二的倍数教案(通用14篇)
教案是教师在备课过程中编写的用来指导教学的一种书面材料,它既体现了教师的教学设计和思路,又是学生学习的依据。教案的编写对于提高教学效果起到至关重要的作用,我们应该认真对待教案的编写工作,提高教学质量和效率。教案应充分利用教材和教具资源,提高教学的有效性。这些教案范例涵盖了不同学科和不同年级的教学内容,希望能对大家有所帮助。
二的倍数教案篇一
回来一次,你知道它们最快什么时候相遇吗?(完成书上60页的试一试)。
师:50以内6的倍数有哪些?
生:6、12、18、24、30、36、42、48。
师:50以内9的倍数又有哪些?
生:9、18、27、36、45。
师:50以内6和9的公倍数有哪些?
生:18和36。
生:18。
师:我们的两组蜜蜂最快在18分钟的时候相遇了。
生:列举法。
师:那现在还有一种方法找最小公倍数,短除法。
21824。
912。
34。
3和610和89和4。
4.联系实际,解决问题。
师:看看,这是什么?
生:跑道。
师:同学们平时爱跑步吗?,在学校的跑道上跑一圈大概需要多长时间?现在看看他们三个人的。
(1)我跑一圈用6分钟。
(2)我跑一圈用4分钟。
(3)我跑一圈用8分钟。
师:你能提出问题吗?
生1:他们同时出发男孩和女孩最快什么时候相遇?
生2:他们同时出发男孩和老师最快什么时候相遇?
生3:他们同时出发老师和女孩最快什么时候相遇?
(独立完成)。
二的倍数教案篇二
师:课前我们来做个报数游戏,看谁的反应最快。请两大组的同学参加。
师:请报到3的倍数的同学起立,报到4的倍数的同学起立。你们发现了什么?他们为什么要起立两次?(因为他们报到的号数既是3的倍数又是4的倍数)是吗?咱们一起来验证一下。(师板书:12、24)。
师:像这些数既是3的倍数,又是4的倍数,我们就把这些数叫做3和4的公倍数。(板书:公倍数)今天这节课我们一起来研究公倍数。
二的倍数教案篇三
该内容是在学生已经学习了约数和倍数的意义、质数和合数、分解质因数、最大公约数等的基础上进行教学的,既是对前面知识的综合运用,同时又是学生学习通分所必不可少的知识基础。因而是本单元的教学重点,是本册教材的核心内容。本课的教学,对于学生的后续学习和发展,具有举足轻重的作用。借鉴前面的'学习方法学习后面的内容是本课设计中很重要的一个教学特色,这样设计不仅使教学变得轻松,而且能使学生在学习知识的同时掌握一些学习方法,这些学习策略和方法的掌握,对于今后的学习是很有帮助的。
五年级学生的生活经验和知识背景更为丰富,动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。
1、让学生通过具体的操作和交流活动,认识公倍数和最小公倍数,会用列举法求两个数的最小公倍数。
2、让学生经历探索和发现数学知识的过程,积累数学活动的经验,培养学生自主探索合作交流的能力。
3、渗透集合思想,培养学生的抽象概括能力
公倍数与最小公倍数的概念建立。
运用公倍数与最小公倍数解决生活实际问题
为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中,引导学生动手、动脑、动口。
师:课前我们来做个报数游戏,看谁的反应最快。请两大组的同学参加。
师:请报到3的倍数的同学起立,报到4的倍数的同学起立。你们发现了什么?他们为什么要起立两次?(因为他们报到的号数既是3的倍数又是4的倍数)是吗?咱们一起来验证一下。(师板书:12、24)
师:像这些数既是3的倍数,又是4的倍数,我们就把这些数叫做3和4的公倍数。(板书:公倍数)今天这节课我们一起来研究公倍数。
二的倍数教案篇四
:p70~72的例题及相应的试一试、想想做做中的1—3题。
1、使学生初步理解倍数和因数的含义,知道倍数和因数相互依存的关系。
2、使学生依据倍数和因数的含义以及已有乘除法知识,通过尝试、交流等活动,探索并掌握找一个数倍数和因数的方法,能在1—100的自然数中找出10以内某个数的所有倍数,找出100以内某个数的所有因数。
3、使学生在认识倍数和因数以及找一个数的倍数和因数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。
:理解因数和倍数的含义,知道它们的关系是相互依存的。
探索并掌握找一个数的因数的方法。
:12个小正方形片、每个学生的学号纸。
1、操作活动。
(1)明确操作要求:用12个同样大的正方形拼成一个长方形。每排摆几个?摆了几排?用乘法算式把自己的摆法记录下来。
(2)整理、交流,分别板书4×3=1212×1=126×2=12。
2、通过刚才的学习,我们发现用12个同样的小正方形可以摆出3种不同的长方形,由此,还得出3道不一样的乘法算式。4×3=12可以说12是4的倍数,12也是3的倍数;反过来,4和3都是12的因数。
(1)那其它两道算式,你能说出谁是谁的倍数吗?你能说出谁是谁的因数吗?
指名回答后,教师追问:如果说12是倍数,2是因数,是否可以?为什么?
小结:倍数和因数是指两个数之间的关系,他们是相互依存的。
指出:为了方便,我们在研究倍数和因数时,所说的数都是指不是0的自然数。
二、探索找一个数倍数的方法。
1、从4×3=12中,知道12是3的倍数。3的倍数还有哪些?从小到大,你能找到几个?同桌交流自己的思考方法。
3、议一议:你发现找3的倍数有什么小窍门?
明确:可以按从小到大的顺序,依次用1、2、3……与3相乘,乘得的积就是3的倍数。
4、试一试:你能用学会的窍门很快地写出2和5的倍数吗?
生独立完成,集体交流。注意用……表示结果。
5、观察上面的3个例子,你发现一个数的倍数有什么特点?
根据学生的交流归纳:一个数的倍数中,最小的是它本身,没有最大的倍数,一个数倍数的个数是无限的。
6、做“想想做做”第2题。
1、学会了找一个数倍数的方法,再来研究求一个数的因数。
你能找出36的所有因数吗?
2、小组合作,把36的所有因数一个不漏的写出来,看看哪个组挑战成功。并尽可能把找的方法写出来。教师巡视,发现不同的找法。
3、出示一份作业:对照自己找出的36的因数,你想对他说点什么?
4、交流整理找36因数的方法,明确:哪两个数相乘的积等于36,那么这两个数就是36的因数。(一对一对地找,又要按次序排列)。
板书:(有序、全面)。正因为思考的有序,才会有答案的全面。
5、试一试:请你用有序的思考找一找15和16的因数。
指名写在黑板上。
一个数的因数最小是1,最大是它本身,一个数因数的个数是有限的。
7、“想想做做”第3题。
生独立填写,交流。观察表格,表中的排数和每排人数与24有怎样的关系。
四、课堂总结:学到这儿,你有哪些收获?
五、游戏:“看谁反应快”。
规则:学号符合下面要求的请站起来,并举起学号纸。
(1、)学号是5的倍数的。
(2、)谁的学号是24的因数。
(4、)谁的学号是1的倍数。
2、在得出这些乘法算式以后,先根据4×3=12说明12是3和4的倍数,3和4都是12的因数,使学生初步体会倍数和因数的含义。在学生初步理解的基础上,再让他们举一反三,结合另两道乘法算式说一说。在这一个环节中,我设计了一个练习。即“根据下面的算式,同桌互相说说谁是谁的倍数,谁是谁的因数”第一个是20×3=60,根据学生回答后质疑“能不能说3是因数,60是倍数”,从而强调倍数和因数是相互依存的。第二个是36÷4=9,让学生根据除法算式说出谁是谁的因数,谁是谁的倍数,并追问:你是怎么想的?使学生知道把它转化为乘法算式去说。
在学生有了倍数、因数的初步感受后,再向学生说明:我们在研究倍数和因数时,所说的数一般指不是0的自然数,明确了因数和倍数的研究范围。
3、p71例一:找3的倍数,先让学生独立思考,“你还能再写出几个3的倍数?你是怎样想的?”在学生交流的基础上,适时提出:什么样的数就是3的倍数?你能按照从小到大的顺序有条理地说出3的倍数吗?使学生明确:找3的倍数时,可以按从到大的`顺序,依次用1、2、3……与3相乘,而每次乘得的积都是3的倍数。在此基础上,引导学生进一步思考:你能把3的倍数全都说完吗?从而使学生学会规范地表示一个数的所有倍数,并初步体会到一个数的个数是无限的。随后,让学生试着找出2和5的倍数,并正确表达2和5的所有倍数。最后引导学生观察写出的3、2和5的所有倍数,发现一个数的倍数的特点,即:一个数的最小的倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。
4、例二:找36的所有因数,准备让学生独立尝试,但这部分内容对学生来说是个难点,所以我采用了四人小组合作的方式让学生试着找出36的所有因数。在找36的因数时,无论想乘法算式还是想除法算式,学生一般都从无序到有序,从有重复或遗漏到不重复不遗漏。所以,我在教学时允许他们经历这样的过程。先按自己的思路、用自己的方法写36的因数,能写几个就写几个,是什么顺序就什么顺序。然后在交流中互相评价,让他们知道一组一组地找比较方便,可以利用乘法算式,按一个因数从小到大的顺序,同时又让他们掌握按次序地书写。此外,结合例题和试一试,通过比较和归纳,使学生明确:一个数的因数的个数是有限的,一个数的因数中最小的是1,最大的是它本身。
5、教材p72第2题让学生解决实际问题在表里填数,把4依次乘1、2、3、……得出“应付元数”,然后思考下面的问题,可以使学生进一步认识把4依次乘1,2,3,……所得的积,就是4的倍数,进一步理解找倍数的方法。第3题也是解决实际问题填写表里的数,并提出问题让学生思考,使学生明确两个相乘的数都是它们积的因数,求一个数的所有因数,可以想乘法一对一对地找出来,理解找一个数的因数的方法。
为了提高学生学习兴趣,巩固所学的知识。最后安排了一个游戏,让学生在游戏中进一步练习找一个数倍数或因数的方法。
二的倍数教案篇五
骆老师能找准学生的知识起点,激活学生的学习经验。创设的情境合理:既能符合儿童心理有趣味,又能启发学生深入思考:这个活动或游戏隐藏了什么数学问题?能获得什么解决问题策略?每节课,学生都积极动手,主动合作,踊跃交流…。智慧的火花在课堂中不时闪现,愉悦的神情在小脸上洋溢。
xx老师的教学内容是五年级的“最小公倍数”,通过设计生动有趣的智力游戏“动物尾巴重新接回”创设情境激发兴趣,寻找公倍数与最小公倍数的奥秘。课堂围绕主要问题“尾巴重新接回的奥秘到底是什么?”引导学生展开积极的.思考、热烈的讨论。老师以“为什么重新接回的次数就正好是多边形边数的公倍数呢?”激发学生创新思维,引导学生汇报交流,课堂结束后,学生与现场观众还沉浸在对“奥秘”的进一步思考中。
二的倍数教案篇六
1、利用情境引入新课,通过月历探索新知。学生在月历上找出4和6的倍数的日期,清楚形象的看到两个数的倍数关系。
2、顺其自然地渗透概念,初步理解公倍数和最小公倍数。学生探索后,引导学生观察所找出的日期数,有意识地引导学生发现日历上的有特征的数,用自己的语言梳理新知,使学生在环环相扣的教学进程中顺理成章的理解概念,把生活问题提炼为数学问题,学生用自己的语言概括公倍数与最小公倍数的概念,沟通二者之间的联系。
3、创设问题情境,尝试应用,方法提炼。结合教学内容特征,创设富有生活情趣的问题情境,利用学生的生活经验与知识背景,鼓励学生解决简单的实际问题,激活学生的数学思维,提高解题技能。
4、巩固练习、不断刺激,不断巩固提升。先让学会用最基本的方法求两个数的最小公倍数。再用这样的知识解决生活中的排队问题,用富有生活气息的情境,激发学习兴趣,再次打通生活与数学的屏障。接着是找生日,铺墙砖,让用数学方法来解释生活现象,感受到求公因数与求公倍数的联系。
4、学生回忆整堂课所学知识。学生通过这一环节可以将整个学习过程进行回顾、按一定的线索梳理新知,形成整体印象,便于知识的理解记忆。
总之,本节课体现了这样的设计理念:将直观演示与抽象思维相结合,让学生在自主参与的基础上感悟、理解、应用、巩固。
将本文的word文档下载到电脑,方便收藏和打印。
二的倍数教案篇七
课程标准指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。罗老师执教的这节《公倍数与最小公倍数》就是很好地采用了适合这节课本身又有利于提高学生数学学习活动的方式,是在引导学生自主参与、发现、归纳的基础上认识并建立公倍数和最小公倍数概念的。整节课给人以清新、流畅之感,纵观这节课的教学,有以下几个吸引我的亮点:
1、故事导入,生动有趣,意义深远。
五年级学生的生活经验和知识背景更为丰富,课标要求教材选择具有现实性和趣味性的素材,由浅入深地促使学生在探索与交流中建立概念。本节课罗老师采用了一个渔夫打鱼的故事导入,此材料不仅紧贴课堂所要教学的主题,又使数学教学与生活实际紧密联系在一起,并且很能激发学生的学习积极性。通过解决故事中的问题,让学生经历概念的揭示过程,体验成功的喜悦。
2、讲练结合,层次分明,形式多样。
罗老师十分注重讲练结合及前后知识的整合。练习中有一般基础题,有求一定范围内的两数的公倍数,还有根据学生已有的知识经验判断2和3、2和5、3和5这些特征明显的两数的.公倍数和最小公倍数。学生在练习中获得对新知的巩固和强化,同时也巩固了已有的知识,加强了数学知识的联系性。练习时,罗老师不仅关注学生会不会做,更重要的是关注怎么做,当学生反馈时,注重让学生自己来讲讲思考过程,暴露自己的想法,培养学生的应用能力。
3、精彩课件,美丽清新,实用有效。
罗老师这节课还有一个亮点就是她采用的是flash课件,较一般的幻灯片课件要清新、漂亮。漂亮的课件不但吸引了学生的注意也将我们听课教师的目光牢牢锁住。并不是华而不实,罗老师的这套课件对完成这堂课的教学起到了很好的辅助作用,许多地方通过动态演示显得更清楚明了。
当然,这节课也存在一些需要进一步改进的地方,如:同类型教学出现次数过多,像是在教学并概括出4的倍数还有很多可用省略号表示后,6的倍数还在叫生一一列举,难免给人啰嗦之感;对学生回答问题的表述是否完整的关注还需加强,有生在回答2和3的公倍数有哪些这句话还能理解成什么问题时说道“能被2、3整除的数”,其实准确的描述应是能同时被2、3整除的数;另外,我觉得本课设计的联系量还不够大,可适当再增加一些。
二的倍数教案篇八
1.让学生探索3.的倍数的特征,会判断一个数是不是3的倍数。
2.让学生在学习过程中学会运用分析、比较、归纳或猜想、检验等方法,并进一步学会与同学交流。
教学重难点。
判断一个数是不是3的倍数。
课前准备。
小黑板、学具卡片。
教学活动。
一、引入新课,激发兴趣。
教师在黑板上写出一组数:5、6、14、18、25、27、36、41、90,问学生:谁能判断出哪些数是3的倍数?(这些都是一些简单的数,估计学生通过口算很快就能判断出来)。
教师再写出几个数:1540、2856、3075,再问:谁能很快判断出哪些数是3的倍数?当学生出现畏难情绪时,教师说:我能很快地说出这几个数当中,2856和3075都是3的倍数。
学生报数,教师很快地回答,并把是3的倍数的数板书在黑板上,再让学生用计算器进行验证。
谈话:你们一定在想:老师你有什么窍门吗?有啊!你们想知道吗?让我们一起来探索3的倍数的特征。(板书课题:3的倍数的特征)。
二、自主探索。合作学习。
1.先让学生猜一猜:3的倍数有什么特征?举例说明。
2.根据学生猜测的结果,讨论:个位上是3、6、9的数是3的倍数吗?
如:84、51、27、90、123、2856、3075,它们用的算珠颗数分别是:8+4—12;5+1—6;2+7—9;9+0—9;1+2+3—6;2+8+5+6—21;3+o+7+5—15。
4.引导学生观察、分析、讨论:用的算珠的颗数有什么共同点?
:每个数所用算珠的颗数都是3的倍数。
5.提问:这些数所用算珠的颗数跟什么有关系?小组讨论,交流讨论结果。
:一个数是3的倍数,这个数各位上的数的和一定是3的倍数。
6.进一步验证。(1)同桌之间互相报数,验证刚才的结论是否正确。(2)用1、2、6可以写成126,还可以组成哪些三位数?这些三位数是3的倍数吗?小组讨论后得出结论:3的倍数,跟数字的位置没有关系,只跟各位数上的数的和有关系。
7.试一试:如果一个数不是3的倍数,这个数各位上数的和是3的倍数吗?
在小组里举例验证、讨论交流。得出:一个数不是3的倍数,这个数各位上数的和不是3的倍数。归纳:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
三、运用结论。巩固拓展。
1.做“想想做做”第1题。
指名口答。提问:你是怎么判断出67不是3的倍数,84是3的倍数的?
2.做“想想做做”第2题。
提问:每一题有没有余数与什么有关?有什么关系?谈话:在没有余数的算式下边画横线,看谁做得快。指名报结果,共同评议。
3.做“想想做做”第3题。
让学生独立填写,再在小组里交流:你能找到几种不同的填法?
4.做“想想做做”第4题。
学生涂完后,指名回答:9的倍数都是3的倍数吗?
5.做“想想做做”第5题。
各自组数,并把组成的数记下来。
指名报答案,全班学生评议。
6.补充题。
提问:你今年几岁?再过几年你的岁数是3的倍数?
四、
二的倍数教案篇九
1、在下面数中圈出3的倍数。
284553873665。
2、选出两个数字组成一个两位数,分别满足下面的条件。
3045。
(1)是3的倍数。
(2)同时是2和3的倍数。
(3)同时是3和5的倍数。
(4)同时是2,3和5的倍数。
二的倍数教案篇十
4、培养学生的观察能力。
1、出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为2×6=12。
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?
(指名生说一说)。
师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
4、你能不能写一个算式来考考同桌?学生写算式。
师:谁来出一个算式考考全班同学?
5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)。
齐读p12的注意。
(一)找因数:
1、出示例1:18的因数有哪几个?
学生尝试完成:汇报。
(18的因数有:1,2,3,6,9,18)。
师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)。
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有:1,2,3,4,6,9,12,18,36。
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)。
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)。
仔细看看,36的因数中,最小的'是几,最大的是几?
看来,任何一个数的因数,最小的一定是(),而最大的一定是()。
3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示:如。
18的因数。
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数:
1、我们一起找到了18的因数,那2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、……。
师:为什么找不完?
你是怎么找到这些倍数的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍数最小是几?最大的你能找到吗?
2、让学生完成做一做1、2小题:找3和5的倍数。
汇报3的倍数有:3,6,9,12。
师:这样写可以吗?为什么?应该怎么改呢?
改写成:3的倍数有:3,6,9,12,……。
你是怎么找的?(用3分别乘以1,2,3,……倍)。
5的倍数有:5,10,15,20,……。
师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示。
2的倍数3的倍数5的倍数。
师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)。
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
完成练习二1~4题。
二的倍数教案篇十一
教学内容:
苏教版义务教育教科书《数学五年级下册第47~48页整理与练习“回顾与整理”和“练习与应用”第1~7题。
教学目标:
1.使学生加深认识因数和倍数,能找一个数的因数或倍数,进一步认识质数和合数;掌握2、5、3的倍数的特征,进一步认识偶数和奇数;加深理解质因数,能正确分解质因数。
2.使学生能整理因数和倍数的知识内容,感受知识之间的内在联系;能应用相关概念进行分析、判断、推理,进一步掌握思考、解决数学问题的方法,积累数学思维的初步经验,提高分析、推理、判断等思维能力;加深对数的认识,进一步发展数感。
3.使学生主动参与回顾、整理知识和分析、解决问题等活动,培养乐于思考的品质和与同伴互相交流、倾听等合作意识和能力;感受数学方面的知识积累和进步,提高学好数学的自信心。
教学重点:
教学难点:
应用概念正确判断、推理。
教学过程:
一、揭示课题。
谈话:最近的数学课,我们学习了哪方面的内容?回忆一下,都学到了哪些知识?
揭题:我们已经学完了因数和倍数这一单元的内容,今天开始主要整理与练习这一单元内容。(板书课题)通过整理与练习,我们要进一多认识因数与倍数,2.5.3的倍数的特征,能熟练掌握找一个数的因数或倍数的方法;能判断偶数和奇数、质数和合数,了解这些概念之间的联系与区别,能正确分解质因数,提高对数的特征的认识,加深对数的认识。
二、回顾与整理。
1.回顾讨论。
出示讨论题:
(1)你是怎样理解因数和倍数的?举例说明你的认识。
(2)2、5、3的倍数有什么特征?我们是怎样发现的?
(3)自然数可以怎样分类,各能分成哪几类?举例说说什么是质因数和分解质因数。
(4)什么是两个数的公因数和最大公因数,公倍数和最小公倍数?
让学生在小组里讨论,结合讨论适当记录自己的认识或例子。
2.交流整理。
围绕讨论题,引导学生展开交流,结合交流板书主要内容。
(1)提问:能说说什么是因数和倍数吗?可以用例子说明。(结合交流板书一两个乘法或除法算式)。
(指名学生说一说,再集体说一说)。
你能找出6的因数吗?(板书因数)6的倍数呢?(板书倍数)。
能说说找一个数的因数或倍数的方法吗?
说明:一个数的因数可以从小到大一对一对地找,到中间两个因数之间没有因数为止;一个数的倍数可以用依次乘1、2、3……这样的方法找,注意一个数的倍数是无限的,写一个数的倍数要注意用省略号。
(2)提问:2、5、3的倍数各有什么特征?我们是怎样发现的?
自然数可以怎样分类,各可以分成哪几类?
你能举出偶数和奇数、质数和合数的一些例子吗?(学生举出各类数的例子)。
说明:按是不是2的倍数可以把自然数分成偶数和奇数两类,是2的倍数的是偶数,不是2的倍数的是奇数;按因数的个数可以把自然数分成1和质数、合数三类,只有两个因数的是质数,有两个以上因数的是合数,1既不是质数也不是合数。
什么是质因数和分解质因数?6有哪些质因数?怎样把6分解质因数?(板书式子,并说明其中的质因数)。
(3)提问:什么是公因数和最大公因数,什么是公倍数和最小公倍数?
说明:两个数公有的因数叫公因数,其中最大的叫最大公因数;两个数公有的倍数叫公倍数,其中最小的叫最小公倍数。
结合交流内容,逐步板书成:
l
质数质因数。
合数分解质因数。
(互相依存)。
2、5、3的倍数的特征。
偶数。
奇数。
(4)引导:请同学们现在观察我们整理的这一单元学过的内容,了解知识之间的联系,同桌互相说说知识是怎样发展的。
学生互相交流,教师巡视、倾听。
交流:哪位同学能看黑板上整理的内容,说说我们怎样逐步认识这些知识的,知识是怎样发展起来的。
三、练习与应用。
1.做“练习与应用”第1题。
指名学生交流,说说每组里因数和倍数关系。
提问:3和7有没有因数和倍数关系?为什么没有?
2.做“练习与应用”第2题。
(1)让学生独立写出前四个数的所有因数,指名两人板演。
交流:你是怎样找它们的因数的?(检查板演题)。
(2)口答后三个数的因数。
引导:能说出后面每个数的全部因数吗?(学生口答,教师板书)。
提问:一个数的因数有什么特点?
说明:一个数因数的个数是有限的,最小的是1.最大的是它本身。
3.分别说出下面各数的倍数。
581217。
分别指名学生说出各数的倍数,教师板书。
提问:为什么要写省略号?一个数的倍数有什么特点?
说明:一个数倍数的个数是无限的,最小的是它本身,没有最大的倍数。
4.做“练习与应用”第3题。
(1)让学生独立完成填数。
交流:题里各是怎样填的?(呈现结果)填数时怎样想的?
提问:哪些数既是3的倍数,又是5的倍数?你是怎样想的?
哪些数既是2的倍数,又是5和3的倍数?说说你的判断方法。
(2)这里哪些数是偶数?奇数呢?
你是怎样判断偶数和奇数的?
5.做“练习与应用”第4题。
要求学生独立思考,自己选出两张卡片,按各题的要求分别组成两位数,把能组成的数记录下来。
交流:同时是5和3的倍数的数有哪些?(板书:30)如果是三位数呢?
(板书:180810)。
组成的两位数中最大的偶数是多少?(板书:80)最小的奇数呢?(板书:13)。
6.做“练习与应用”第5题。
让学生把质数圈出来,在合数下面画线。
交流:哪些是质数,哪些是合数?(板书成两类)质数和合数是按什么分的?
说明:质数只有2个因数,合数至少有3个因数。
7.做“练习与应用’’第6题。
交流、呈现结果。
提问:观察表里选出的质数和偶数,所有的质数都是奇数吗?请举出一个具体例子。
所有的合数都是偶数吗?你能举例子说明吗?
指出:如果要说明一个结论是错误的,只要举一个反例。比如,要判断质数都是奇数的说法是错的,只要举出质数2是偶数这个例子。这里质数2是偶数就是一个反例。要判断合数都是偶数是错的,也只要举一个反例,比如合数9就是奇数。
8.下面的说法正确吗?
(1)大于0的自然数不是奇数就是偶数。
(2)大于0的自然数不是质数就是合数。
(3)奇数都是质数,偶数都是合数。
(4)自然数中最小的偶数是2,最小的合数是4。
(5)一个数本身既是它的因数,又是它的倍数。
9.做“练习与应用”第7题。
(1)让学生填空,指名板演。交流并确认结果。
提问:这里填写的质数都叫积的什么数?为什么称它是积的质因数?
说明:这里把合数写成这种质数相乘的形式,叫什么?
(2)把30、42分别分解质因数。
学生完成,交流板书,检查订正。
四、全课总结。
提问:这节课主要复习的哪些内容?你有哪些收获?
将本文的word文档下载到电脑,方便收藏和打印。
二的倍数教案篇十二
一、谈话导入,揭示课题。
我们能不能通过观察个位上的数来确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。
板书课题:3的倍数的特征。
二、探索交流、获取新知。
(一)活动一:复习巩固。
1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征呢?
2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)。
3、说说能同时被2和5整除的数有什么特征?(观察特征。用自己的话说一说。)。
(二)活动二:探索研究3的倍数的特征。
1、在书上第6页的表中,找出3的倍数,并做上记号。
(先独立完成,看谁找的快?)。
2、观察3的倍数,你发现了什么?
教师参与到讨论学习中。
先独立思考,想出自己的想法。
然后与四人小组的同学说说你的发现。
生1:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。
生2:十位上的数也没有什么规律。
生3:将每个数的各个数字加起来试试看。
3、你发现的规律对三位数成立吗?找几个数来检验一下。
(1)自己先找几个数试一试。
(2)然后在小组内说说你验证的结论。
(三)活动三:试一试。
在下面数中圈出3的倍数。
284553873665。
(先自己圈,然后说说你是怎样判断的?)。
(四)活动四:练一练。
1、请将编号是3的倍数的气球涂上颜色。
361754714548。
(自己独立完成,在小组内说说自己的想法。)。
2、选出两个数字组成一个两位数,分别满足下面的条件。
3045。
(1)是3的倍数。
(2)同时是2和3的倍数。
(3)同时是3和5的倍数。
(4)同时是2,3和5的倍数。
(独立完成,说说你的窍门和方法。)。
(五)活动五:实践活动。
在下表中找出9的倍数,并涂上颜色。
(可以在自主实践以后再交流。)。
三、总结。
通过这节课的学习,你有什么收获?
二的倍数教案篇十三
(1)能直接在方格图上,数出相关图形的面积。
(2)能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。
2、过程与方法
(1)在解决问题的过程中,体会策略、方法的多样性。
(2)学会与人交流思维过程与结果。
3、情感态度与价值观
积极参与数学学习活动,体验数学活动充满着探索、体验数学与日常生活密切相关。
1、重点是指导学生如何将图形进行分割,从而让学生体会到解决问题的多样性和简便性。难点是灵活运用方法。
2、借助图形,让学生动手,自主探索、合作交流解决问题的方法。
一、创设情境、揭示新课。
我要说班里每位同学都是优秀的设计师!因为大家都在设计着自己美好的将来,所以在很用功的学习。希望大家继续努力,使自己美好的设计成为现实。下面我们来看一看,我们的同行——一位地毯图案设计师,设计的图案。
展示地毯上的图形,让学生仔细观察图形特点,说发现。
地毯是正方形,边长为14米蓝色部分图形是对称的,……
师:看这副地毯图,请你提出数学问题。
根据学生的回答展示问题:“地毯上蓝色部分的面积是多少?”
师板书课题:地毯上的图形面积
二、自主探索、学习新知
如果每个小方格的面积表示1平方米,,那么地毯上的图形面积是多少呢?
1、学生独立解决问题
要求学生独立思考,解决问题,怎样简便就怎样想,并把解决问题的方法记录下来。
2、小组内交流、讨论
3、班内反馈
请学生汇报蓝色部分面积,重点汇报求蓝色面积的方法。对于每一种方法,只要学生说得合理都给以肯定。
学生的答案也许有:
(1)直接一个一个地数,为了不重复,在图上编号;(数方格法)
(2)因为这个图形是对称的,所以平均分成4份,先数出一份中蓝色的面积,再乘4;(化整为零法)
(3)用总正方形面积减去白色部分的面积;(大减小法)
(4)将中间8个蓝色小正方形转移到四周兰色重叠的地方,就变成4个3×6的长方形加上4个3×3的正方形。(转移填补法)
4、学生总结求蓝色部分面积的方法。
三、巩固练习、拓展运用(课本第19页练一练)
1、第1题
(1)学生独立思考,求图1的面积。
(2)说一说计算图形面积的方法。引导学生了解“不满一格的当作半格数”。
2、第2题
独立解决后班内反馈。
3、第3题
(1)学生独立填空。求出每组图形的面积。学生完成后班内交流反馈答案。
(2)学生观察结果,说发现。
第(1)题的4个图形面积分别为1、2、3、4的平方数;第(2)题与第(1)题进行比较,第(2)题的3个图形的面积分别是前面一组题的前3个图形 面积的一半。
四、全课小结,课后拓展
今天我们进行了那些活动,你收获了什么?
师:对于计算方格图中规则图形的面积,我们可以分割,可以直接数,可以“大减小”,还可以转移填补。如果没有方格图,我们该怎样解决一些图形的面积呢?明天的数学课上我们将继续学习。课后,有兴趣的同学可以在空白方格纸上设计一些你喜欢的图案,让你的同桌帮你算一算图案的面积。
二的倍数教案篇十四
苏教版义务教育教科书《数学五年级下册第47~48页整理与练习“回顾与整理”和“练习与应用”第1~7题。
1.使学生加深认识因数和倍数,能找一个数的因数或倍数,进一步认识质数和合数;掌握2、5、3的倍数的特征,进一步认识偶数和奇数;加深理解质因数,能正确分解质因数。
2.使学生能整理因数和倍数的知识内容,感受知识之间的内在联系;能应用相关概念进行分析、判断、推理,进一步掌握思考、解决数学问题的方法,积累数学思维的初步经验,提高分析、推理、判断等思维能力;加深对数的认识,进一步发展数感。
3.使学生主动参与回顾、整理知识和分析、解决问题等活动,培养乐于思考的品质和与同伴互相交流、倾听等合作意识和能力;感受数学方面的知识积累和进步,提高学好数学的自信心。
整理、应用因数和倍数的知识。
应用概念正确判断、推理。
一、揭示课题
谈话:最近的数学课,我们学习了哪方面的内容?回忆一下,都学到了哪些知识?
揭题:我们已经学完了因数和倍数这一单元的内容,今天开始主要整理与练习这一单元内容。(板书课题)通过整理与练习,我们要进一多认识因数与倍数,2.5.3的倍数的特征,能熟练掌握找一个数的因数或倍数的方法;能判断偶数和奇数、质数和合数,了解这些概念之间的联系与区别,能正确分解质因数,提高对数的特征的认识,加深对数的认识。
二、回顾与整理
1.回顾讨论。
出示讨论题:
(1)你是怎样理解因数和倍数的?举例说明你的认识。
(2)2、5、3的倍数有什么特征?我们是怎样发现的?
(3)自然数可以怎样分类,各能分成哪几类?举例说说什么是质因数和分解质因数。
(4)什么是两个数的公因数和最大公因数,公倍数和最小公倍数?
让学生在小组里讨论,结合讨论适当记录自己的认识或例子。
2.交流整理。
围绕讨论题,引导学生展开交流,结合交流板书主要内容。
(1)提问:能说说什么是因数和倍数吗?可以用例子说明。(结合交流板书一两个乘法或除法算式)
(指名学生说一说,再集体说一说)
你能找出6的因数吗?(板书因数)6的倍数呢?(板书倍数)
能说说找一个数的因数或倍数的方法吗?
说明:一个数的因数可以从小到大一对一对地找,到中间两个因数之间没有因数为止;一个数的倍数可以用依次乘1、2、3……这样的方法找,注意一个数的倍数是无限的,写一个数的倍数要注意用省略号。
(2)提问:2、5、3的倍数各有什么特征?我们是怎样发现的?
自然数可以怎样分类,各可以分成哪几类?
你能举出偶数和奇数、质数和合数的一些例子吗?(学生举出各类数的例子)
说明:按是不是2的倍数可以把自然数分成偶数和奇数两类,是2的倍数的是偶数,不是2的倍数的是奇数;按因数的个数可以把自然数分成1和质数、合数三类,只有两个因数的是质数,有两个以上因数的是合数,1既不是质数也不是合数。
什么是质因数和分解质因数?6有哪些质因数?怎样把6分解质因数?(板书式子,并说明其中的质因数)
(3)提问:什么是公因数和最大公因数,什么是公倍数和最小公倍数?
说明:两个数公有的因数叫公因数,其中最大的叫最大公因数;两个数公有的倍数叫公倍数,其中最小的叫最小公倍数。
结合交流内容,逐步板书成:
l
质数质因数
合数分解质因数
因数公因数最大公因数
(互相依存)
倍数公倍数最小公倍数
2、5、3的倍数的特征
偶数
奇数
(4)引导:请同学们现在观察我们整理的这一单元学过的内容,了解知识之间的联系,同桌互相说说知识是怎样发展的。
学生互相交流,教师巡视、倾听。
交流:哪位同学能看黑板上整理的内容,说说我们怎样逐步认识这些知识的,知识是怎样发展起来的。
三、练习与应用
1.做“练习与应用”第1题。
指名学生交流,说说每组里因数和倍数关系。
提问:3和7有没有因数和倍数关系?为什么没有?
2.做“练习与应用”第2题。
(1)让学生独立写出前四个数的所有因数,指名两人板演。
交流:你是怎样找它们的因数的?(检查板演题)
(2)口答后三个数的因数。
引导:能说出后面每个数的全部因数吗?(学生口答,教师板书)
提问:一个数的因数有什么特点?
说明:一个数因数的个数是有限的,最小的是1.最大的是它本身。
3.分别说出下面各数的倍数。
581217
分别指名学生说出各数的倍数,教师板书。
提问:为什么要写省略号?一个数的倍数有什么特点?
说明:一个数倍数的个数是无限的,最小的是它本身,没有最大的倍数。
4.做“练习与应用”第3题。
(1)让学生独立完成填数。
交流:题里各是怎样填的?(呈现结果)填数时怎样想的?
提问:哪些数既是3的倍数,又是5的倍数?你是怎样想的?
同时是2和5的倍数的数有什么特征?
哪些数既是2的倍数,又是5和3的倍数?说说你的判断方法。
(2)这里哪些数是偶数?奇数呢?
你是怎样判断偶数和奇数的?
5.做“练习与应用”第4题。
要求学生独立思考,自己选出两张卡片,按各题的要求分别组成两位数,把能组成的数记录下来。
交流:同时是5和3的倍数的数有哪些?(板书:30)如果是三位数呢?
(板书:180810)
组成的两位数中最大的偶数是多少?(板书:80)最小的奇数呢?(板书:13)
6.做“练习与应用”第5题。
让学生把质数圈出来,在合数下面画线。
交流:哪些是质数,哪些是合数?(板书成两类)质数和合数是按什么分的?
说明:质数只有2个因数,合数至少有3个因数。
7.做“练习与应用’’第6题。
让学生选出质数和偶数。
交流、呈现结果。
提问:观察表里选出的质数和偶数,所有的质数都是奇数吗?请举出一个具体例子。
所有的合数都是偶数吗?你能举例子说明吗?
指出:如果要说明一个结论是错误的,只要举一个反例。比如,要判断质数都是奇数的说法是错的,只要举出质数2是偶数这个例子。这里质数2是偶数就是一个反例。要判断合数都是偶数是错的,也只要举一个反例,比如合数9就是奇数。
8.下面的说法正确吗?
(1)大于0的自然数不是奇数就是偶数。
(2)大于0的自然数不是质数就是合数。
(3)奇数都是质数,偶数都是合数。
(4)自然数中最小的偶数是2,最小的合数是4。
(5)一个数本身既是它的因数,又是它的倍数。
9.做“练习与应用”第7题。
(1)让学生填空,指名板演。交流并确认结果。
提问:这里填写的质数都叫积的什么数?为什么称它是积的质因数?
说明:这里把合数写成这种质数相乘的形式,叫什么?
(2)把30、42分别分解质因数。
学生完成,交流板书,检查订正。
四、全课总结
提问:这节课主要复习的哪些内容?你有哪些收获?