什么?
一、检测导入。
二、例题展示。
三、拓展延伸。
四、达标堂测。
五、归纳小结。
即两数和与两数差的积,等于它们的平方差。
六、布置作业。
p21:习题1.91、2。
平方差公式说课稿篇十四
平方差公式是在学习多项式乘法等知识的基础上,自然过渡到具有特殊形式的多项式的乘法,体现教材从一般到特殊的意图。教材为学生在教学活动中获得数学的思想方法、能力、素质提供了良好的契机。对它的学习和研究,不仅得到了特殊的多项式乘法的简便算法,而且为以后的因式分解,分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法,因此,平方差公式在教材中有承上启下的作用,是初中阶段一个重要的公式。
学生是在学习积的乘方和多项式乘多项式后学习平方差公式的,但在进行积的乘方的运算时,底数是数与几个字母的积时往往把括号漏掉,在进行多项式乘法运算时常常会确定错某些次符号及漏项等问题。学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛的理解,当公式中a、b是式时,要把它括号在平方。
难点:理解掌握平方差公式的结构特点以及灵活运用平方差公式解决实际问题.。
平方差公式说课稿篇十五
教学目标:
一、知识与技能。
1、参与探索平方差公式的过程,发展学生的推理能力2、会运用公式进行简单的乘法运算。
二、过程与方法。
1、经历探索过程,学会归纳推导出某种特种特定类型乘法并用简单的。
数学式子表达出,即给出公式。
2、在探索过程的教学中,培养学生观察、归纳的能力,发展学生的符。
号感和语言描述能力。
三、情感与态度。
以探索、归纳公式和简单运用公式这一数学情景,加深学生的体验,增加学习数学和使用的信心。培养学生由观察-发现-归纳-验证-使用这一数学方法的逐步形成.
教学重点:公式的简单运用。
教学难点:公式的推导。
教学方法:学生探索归纳与教师讲授结合。
课前准备:投影仪、幻灯片。
平方差公式说课稿篇十六
《平方差公式》是一节公式定理课,是各位老师非常熟悉的一个课题,对大家更熟悉,我深深感到一种压力。但是,无论如何,“新”、“实”是我追求的目标。为此,我作了如下努力:
1、把数学问题“蕴藏”在游戏中。
导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,首先是一个智力抢答,学生通过抢答初步感知平方差公式,接下来,采用小组合作学习的方式,利用“四问”让学生进行试验操作,学生选择的字母有很多种,让它们都有其共性。由此,学生在探索中验证自己的猜想,同时也感受和认识知识的发生和发展的过程,得出(a+b)(a-b)=a2-b2.经过不断的尝试小组合作学习方式的教学,我发现也真正体会到,只要我们给学生创造一个自由活动的空间,学生便会还给我们一个意外的惊喜。
2、充分重视“自主、合作、探究”的教学方式的运用。
把探究的机会留给学生,让学生在动脑思考中构建知识,真正成为教学活动的主体。使他们在活动中进行规律的总结,并且通过交流练习、应用,深化了对规律的理解。学生对知识的掌握往往通过练习来达到目的。新授后要有针对性强的有效训练,让学生对所学知识建立初步的表象,以达到对知识的理解、掌握及应用,实现从感性认识到理性认识的升华。在此设计了三个层次的有效训练,让学生体会平方差公式的特点:第一层次是直接运用公式,第二层次是将式子进行适当变形后应用公式,第三个层次是平方差公式的灵活应用。通过做题学生归纳出平方差公式的运用技巧。
3、自置悬念,享受成功。
以四人小组为单位,各小组出两道具有平方差公式的结构特征的题目,看谁出得有水平。学生每人都设计了题目,任意叫了四位学生在黑板上写,经评价结果都对了。这种方法,不仅令人耳目一新,而且把学生引入不协调——探究——发现——解决问题的一个学习过程,使学生获得思维之趣,参与之乐,成功之悦。
4、切实落在实效上。
本节课在采用小组学习之后,为了让学生的巩固有效果,采用了学生上台讲解、作业实物投影的方式来进行,多种方式的选择,让学生暴露出自己的问题,然后通过生生互动、师生互动解决问题,实现问题及时处理,学习效果不错。
5、值得注意的是:
1、节奏的把握上。
这一节我觉得不是很顺,尤其在从几何角度解释平方差公式、例2⑵的其他计算方法等问题上,花了不少时间,节奏把握的不是很好。
2、充分发挥学生的主体地位上。
这节课上,我觉得学生的积极性不很高,回答问题没有激情,说明我背学生还不够,自己想象的比现实的好。
平方差公式说课稿篇十七
进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异.
教学重点和难点:公式的应用及推广.
1.(1)用较简单的代数式表示下图纸片的面积.
(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.
讲评要点:
沿hd、gd裁开均可,但一定要让学生在裁开之前知道。
hd=bc=gd=fe=a-b,
这样裁开后才能重新拼成一个矩形.希望推出公式:
a2-b2=(a+b)(a-b)。
2.(1)叙述平方差公式的数学表达式及文字表达式;。
(2)试比较公式的两种表达式在应用上的差异.
说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的`问题,否则容易对公式产生各种主观上的误解.
依照公式的文字表达式可写出下面两个正确的式子:
经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活.
3.判断正误:
(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)。
(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)。
(1)102×98;(2)(y+2)(y-2)(y2+4).
解:(1)102×98(2)(y+2)(y-2)(y2+4)。
=(100+2)(100-2)=(y2-4)(y2+4)。
=9996;。
(1)103×97;(2)(x+3)(x-3)(x2+9);。
(3)59.8×60.2;(4)(x-)(x2+)(x+).
3.请每位同学自编两道能运用平方差公式计算的题目.
例2填空:
思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?
(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)。
练习。
填空:
1.x2-25=()();。
2.4m2-49=(2m-7)();。
3.a4-m4=(a2+m2)()=(a2+m2)()();。
例3计算:
(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).
解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)。
=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]。
=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2。
=m4-14m2+49-n2.
1.什么是平方差公式?一般两个二项式相乘的积应是几项式?
3.怎样判断一个多项式的乘法问题是否可以用平方差公式?
(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);。
(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).
(1)69×71;(2)53×47;(3)503×497;(4)40×39.
平方差公式说课稿篇十八
2.注意培养学生分析、综合和抽象、概括以及运算能力.
教学重点和难点。
难点:用公式的结构特征判断题目能否使用公式.
教学过程设计。
我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子.
让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:
(当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差)。
继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算.以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式.
在此基础上,让学生用语言叙述公式.
二、运用举例变式练习。
例1计算(1+2x)(1-2x).
解:(1+2x)(1-2x)。
=12-(2x)2。
=1-4x2.
教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么.
例2计算(b2+2a3)(2a3-b2).
解:(b2+2a3)(2a3-b2)。
=(2a3+b2)(2a3-b2)。
=(2a3)2-(b2)2。
=4a6-b4.
教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算.
课堂练习。
(l)(x+a)(x-a);(2)(m+n)(m-n);。
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y).
例3计算(-4a-1)(-4a+1).
让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演.
解法1:(-4a-1)(-4a+1)。
=[-(4a+l)][-(4a-l)]。
=(4a+1)(4a-l)。
=(4a)2-l2。
=16a2-1.
解法2:(-4a-l)(-4a+l)。
=(-4a)2-l。
=16a2-1.
根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果.解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果.采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷.因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案.
课堂练习。
1.口答下列各题:
(l)(-a+b)(a+b);(2)(a-b)(b+a);。
(3)(-a-b)(-a+b);(4)(a-b)(-a-b).
2.计算下列各题:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);。
教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法.
三、小结。
2.运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;。
(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.
四、作业。
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);。
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);。
2.计算:
(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).