四年级数学植树问题教案(优秀16篇)
教案是教师为指导教学而编写的一种教学计划和实施方案。教案的编写需要考虑到学生的认知特点和心理发展规律。以下是小编为大家整理的教案范本,仅供参考。大家可以在教学实践中根据自己的需要进行适当的修改和调整,以适应不同学生的学习情况和教学环境。希望这些教案范本能给大家带来一些启示和帮助,让我们一起努力,提高教学质量,培养优秀的人才。%20教案是教师在备课过程中编写的一种详细的教学计划,它包括了教学目标、教学内容、教学方法、教学过程等内容。教案的编写可以帮助教师全面理解教材内容,合理组织教学活动,有效提高教学效果。教案不仅是一份指导教学的工具,也是评估教学质量的依据。因此,教师需要认真编写教案,确保教学过程的科学性和有效性。那么如何编写一份优秀的教案呢?首先,教师需要充分了解教学目标,明确教学内容和任务。其次,教师应根据学生的实际情况和学习特点,合理选择教学策略和方法。同时,教师还需要精心设计教学过程和活动,确保教学环节的连贯性和逻辑性。此外,教师还需要注意教学资源的合理利用,为教学活动提供必要的教具和素材。最后,在教学结束后,教师应对教学过程进行反思和总结,及时调整和改进教学方法,提高自身的教学水平。以下是小编为大家整理的教案范本,仅供参考。大家可以在教学实践中根据自己的需要进行适当的修改和调整,以适应不同学生的学习情况和教学环境。希望这些教案范本能给大家带来一些启示和帮助,让我们一起努力,提高教学质量,培养优秀的人才。
四年级数学植树问题教案篇一
教学目标分析(结合课程标准说明本节课学习完成后所要达到的具体目标):
知识技能目标:
2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。
过程目标:
2、渗透数形结合的思想,培养学生借助图形解决问题的意识;
3、培养学生的合作意识,养成良好的交流习惯。
情感目标:
1、通过实践活动激发热爱数学的情感;
2、感受日常生活中处处有数学,体验学习成功的喜悦。
学习者特征分析(结合实际情况,从学生的学习习惯、心理特征、知识结构等方面进行描述):
通过平时的观察,我发现四年级学生的思维仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。但这种能力不是那么强,在学习中很难独立的完成学习任务,但学生的合作意识已经有了很大的提高。能在学习中在教师的引导下积极参与学习,完成学习任务。适当的鼓励是激励学生学习,克服困难的最好方法。在生活经验方面,学生们看到过“道路两旁每隔一定距离会种有树”,但是,在这样的现象中包含哪些数学概念他们是不清楚的,需要教师针对此予以明确;在数学知识方面,他们知道“依此类推”和“除法的意义”,像“100米的小路,每隔5米栽一棵”,他们可以通过计算和画图的方法解决,只是对这些量之间存在的数量关系还有待进一步探究。
教学过程(按照教学步骤和相应的活动序列进行描述,要注意说明各教学活动中所需的具体资源及环境):
一、创设情景,激发兴趣。
1、猜谜导入揭题。
师:“两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。”(手)。
师:生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)。
【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有的关系,使学生感受数学与生活的密切联系,在不知不觉中展开对数学问题的探索,激发探求植树问题的欲望。
二、经历探究,发现规律。
1、激趣引入,启发探究积极性。
(课件出示)出示江口小学为绿化环境的招聘启事及设计要求。
招聘启示。
学校将进行校园环境美化,特诚聘环境设计师一名。要求设计植树方案一份,择优录取。
江口小学。
20xx.6。
设计要求:
在一条长20米的小路一边等距离植树,两端要栽。
【设计意图】通过招聘启示让学生设计植树方案的出发点是让所有参与者都能平等的、积极主动的参与到学习的全过程中,在参与中学习和构建新的知识、形成能力。
四年级数学植树问题教案篇二
今天我主评的课是查老师执教的《植树问题》的第一课时,植树问题是人教版《义务教育课程标准实验教科书》四年级下册第八单元《数学广角》的教学内容。这一单元主要是向学生渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再利用发现的规律来解决生活中的一些简单实际问题。植树问题是情况较为复杂的问题,解决这一教学内容本身具有很高的`数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。查老师执教的这节课的目的就是要向学生渗透把复杂问题简单化的数学思想。解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法,植树问题通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干段,由于路线的不同、植树要求的不同,路线被分成的段数和植树的棵数之间的关系也就不同,它们中间都隐藏着总数和间隔数之间的关系问题,不同的情况,总数和间隔数之间的关系也就不同。如何引导学生发现、理解和掌握在一条线段上植树问题的规律,并且会利用这一规律正确解决类似的数学问题,是查老师执教的这一堂课的主要教学目的。查老师的这节课无论是在教材的驾驭上,在教学方法的选择上,还是在教学理念的更新上,及在教学模式的探讨上都给我留下了深刻的印象,这就是我在听课这么长的时间后仍选择主评这节课的主要原因。下面就从以下几个方面谈谈我听完这节课后的几点感受。
教学内容是教学活动的素材和依托,是实现教学目标的重要保证,教学内容安排的合理可以有效地提升教学目标,达到理想的教学效果。植树问题可分为两大方面的内容,一是在直线上植树,二是在封闭图形上植树。直线上植树就有三种不同情况:两端都种、两端都不种、一端种一端不种,查老师根据四年级学生的认知实际,从学生的实际情况出发,所有的学习材料都来源于学生的生活实际,降低了学生认知的起点,激发了学习的兴趣,同时选定将两端都种的情况作为第一课时教学目标来完成,定位很准确,关注了学生学习的起点,符合中年级学生的认知规律。如果一节课将直线上植树的三种情况一起来探究学习,必然会造成知识容量大,学生学得累,教师教得累,教学效果也不如意的尴尬后果。
导入新课时,查老师让学生猜这样的一个谜语:两棵小树十个杈,能写会算不说话。当学生猜出是“手”后,查老师让学生看自己的手掌,然后告诉学生,我们每个人的手里都蕴藏着许多有趣的数学知识,张开小手,五个手指中间有四个间隔,在数学上把这个“4”叫“间隔数”,五个手指就表示五棵树,这就是我们今天要研究的有关植树问题的知识,从而很自然地导入到新课。这样的导入,既新颖有趣,激发了学生学习新课的热情,又使学生充分地体会到数学问题来源于生活。在实践应用环节中查老师让学生说一说生活中还有哪些问题类似于植树问题这样的现象,使学生再次感受到生活中处处有数学。在练习设计中,也是通过出示图片让学生用数学的眼光观察生活,如8个同学排队有几个间隔,6面彩旗有几个间隔,一件衬衫钉了8粒纽扣有几个间隔等内容,让学生利用所学的规律解决生活中的数学问题,使学生进一步感受到数学知识源于生活,应用于生活,从而使学生深刻地感受到数学的应用价值,有效地激发了学生的学习兴趣。
本节课的教学目标是理解和掌握在一条线段上植树问题的规律,并且会利用这一规律正确解决类似的数学问题。查老师在教学过程中,自始至终都围绕着这一目标展开教学。首先,让学生通过自主探索、交流,归纳、总结等方法,使学生发现在两端都栽的情况下,植树问题的“棵树=间隔数+1”,而且,让学生说一说为什么要加上1,这个“1”表示的是什么,从而使学生明确这个“1”就是指末端的那棵树,明确了规律,目的是为了让学生正确地运用这一规律解决类似的数学问题,而植树问题的题型又是灵活多变的,生活中的许多问题都可以归结为用植树问题的方法来解决。因此,查老师在学生解决问题的过程中,十分重视学生对教学目标的理解和灵活运用。如练习这样一道题:5路公共汽车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?当学生独立解答汇报后,查老师不是就此结束了事,而是再让学生说说每道算式的意义,12÷2=6(个)表示有6个间隔,6+1=7(个)表示一共有7个车站,然后,再进一步提出问题帮助学生分析、理解、掌握植树问题的规律。相邻的两站距离在植树问题中表示什么?求一共有几个车站就是求什么?这道题的关键是必须要知道先求出什么?怎么求?在一问一答中,学生的思路更加清晰,对植树问题这一规律有了更深一层的理解和把握,运用起来也就得心应手了。
数学思想方法就是数学的灵魂,植树问题的目的就是向学生渗透复杂问题从简单方法入手的思想。本节课的重点是发现、理解和掌握解决植树问题的规律,即植树问题的公式推导。在这一环节的教学过程中,查老师首先出示的是这样的一道例题:同学们在全长100米的小路一边栽树,每隔5米栽一棵(两端要栽)。一共要多少棵树苗?在学生自主探究独立解答完成这道题后,查老师为了能让学生在此基础上探索发现植树问题的规律,用课件出示线段图,一棵树对应一个间隔,一棵树对应一个间隔,这样一个一个的出示,很麻烦,不利于渗透把复杂问题简单化的数学思想。于是,查老师就把刚才的例题中的100米的小路改成20米、25米、30米,在总长发生变化而间隔的长度不变的情况下,让学生利用手中的学具摆一摆,数一数,通过动手操作,观察,再用多媒体课件进行演示,使学生很快就能发现在两端都栽的情况下,间隔数总是比所栽的棵数少1,从而得出“间隔数+1=棵数”这一规律,并且还明确了为什么要加1,这个“1”表示的是什么的道理。通过教师的有效引领和学生的自主探究,使学生感受到在数学学习中,可以把复杂的问题转化为简单的问题来解决,从而有效地渗透了复杂问题简单化的数学思想。
查老师是我们铜陵市的名师,名师自有名师的风范,查老师在课堂上极具亲和力,教学中,查老师用女性特有的细致和温柔启发和激励学生,既关注细节,又注重评价,使她的课堂激情洋溢,精彩纷呈,掌声不断,高潮迭起。
(1)、关注学生学习过程中的每一个细节。
细节决定成败,关注细节就是要关注学生课堂学中习中的每一个细枝末节。查老师在这堂课中,特别关注学生的学习过程和思维过程,如,学生在独立练习时,查老师首先让学生判断是否属于两端都栽的问题,并且提问你是从哪个地方看出来的,既关注学生的学习结果,更关注学生的思维过程;当学生在练习时,查老师还不断地巡视,发现学生在解题过程中遇到了困难,就及时地提示学生用画线段图的方法,进行分析,给学生以解题方法的提示。另外,查老师还特别关注学生学习习惯方面的每一个细节,哪怕是与这节课教学内容无关的细节,查老师也十分关注。如,当学生回答问题语句不完整时,查老师要求学生要把一句话说完整;当学生板演算式忘记写单位名称时,查老师提醒学生注意书写算式的完整性;当学生板演不工整时,查老师又提醒学生书写时要注意规范工整;当学生口头答题忘记说答语时,查老师还是及时地提醒学生要注意答题的完整性。查老师对教学中的每一个细节都如此地关注,无疑为我们在关注细节这方面做出了榜样。
(2)注重评价方式的多样化。
在查老师的课堂上,始终洋溢着民主平等的教学氛围,特别是查老师敢于放下架子,站在与学生平等的高度,注重对学生的评价,拉近了老师和学生的距离,融洽了师生之间的感情,激发了学生的学习热情和学习兴趣,使得学生在学习过程中能够独立思考,大胆发言,积极创新,学习氛围浓郁。教学中,查老师善于把握学生的心理,对学生实施有效的评价,查教师对学生的评价,既关注学生知识与技能的理解和掌握,又关注学生情感与态度的形成和发展;既关注了学生的学习结果,又时刻关注了学生在学习过程中的发展变化,评价方式多样化。当学生回答问题正确时,查老师就用激励性的语言从正面加以肯定;当学生回答问题精彩时,查老师就让全体学生用热烈的掌声给予鼓励;当学生回答问题非常完整时,查老师不仅用语言进行表扬,并且还投以赞许的目光;当学生回答问题不全面时,查老师先表扬其正确的部分,再委婉地指出其存在的不足,有效的维护了学生的自尊。
本节课练习设计紧扣中心,突出了知识的强化应用,把应用意识的培养和思维的训练贯穿始终,努力让学生利用所学知识解决类似植树问题的不同题型。在题型设计上也由易到难,遵循了循序渐进的原则。有求棵树的,如:5路公共汽车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?有求总长的,如:园林工人在公路一侧栽树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?有求每段长度的,如:广场上的大钟5时敲5下,8秒钟敲完。12时敲12下,需要多长时间?这些都较好地体现了思维的训练和应用意识的培养。
值得商榷的是:
1、在探索植树问题的规律时,同学们探索的是在间隔的长度不变,而总长不断变化的情况下,得出的“间隔数+1=棵数”的这一规律。可否再让学生通过摆一摆、画一画,在总长不变而间隔的长度发生变化的情况下,得出植树问题的规律。如,设总长为20米,间隔的长度可分别为1米、2米、4米、5米、10米、20米,让学生多次从不同结果中发现棵数与段数之间的关系,应用不完全归纳法得出间隔数和棵树之间也存在着同样的规律,通过对不同条件的亲历探讨,从而使学生坚定了这一规律的正确性。
2、课堂教学的开放程度不够,例题可否设计为在20米长的小路一边种树,怎样种?需要几棵数?让学生设计植树的方案。使学生在老师提供的这一开放性的、富有挑战性的题目中,大胆设想,开放思维,充分展示自己的聪明才智,从而体验成功和快乐。
以上两点只是我个人一点不成熟的建议,如有不妥,请各位老师批评指正。
四年级数学植树问题教案篇三
2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。
2、渗透数形结合的思想,培养学生借助图形解决问题的意识;
3、培养学生的合作意识,养成良好的交流习惯。
1、通过实践活动激发热爱数学的情感;
2、感受日常生活中处处有数学,体验学习成功的喜悦。
学习者特征分析(结合实际情况,从学生的学习习惯、心理特征、知识结构等方面进行描述):
通过平时的观察,我发现四年级学生的思维仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。但这种能力不是那么强,在学习中很难独立的完成学习任务,但学生的合作意识已经有了很大的提高。能在学习中在教师的引导下积极参与学习,完成学习任务。适当的鼓励是激励学生学习,克服困难的最好方法。在生活经验方面,学生们看到过“道路两旁每隔一定距离会种有树”,但是,在这样的现象中包含哪些数学概念他们是不清楚的,需要教师针对此予以明确;在数学知识方面,他们知道“依此类推”和“除法的意义”,像“100米的小路,每隔5米栽一棵”,他们可以通过计算和画图的方法解决,只是对这些量之间存在的数量关系还有待进一步探究。
1、猜谜导入揭题。
师:“两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。”(手)。
师:生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)。
【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有的关系,使学生感受数学与生活的密切联系,在不知不觉中展开对数学问题的探索,激发探求植树问题的欲望。
1、激趣引入,启发探究积极性。
(课件出示)出示江口小学为绿化环境的招聘启事及设计要求。
招聘启示。
学校将进行校园环境美化,特诚聘环境设计师一名。要求设计植树方案一份,择优录取。
江口小学。
20xx.6。
设计要求:
在一条长20米的小路一边等距离植树,两端要栽。
【设计意图】通过招聘启示让学生设计植树方案的出发点是让所有参与者都能平等的、积极主动的参与到学习的全过程中,在参与中学习和构建新的知识、形成能力。
四年级数学植树问题教案篇四
上午我上了四年级数学《植树问题》结合自己上课情况和市三小教研员,橡胶所教研员,和本学期邢教研员的评价,做课后反思如下,我认为这节课有以下几点做得比较好:
一、创设情境,让数学走近生活。
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前导入我用学生了解的主席、国家总理植树活动,让学生知道植树的重要性,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。利用线段来分析给学生以清楚表示,找出规律。
在处理教材时我把例题改为条件开放的植树问题,例题的数学有点大,先找出小数据,将路的长度变成20米。如此修改的意图是,让学生在开放的情境中,突现学生的知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在这里数据小了,便于学生利用线段图操作,建立数形结合,有利于学生的思考,降低了学习的难度。
二、注重学生的自主探索,体验探究乐趣。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己动手拭操作,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、关注植树问题爱护环境。
植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:
(1)直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。给学出示建公车站,和生活中钟表问题。
(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,公共汽车站台的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。
四、改正措施。
这节课充分利用了多媒体设备,所以课堂容量较大,时间的点紧张,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。谢谢老师们指导。
四年级数学植树问题教案篇五
上午我上了四年级数学《植树问题》结合自己上课情况和市三小教研员,橡胶所教研员,和本学期邢教研员的评价,做课后反思如下,我认为这节课有以下几点做得比较好:
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前导入我用学生了解的主席,国家总理植树活动,让学生知道植树的重要性,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。利用线段来分析给学生以清楚表示,找出规律。
在处理教材时我把例题改为条件开放的植树问题,例题的数学有点大,先找出小数据,将路的长度变成20米。如此修改的意图是,让学生在开放的情境中,突现学生的知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在这里数据小了,便于学生利用线段图操作,建立数形结合,有利于学生的思考,降低了学习的难度。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己动手拭操作,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:
(1)直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。给学出示建公车站,和生活中钟表问题。
(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,公共汽车站台的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。
这节课充分利用了多媒体设备,所以课堂容量较大,时间的点紧张,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。谢谢各们老师指导。
四年级数学植树问题教案篇六
上午我上了四年级数学《植树问题》结合自己上课情况和市三小教研员,橡胶所教研员,和本学期邢教研员的评价,做课后反思如下,我认为这节课有以下几点做得比较好:
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前导入我用学生了解的主席、国家总理植树活动,让学生知道植树的重要性,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。利用线段来分析给学生以清楚表示,找出规律。
在处理教材时我把例题改为条件开放的植树问题,例题的数学有点大,先找出小数据,将路的长度变成20米。如此修改的意图是,让学生在开放的情境中,突现学生的知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在这里数据小了,便于学生利用线段图操作,建立数形结合,有利于学生的思考,降低了学习的难度。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己动手拭操作,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:
(1)直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。给学出示建公车站,和生活中钟表问题。
(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,公共汽车站台的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。
这节课充分利用了多媒体设备,所以课堂容量较大,时间的点紧张,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。谢谢老师们指导。
四年级数学植树问题教案篇七
教学。
设计由本站会员“夜色恋人”投稿精心推荐,小编希望对你的学习工作能带来参考借鉴作用。
作为一位无私奉献的人民教师,可能需要进行教学设计编写工作,借助教学设计可以提高教学效率和教学质量。如何把教学设计做到重点突出呢?以下是小编精心整理的小学人教版四年级数学植树问题教学设计,仅供参考,欢迎大家阅读。
教学目标分析(结合课程标准说明本节课学习完成后所要达到的具体目标):
知识技能目标:
2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。
过程目标:
2、渗透数形结合的思想,培养学生借助图形解决问题的意识;
3、培养学生的合作意识,养成良好的.交流习惯。
情感目标:
1、通过实践活动激发热爱数学的情感;
2、感受日常生活中处处有数学,体验学习成功的喜悦。
学习者特征分析(结合实际情况,从学生的学习习惯、心理特征、知识结构等方面进行描述):
通过平时的观察,我发现四年级学生的思维仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。但这种能力不是那么强,在学习中很难独立的完成学习任务,但学生的合作意识已经有了很大的提高。能在学习中在教师的引导下积极参与学习,完成学习任务。适当的鼓励是激励学生学习,克服困难的最好方法。在生活经验方面,学生们看到过“道路两旁每隔一定距离会种有树”,但是,在这样的现象中包含哪些数学概念他们是不清楚的,需要教师针对此予以明确;在数学知识方面,他们知道“依此类推”和“除法的意义”,像“100米的小路,每隔5米栽一棵”,他们可以通过计算和画图的方法解决,只是对这些量之间存在的数量关系还有待进一步探究。
教学过程(按照教学步骤和相应的活动序列进行描述,要注意说明各教学活动中所需的具体资源及环境):
一、创设情景,激发兴趣。
1、猜谜导入揭题。
师:“两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。”(手)。
师:生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)。
【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有的关系,使学生感受数学与生活的密切联系,在不知不觉中展开对数学问题的探索,激发探求植树问题的欲望。
二、经历探究,发现规律。
1、激趣引入,启发探究积极性。
(课件出示)出示江口小学为绿化环境的招聘启事及设计要求。
招聘启示。
学校将进行校园环境美化,特诚聘环境设计师一名。要求设计植树方案一份,择优录取。
设计要求:
在一条长20米的小路一边等距离植树,两端要栽。
【设计意图】通过招聘启示让学生设计植树方案的出发点是让所有参与者都能平等的、积极主动的参与到学习的全过程中,在参与中学习和构建新的知识、形成能力。
小学四年级数学植树问题教学设计如果还不能满足你的要求,请在本站搜索更多其他小学四年级数学植树问题教学设计范文。
四年级数学植树问题教案篇八
教学目标:
3、通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。
教学重点:
教学难点:培养学生在实际生活中发现问题、提出问题、解决问题的能力。
教学准备:
实物投影、游乐园情境图。
教学过程:
一、情景导入,激发兴趣。
1、谈话:小朋友们你们去过游乐园吗?你最喜欢玩什么?
[设计意图]:从学生喜欢的事物引入,激发学生学习的兴趣。
二、合作交流,探索新知。
2、观察了解信息:从图中你知道了什么?
3、小组交流讨论。
(1)应该怎样计算现在看戏的有多少人?
(2)独立思考后,把自己的想法在组内交流。
(3)选派组内代表在班中交流解决问题的方法。
4、把学生解决问题的方法记录在黑板上。
方法一、22+13=35(人)35-6=29(人)。
方法二、22-6=16(人)16+13=29(人)。
6、把两个小算式你能写成一个算式吗?学生尝试列综合算式。
板书:(1)22+13-6 (2)22-6+13 。
交流:你是怎么想的?
7、小结。
三、练习巩固,应用实践。
[设计意图]:让学生在交流、实践中掌握知识。
四、课堂总结。
五、课堂作业 。
四年级数学植树问题教案篇九
专题简析:
我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。行程问题主要包括相遇问题、相背问题和追及问题。这一周我们来学习一些常用的、基本的行程问题。
解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
分析与解答:这是一道相遇问题。所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。所以,求两人几小时相遇,就是求20千米里面有几个10千米。因此,两人20÷(6+4)=2小时后相遇。
练习一。
分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。根据题意可知,狗的`速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟。所以狗共行了500×10=5000米。
练习二。
分析与解答:这是一道相背问题。所谓相背问题是指两个运动的物体作背向运动的问题。在相背问题中,相遇问题的基本数量关系仍然成立,根据题意,甲乙两人共行的路程应该是54-18=36千米,而两人每小时共行7+5=12千米。要求几小时能行完36千米,就是求36千米里面有几个12千米。所以,36÷12=3小时。
练习三。
四年级数学植树问题教案篇十
2、136×27+63×27+27=。
3、99×99+199=。
4、如果一个三角形的三条边都是整厘米数,且其中的两条边分别长5厘米和8厘米,问第三条边的长可能是多少厘米?(请把所有情况都写出来)。
5、等腰三角形一条边长10厘米,另一条边长5厘米,问这个三角形的周长是多少厘米?
6、小明计算(28+25128,这题正确的结果应该是多少?
7、一列火车在上海、南京之间往返行驶,中间停靠苏州、无锡、常州、镇江,每两地之间路程都不相同,铁路局应准备多少种不同的火车票?(注意:在相同的两站往返的票是不同的)。
10、等腰三角形中有一个角是80°,问其它两个角的度数是多少?
14、鸡、兔共100只,鸡脚比兔脚多20只,问鸡、兔各多少只?
16、两个素数的和是50,这两个素数的乘积最大是多少?
20、两数相除,被除数扩大8倍,要使商缩小4倍,问除数应该怎样变化?
22、1月1日是星期天,问月1日是星期几?
四年级数学植树问题教案篇十一
2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。
2、渗透数形结合的思想,培养学生借助图形解决问题的意识;
3、培养学生的合作意识,养成良好的交流习惯。
1、通过实践活动激发热爱数学的情感;
2、感受日常生活中处处有数学,体验学习成功的喜悦。
理解“植树问题(两端要种)”的`特征,应用规律解决问题。
理解“间距数+1=棵数,棵数-1=间距数。
一、设计情景、引入课题。
1、教学“间隔”的含义。
师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)。
2、举例生活中的“间隔”
师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)。
3、理解间隔数,引入课题。
在一条路上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)。
二、探索新知,探究规律。
1、出示招聘启事。
在操场边,有一条20米长的小路。学校计划在小路一边种树,要求每隔5米栽一棵。特聘请校园设计师数名,要求设计植树方案一份,择优录取。
2、出示例题,理解题意:
师:(课件出示例题。)。
(课件解释关键词语,加深学生理解)。
师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。
3、出示合作要求。
(1)教师讲解小组合作要求。
(2)学生4人小组开始合作学习,利用学具设计出植树方案。(可以用不同的形式表达)。
(3)教师巡视,指导学生小组合作。
(4)小组作品展示,及小组评价。教师及时点评学生的设计方案,并及时鼓励学生。
(5)引导学生总结出在实际生活中的植树情况可以分为三种:第一种两端都栽,第二种:只栽一端,第三种:两端都不栽。
4、以小组为单位探究棵数与间隔数间的关系:
(1)数一数:数出棵数和间隔数。
(2)比一比:比较出棵数和间隔数之间的规律。
两端都要栽时,植树的棵数比间隔数多1(棵数=间隔数+1)。
只栽一端时,植树的棵数与间隔数相同(棵数=间隔数)。
两端都不栽时,植树的棵数比间隔数少1(棵数=间隔数-1)。
三、课堂小结、反馈练习。
1、公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间敲完?
四年级数学植树问题教案篇十二
(1)知识与技能:学生在已有的知识基础上经历集合思想的形成过程,初步理解集合知识的意义。能结合具体情境体会用“韦恩图”解决有重叠部分的问题的价值,理解集合图中每部分的含义,能解决简单的有重叠部分的问题。
(2)过程与方法:通过观察、猜测、操作、交流等活动,学生在合作学习中感知集合图的形成过程,能用集合图分析生活中简单的有重复部分的问题。
(3)情感态度价值观:在解决实验问题的过程中感受选择解决问题策略的重要性,养成善于思考的良好习惯,体会数学的严谨性,感受数学与生活的联系,提高学习数学的兴趣。
集合思想方法解决简单的实际问题。
集合思想方法的形成过程。
“学习之星”和“劳动之星”的获奖奖励,“智慧星”和“守纪星”的获奖奖励,集合名称的磁板,获奖学生名字的卡片,课件。
一、脑筋急转弯导入新课师:今天这节课上老师会根据同学们的表现,评选出智慧星和守纪星。想要获得智慧星,那你课上需要积极动脑、认真思考。想要获得守纪星,那你课上就要认真听讲、坐姿端正、书写规范。看谁这节课既能获得智慧星又能获得守纪星。
谈话:同学们,你们玩过脑筋急转弯的游戏吗?想不想玩一玩?出示脑筋急转弯——理发师的困惑:
教师边讲解,边用课件播放声音。
师问:进来的怎么只有三个人呢?你们能帮理发师解决他的困惑吗?生:略师:在这里爸爸有双重身份,他既是孩子的爸爸又是爸爸的孩子。身份在这里重复了一次,所以只有3人。(板书:既??又??)像这样的问题,数学上称之为“重叠问题”今天就让我们一起去研究这类问题。
二、集合圈的深入探究师:根据同学们上一周的表现,李老师评选出了7名学习之星和5名劳动之星,那你们知道一共有多少名同学获奖了吗?(12名)师:有不同意见吗?生:没有师:那你们想不想知道都有谁获奖了?(课件展示获奖学生名单)师:从这张光荣榜里,你发现了什么?生:xxx既获得了“学习之星”又获得了“劳动之星”。
师:你这个词用的真好,既??又??(板书)这样说我们就听得很明白了,谁还能像这位同学一样说说你的发现?生1:xxx既获得了“学习之星”又获得了“劳动之星”。
师:谁能把这两个同学的发现连起来说说?生2:
和都既获得了“学习之星”又获得了“劳动之星”。
师:你真会表达。下面请获奖的同学赶快到前面来,老师给大家颁奖。学习之星站到老师的右手边,劳动之星站到老师的左手边。你们俩应该站到哪儿?师:咦,我发现了一个问题,刚才我们明明算了12名同学获奖了,怎么才来了10个人呢?那两个人呢?(学生举手,迫不及待的回答问题。)你们有话想说,那好,你来说说?生:
和都既获得了“学习之星”又获得了“劳动之星”,所以他们两人在获奖名单里重复了。
师:哦,原来是这样。看来同学真是理解了这两个同学的位置了,那这两边呢?谁来说说右边同学的获奖情况?生:右边同学获得了“学习之星”。
师:“学习之星”还有中间的两个同学呢,我们只描述这5个人的获奖情况。
生:这5个人单单只获得了“学习之星”。
师:那谁来说说左边这3位同学的获奖情况?生:左边这3位同学只获得了“劳动之星”。
师:真不错,这下我们弄清楚了。那老师开始颁奖了,左边的同学每人发一颗“学习之星”,右边的同学每人发一颗“劳动之星”,中间的同学每人既发一颗“学习之星”又发一颗“劳动之星”。(师边说边给学生发小星星)师:那刚开始我们算得有12名同学获奖了,在今天的这种获奖的情况下是不对的,你能用画图的方法表示出今天有10位同学获奖了吗?先听清要求:画图时,要画清同学们的获奖情况,还要让我们能直观的看出一共有多少名同学获奖了,注意老师已经把这些同学的名字编好了相应的序号(课件展示),不要写这些同学的名字了,我们只用序号来表示同学就可以了。
生:独立画图。
师:画好的同学可以小组相互交流一下,看看小伙伴们画的图有没有值得你借鉴的地方。(师巡视学生画的图,选择有代表性的图到前面投影。)师:老师选择了几位同学画的图,下面请这几位同学分别到前面来讲一讲他们画的图。
师:像这种重叠问题,我们可以用韦恩图来表示。它是英国的数学家韦恩在1881年发明的,后来人们为了纪念他把这个图叫作韦恩图,也叫集合圈。(板书:集合)师:下面就请同学们跟老师一起用集合圈的方式来画画图。(师边讲边在黑板上画集合圈)先画一个封闭的椭圆表示“学习之星”,画好之后贴上这个集合圈的名字是“学习之星”。接下来该画什么了?生:“劳动之星”的集合圈。
师:那“劳动之星”的集合圈我们应该画在什么位置呢?师:为什么要把“劳动之星”的集合圈有一部分画到“学习之星”的集合圈里面呢?生:因为有人既获得了“学习之星”又获得了“劳动之星”。
师:再画一个封闭的椭圆表示“劳动之星”。下面我们把这些获奖同学的名字贴在相应集合圈的位置里。
师:这个集合圈我们就算画好了,那集合圈的各部分表示什么呢?我们一起来看大屏幕。阴影部分表示什么?师:根据我们画的集合圈在小卷子上列出算式(生列算式)。
师:谁来说说你怎么列的算式,并给大家讲讲你为什么这样列算式?生:我列的算式是7+5-2=10(名),“7”表示7名“学习之星”,“5”表示5名“劳动之星”,减去“2”是因为有2名同学重复了。
师:你讲的真清楚,大家都听明白了吧。
师:谁还有不同的方法?你们看这个图我们相当于把这些获奖同学分了几部分?(3部分)哪三部分?分别是几人呢?那你会列算式了吗?三、问题拓展师:这个问题我算式弄清楚了,现在老师又有想法了,我们下周还要选出7名“学习之星”,5名“劳动之星”,你们帮老师想一想有可能有多少名同学会获奖吗(出示课件)?今天的获奖情况是有2名同学重复了,有10个同学获奖了。那下次获奖可能多少名同学重复呢?生:3名,1名。
师:最多有多少名同学重复获奖?生:5名。
师:为什么?生:因为“劳动之星”只有5人,所以最多只能有5人重复获奖了。
师:谁能按照一定的顺序把下周我们班获奖的重复情况都想全了,并说一说。
生:没有重复、重复1人、重复2人、重复3人、重复4人、重复5人(随着学生说,课件出示)。
师:那每种情况下有多少人获奖呢?分组做师:没有人重复获奖的情况。
生:7+5=12(人)师:那这个集合图该怎么画呢?生:画两个单独的圈,没有重复的部分。
师:(找学生说重复1人、重复3人、重复4人、重复5人的算式,并让学生说3/4清这样列式的原因。)那重复5人的时候,这个集合圈又该怎样画呢?生:“劳动之星”的圈都跑到“学习之星”的圈里去了(课件展示)。
师:那这个部分表示什么意思?有几人?(课件出示如下)学习之星生:这部分表示只获得了“劳动之星”,有2人。
师:我们来观察这些算式,你发现了什么?生:有几个人重复了,就去掉几人。
四、练习提升师:班里获奖同学的情况,我们都弄清楚了,真了不起,那今天没有获奖的同学呢?比如xxx,我想把他的名字也贴在黑板上,我应该贴在什么位置上。(贴在集合圈的外面)为什么啊?贴在外面表示什么呢?师:所以我们班里其他没有获奖的同学,都可以贴在获奖集合圈的外面。现在班里每位同学都找到了自己的位置,下面我们来帮同学们找到自己的位置。
这节课获得智慧星的有人,获得守纪星的有人,两项都获得的有人,两项都没有获得的有人,来上课的学生一共有多少人?师:请同学们,在小卷上独立完成,要求画出集合圈,并列算式。
六、课堂小结师:
今天我们学习了重叠问题,还用集合知识解决了不少问题,谁来说说你这节课的收获?
生1:我学会了画集合圈。
生2:我学会了重叠的问题可以用画集合圈的方法来解决。
生3:集合圈的画图方法能让我们很清楚得看清每个部分有多少人和一共有多少人。
师:你们的收获还真不少同学们,集合圈可以帮我们解决生活中有重复现象的问题以后这样的问题还有很多很多,就等着同学们去发现和解决。好,这节课就上到这里,下课。
四年级数学植树问题教案篇十三
本课通过生活中的事例,调动学生已有的生活经验,接触一些重要的数学思想方法,经历猜想、实验、推理等数学探索过程,激发学生对数学的好奇心和探求新知的兴趣,增强学习数学的兴趣。以学生发展为本,着眼于数学思维能力的培养。注重引导学生充分体验探究过程,感受数学在日常生活中的广泛应用,培养学生的观察比较、动手操作、分析概括能力以及语言表达能力。
《义务教育课程标准实验教科书数学》(人教版)四年级下册第117页。
“植树问题”是人教版四年级下册“数学广角”这个单元的一节内容。和前几册教材一样,主要是向学生渗透一些重要的数学思想方法。本课主要是渗透有关植树问题的一些思想方法,教学时通过现实生活中的一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
1、通过动手操作、小组合作,使学生能理解间隔数与植树棵数之间的规律,并将这种规律应用到解决类似的实际问题之中。
2、培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力。渗透数形结合的思想,培养学生借助图形等方式解决问题的意识。
3、培养学生的合作意识,养成良好的交流习惯。通过实践活动激发热爱数学的情感,感受数学与现实生活的密切联系,体验学习成功的喜悦。
引导学生发现不封闭线路上,两端都栽时间隔现象的简单规律。
运用规律解决类似的实际问题的方法。
电脑课件、泡沫条、小树模型、表格等等。
一、创设情境,引入新课
1、初步感知植树方法的多样化
师:春天是个植树的好季节,你们知道植树有哪些好处吗?
植树原来有这么多的好处啊。这节课,我们就一起来研究植树中的数学问题。(板书课题)
请学生上台用课件演示:鼠标移动书苗介绍设计方案
师示范给一种方案命名,其他方案请学生命名。
结论:(1)两端都栽。
(2)只栽一端。
(3)两端都不栽。
(板书)
二、动手操作,探究新知
1、教学例1
本节课我们主要学习两端都栽的植树问题。
读完题目,你们获得了哪些信息?
猜猜看,一共要准备几棵小树苗?
(2)学具操作,初步探究
到底谁的答案是对的呢?我们先取100米中的一小段20米来研究。
小组合作,用学具模拟栽树。思考:两端都栽的时候,应该栽多少棵?
学生展示学具,汇报模拟结果。
(3)教学画线段图
我们用一条线段来代表20米长的小路,用几个点来代表小树苗。这就是我们经常要用到的线段图,线段图可以很好地帮助我们思考。(课件展示)
师:这几个点除了可以代表小树苗,还能代表其他的东西吗?引导学生发现点可以表示很多物体。
师:两点间的距离可以用哪个词语来表示呢?(间隔)
生活中你们还见过哪些间隔,能举些例子吗?
刚才在植树中,你们发现了几个间隔(数)呢?是怎么知道的?
师:同学们在刚才栽树的过程中,还发现了什么?
(4)感知规律
【学情预设:学生会提出每隔1米,2米,4米,10米,20米栽一棵。】
出示表格,根据学生的回答将间隔填上。
小组合作:选择一、两种间隔,用喜欢的方法找出间隔数和棵数,填入表格中。
填好表格后,小组派代表汇报结果。
【学情预设:学生可以用画线段图、算一算、数一数等方法完成。】
谈论交流:两端都栽时,植树的棵数与间隔数之间有什么关系?
得出结论:两端都栽树时,棵数比间隔数多1。也可以说间隔数比棵数少1。
板书:(两端都栽)间隔数+1=棵数
质疑:为什么两端都栽时,棵数比间隔数多1?
配合学生的回答,课件展示
【设计意图:启发学生透过现象发现规律,也就是在两端都栽时,棵数比间隔数多一。】
(5)练习
老师有几个问题想请你们用刚才所学的规律以抢答的形式来帮忙解决。
【设计意图:全体学生一起抢答,知识得到了巩固,同时也活跃了课堂的气氛。】
(6)验证
我们利用这个规律来算一算,两端都栽时,100米到底应该种多少棵树?看看前面哪些同学猜对了。
三、应用规律
(1)任意一纵队的学生起立
师:谁能应用刚才所学的知识提几个数学问题?
(4)学校组织40名同学参加车鼓队排练,请你设计一下队形?可能会排成几排?
【学情预设:1排、2排、4排、5排、8排……】
如果老师想排成两排呢?
四、全课总结
学完这节课,你有什么想对老师或者同学们说的呢?
五、课外思考
【设计意图:把探究活动延伸到课外,为下一节课的教学做好铺垫。】
《植树问题》是人教版小学数学实验教材四年级下册新增的一个内容,其目的是向学生渗透一些重要的数学思想方法。教材通过现实生活中一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
上课伊始,对学生们进行环境保护教育,让学生意识到植树和生活有紧密的联系,而且植树中还藏着有趣的数学问题,激发学生的求知欲。
导入新课后,让学生成为学习的主人,学生经历了猜猜,试试,画画,填填等多种学习形式,自主探究出规律。整个过程培养了学生的'动手操作能力,自主探究能力,小组合作交流能力。学生自由选择方案,体现教学方法的开放性,在教师的引导下,学生很快地发现了规律,并构建起植树问题的数学模型,为下一节课的教学打下坚实的基础。
在练习巩固环节,让学生运用新获得的数学知识来解决生活中的实际问题,让学生意识到生活中处处有数学,数学源于生活,又用于生活,激发学生的学习热情。
本课设计的立足点在于学生的发展,把学生探索规律的过程作为课堂的中心点,把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践能力和创新意识。
四年级数学植树问题教案篇十四
生:间隔排列的规律。
师:我们能不能运用学过的规律帮助它们解决困难呢?
生:能。
师:我们一起去吧!
1、出示例题的上半部分及情境图(暂不出现问题)。
师:从情境图中你看到了哪些景物?
生1:林**旁的树。
生2:做操的兔子。
生3:送花盆的猴子。
师:请阅读题目中的文字,了解题目的数学信息 。
师:怎样理解"从一端到另一端共栽了7棵树","相邻的两棵树相隔3米" ?
学生:7棵树分成了6段,每段3米。
学生:这里实质求6个3米是多少。
师:林**的两头都栽树,相邻两棵树相隔3米,也就是林**被树分成的每段的长度是3米。
2、出示第(1)个问题:林**长多少米?
生:会
3、学生列式解答,教师巡视,如发现不同的解法都让学生写在黑板上,并组织讨论。
(2)在两头都栽树的情况下,林**被树分成的段数与树的棵树有什么关系 ?
(3)这道题应该分成几步计算? 先算什么 ?再算什么 ?
4、出示第(2)个问题:兔子做操的队伍长多少米
学生独立解答,共同订正。
师:谁能说说每步求出的是什么?
生:5-1=4表示5个兔子分成了4个间隔。
生:4×2=8表示每两只兔子相隔2米,4个间隔共8米。
师:说得非常好!我们是根据什么想到的?
生:根据我们上节课学的间隔排列规律想到的。
5、做“试一试"
师:这道题中的林**指的是哪一条林**?
生:就是例题里的那条林**。
师:全长知道了吗?
生:全长是18米。
学生独立完成。
师:比较(1)(2)两题,在物体的排列上有什么相同的地方 ?
生:都是从一端到另一端,物体的间隔长度一定。
师:在计算方法上有什么相同的地方?
生:段数比物体的个数少1。
生:每段长度与段数相乘得总长度。
师:(板书)
物体个数-1=段数 每段长度×段数=总长度
师小结:这节课我们将运用间隔排列的物体数量间的关系,也就是我们上节课找到的规律来解决一些实际问题。(板书课题)
1、做第1题
学生独立解答,一人做在小黑板上,全班共同订正。
师:走廊两端放花和不放花一样吗?
生:不一样
生:两端放花,花的盆数比分的段数多1。
生:两端不放花,花的盆数有可能和分的段数相等。
生:也有可能比分的段数少1。
2、做第2题。
(1)出示题目,学生独立完成,指明板演,集中交流订正,说出每步算出的是什么。
师:植树方案包括哪些?
生:栽什么树。
生:怎样栽。
生:跑道两头栽不栽 ,草坪四个角上栽不栽 ,每隔几米栽一棵。
生:需要多少棵
(2)各小组讨论植树方案,填制下表。
植树方案
植树地点
植树品种
树苗棵数
(3)各小组展示植树方案,全班评议。
评议重点:
1)根据树的品种考虑相邻两棵树的距离是否合适。
2)根据设计的栽法,树苗棵树的计算是否正确。
生:我们运用了间隔排列规律解决了植树问题。
师:我们今天解决的植树问题,类似这样的问题在生活中很多,希望同学们做有心人,发现这样的问题,并努力解决它。
找规律(间隔排列)
物体个数-1=段数 每段长度×段数=总长度
两端放花,花的盆数比分的段数多1
两端不放花,花的盆数有可能和分的段数相等或比分的段数少1
四年级数学植树问题教案篇十五
1.通过计算两种动物爬行的速度,发现余数和商的特点,知道什么是循环小数。
2.在认识循环小数的过程中培养学生科学地思考问题的方法。
在这一单元里,前面4节课里学生系统学习了除数是整数的除法、除数是小数的除法以及用小数除法解决实际问题。在这基础上,教材创设了两种爬虫谁爬得快的有趣情境,让学生在解决问题中发现某些除法中余数和商的特点,从而进一步去探索、发现它们有什么规律?在这过程中认识什么是循环小数。这部分内容比过去降低了要求,有关循环节。循环小数的简便写法,是在"数学万花筒"中呈现的。
这节课都是利用除数是整数的小数除法来引入循环小数的除法,相对来说,学生比较容易理解。对于"循环"这一特征,原先孩子在找规律中也多次接触,因此,可以放手让学生先算,在算的过程中可能发现余数和商的特点,再引导学生来研究循环小数的特点就不会很困难。
活动一:比一比,谁爬得快?发现并认识循环小数。
出示课件:雨后的一天,树叶上还闪烁着水珠。一棵大树上一只蜘蛛在慢慢地往下爬行;地面上,有只蜗牛也在缓慢地爬行。
师:你们从图中还获得了什么信息?
(点击课件:蜘蛛旁边出现"3分钟爬行73米";蜗牛旁边出现"11分钟爬行9.4米")
师:你们能提一个数学问题吗?
生:它们俩谁爬得快?
师:如何知道谁爬得快?你怎样解决?怎样列算式?
生:可以比较它们俩的速度。
生:蜘蛛的速度可以用73÷3来计算蜗牛的速度可以用9.4÷11来计算(老师板书出学生说出的算式)
师:先请大家动手算一算蜘蛛的速度。
学生动手算。
……
生:老师:73÷3=24.3333……除不尽怎么办?
师:什么意思?你还没有除完,怎么知道除不尽呢?
生1:永远都除不完!
师:为什么?
生1:因为每一次余数都是1。
生2:商从小数点后面开始每次除得到的商都是3,然后余数又是1,商3,余数是1,不断反复出现。
师:是呀!73÷3的余数不断重复,商也不断重复,永远都除不完,它的商可以这样写:24.3333……后面加省略号,表示还有无数个3,这样的数叫做循环小数。
师:下面请同学们再求出蜗牛的速度。然后再比一比蜘蛛和蜗牛谁的.速度快?
学生动笔算…
生:它也是一个循环小数。0.85454…
师:为什么说它也是一个循环小数?
生1:因为余数"5"重复出现。
生2:商也不断重复出现:5454……
师:那么现在你们能得出蜘蛛和蜗牛谁爬得快吗?
生:蜗牛快。
活动二:认一认。进一步认识循环小数。
师:请同学们阅读课本第70页"数学万花筒"。他告诉了我们什么?你能试一试说说刚才这几个循环小数的循环节吗?怎样用简便写法写出来。
练习:
计算下面各题,哪些商是循环小数?
3÷84÷310÷92÷4
14.2÷110.4÷91÷75÷6
师:通过这节课的学习,你对循环小数有了哪些认识?
……
这一节课,我准确把握了学生的认知起点,在具体的情境中,通过计算发现除不尽的现象,引发学生想了解怎样去表示商;这类商都有哪些特点等。帮助学生认识循环小数,因此,学生学得比较主动,通过让学生阅读"数学万花筒",帮助学生知道循环节和循环小数的简便写法,我觉得这样处理比较恰当。
这节课体现了以学生为本的理念。从发现问题到问题的解决,注重培养学生的观察、归纳、语言的表达等能力。对于学生提出的问题,老师不是直接解答,而是引导学生梳理自己的发现,通过对这些现象的描述,认识循环小数,真正做到了"不愤不启,不悱不发"。
其次,注重了活动性教学。通过"谁爬得快"认识循环小数,"认一认"运用概念去判断,进一步认识了循环小数。最后通过"练一练",深化了循环小数的认识,层次非常清晰,使得学生的思维不断地得到发展。
四年级数学植树问题教案篇十六
这节课是在学生已经学习了万以内的数的读写,并掌握了万以内数的读写方法的基础上学习的。为以后学生在学习中接触大数,并计算大数奠定了知识基础。
学生在三年级时已经会读写万以内的数,他们已经有了一定的自主探究、合作交流、总结概括的能力,喜欢在自主探究、合作交流的过程中学习新知识,渴望获得成功的体验。
根据教材对教材的理解和学生的实际情况,我将本节课的教学目标确定为:
1. 结合具体事例,经历认识数位表以及读、写亿以内数的过程。
2、认识亿以内的数为顺序,知道各个数位上的数字所表示的意义,能读、写亿以内的数。
3.对现实生活中与大数有关的事物感兴趣,体会大数在表达和交流信息中的作用,培养学生的合作交流能力以及总结概括的能力,树立学习数学的自信心。
本节课教学重点:亿以内数的读写法。
难点:亿以内数读写的方法。
在教学中我准备了如下的教具:多媒体课件(ppt)
这节课我运用的教法有:情境导入法、操作发现法、归纳总结法、
学法有:自主探究法、观察比较法、合作交流法
? 教学中借助电子白板展示例题、练习,大大提高了课堂效率,体现数学与信息技术的有效整合。
(一)创设情景,导入新课
首先从趣味读数导入,借助学生会读的典型数据,复习万以内数的读法。再联系生活,引入生活中的亿以内的.数,让学生选择喜欢的信息读给大家听。 目的是让学生深切地感知数学来源于生活,激发学生的学习兴趣。
(二)自主探究、合作交流
在自主探索、合作交流,我安排了两个活动:
活动一:探究亿以内数的读法
我首先出示数位表,引导学生观察并交流数位表的分级特点以及个级和万级数位排列的特点。这一环节我的设计意图是:通过观察交流数位表,为读写亿以内的数做好准备。
课堂上先引导学生利用数位表读数,初步体会亿以内数的读法;再让学生在没有数位表的情况下读数,使学生感受到分级的必要性;最后师生共同总结出亿以内数的读法。这样设计使每一位学生既深刻体会到了亿以内数的读法,同时又培养了学生的知识迁移能力和归纳总结的能力。为了巩固亿以内的读法,我又设计了读数大比拼的游戏。这个环节的设计意图是:继续巩固亿以内数的读法,并体会到数学学习的乐趣。
此时,孩子们正处在成功的喜悦中,我继续激发学生的学习兴趣,进一步提出:这样的数怎样写呢?激起学生想继续探究的兴致,这样就自然的进入活动二的教学环节。
活动二:探究亿以内数的写法
首先提出活动要求:你能试着写出这些数吗?
在学生试写、小组讨论、全班交流的过程中,使学生掌握亿以内数的写法。这一环节的设计意图是:使学生亲身经历知识的产生、形成的过程,突出了学生的主体地位。
为了让学生更好的掌握亿以内数的写法,我又设计了写数比赛。
这个活动的设计意图是:既能让好学生吃得饱,又能让差学生够得着。给了学生发挥自己潜能的机会,又在快乐中加强了对知识的理解,使学生轻松愉快的学习本节课的新知。
(三)发散思维,拓展延伸
以上教学环节使学生掌握了亿以内数的读写法,但学生仅仅会直接的读数和写数。为了让学生在掌握亿以内数读写法的基础上,又有所提高,我进一步设计了写数的游戏。
这一环节的设计,既让学生充分感受到数学学习的趣味性,又达到了培养学生逆向思维能力的目的。
(四)课堂小结,反思提升
这一环节让学生谈谈自己的收获和体会,引导学生从知识、过程、情感三方面进行总结。
整节课的教学设计充分发挥多媒体教学手段的优势,在直观教学中,有效地激发学生的学习兴趣,培养了学生观察、推理、总结的能力,发散了学生的思维。