高二数学知识点(8篇)
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
高二数学知识点篇一
对于函数y=f(x)(x∈d),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈d)的零点。
(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:
方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点。
(3)函数零点的判定(零点存在性定理):
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。
二二次函数y=ax2+bx+c(a>0)的图象与零点的关系
三二分法
对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。
1、函数的零点不是点:
函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点。在写函数零点时,所写的一定是一个数字,而不是一个坐标。
2、对函数零点存在的判断中,必须强调:
(1)、f(x)在[a,b]上连续;
(2)、f(a)·f(b)<0;
(3)、在(a,b)内存在零点。
这是零点存在的一个充分条件,但不必要。
3、对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号。
利用函数零点的存在性定理判断零点所在的区间时,首先看函数y=f(x)在区间[a,b]上的图象是否连续不断,再看是否有f(a)·f(b)<0。若有,则函数y=f(x)在区间(a,b)内必有零点。
四判断函数零点个数的常用方法
1、解方程法:
令f(x)=0,如果能求出解,则有几个解就有几个零点。
2、零点存在性定理法:
利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。
3、数形结合法:
转化为两个函数的图象的交点个数问题。先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。
已知函数有零点(方程有根)求参数取值常用的方法
1、直接法:
直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。
2、分离参数法:
先将参数分离,转化成求函数值域问题加以解决。
3、数形结合法:
先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。
高二数学知识点篇二
在统计学中,把研究对象的全体叫做总体.
把每个研究对象叫做个体.
把总体中个体的总数叫做总体容量.
为了研究总体的有关性质,一般从总体中随机抽取一部分:
研究,我们称它为样本.其中个体的个数称为样本容量.
机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
抽签法;随机数表法;计算机模拟法;使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
(1)给调查对象群体中的每一个对象编号;
(2)准备抽签的工具,实施抽签
(3)对样本中的每一个个体进行测量或调查
例:请调查你所在的学校的学生做喜欢的体育活动情况。
例:利用随机数表在所在的班级中抽取10位同学参加某项活动。
高二数学知识点篇三
(2)不等式的性质(略)
(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈r)
②a2+b2≥2ab(a、b∈r,当且仅当a=b时取“=”号)
(1)比较法:要证明a>b(a0(a-b<0),这种证明不等式的方法叫做比较法.
用比较法证明不等式的步骤是:作差——变形——判断符号.
(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.
(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.
证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.
高二数学知识点篇四
平面向量数量积的定义
已知两个非零向量a和b,它们的夹角为,把数量|a||b|cos 叫做a和b的数量积(或内积),记作ab.即ab=|a||b|cos ,规定0a=0.
(1)ab=ba
(2)(a)b=(ab)=a(b)
(3)(a+b)c=ac+bc
[探究] 根据数量积的运算律,判断下列结论是否成立.
(1)ab=ac,则b=c吗?
(2)(ab)c=a(bc)吗?
提示:(1)不一定,a=0时不成立,
另外a0时,ab=ac.由数量积概念可知b与c不能确定;
(2)(ab)c=a(bc)不一定相等.
(ab)c是c方向上的向量,而a(bc)是a方向上的向量,当a与c不共线时它们必不相等.
高二数学知识点篇五
等腰直角三角形面积公式:s=a2/2,s=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。
面积公式
若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:
s=ab/2。
且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为:
s=ch/2=c2/4。
等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹一直角锐角45°,斜边上中线角平分线垂线三线合一。
高二数学知识点篇六
主要掌握好(三四五)
(1)事件的三种运算:并(和)、交(积)、差;注意差a—b可以表示成a与b的逆的积。
(2)四种运算律:交换律、结合律、分配律、德莫根律。
(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。
(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件a所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;
(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件a看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;
(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。
(1)加法公式:p(a+b)=p(a)+p(b)—p(ab),特别地,如果a与b互不相容,则p(a+b)=p(a)+p(b);
(2)差:p(a—b)=p(a)—p(ab),特别地,如果b包含于a,则p(a—b)=p(a)—p(b);
(3)乘法公式:p(ab)=p(a)p(b|a)或p(ab)=p(a|b)p(b),特别地,如果a与b相互独立,则p(ab)=p(a)p(b);
(4)全概率公式:p(b)=∑p(ai)p(b|ai)。它是由因求果,
贝叶斯公式:p(aj|b)=p(aj)p(b|aj)/∑p(ai)p(b|ai)。它是由果索因;
如果一个事件b可以在多种情形(原因)a1,a2,...,an下发生,则用全概率公式求b发生的概率;如果事件b已经发生,要求它是由aj引起的概率,则用贝叶斯公式。
(5)二项概率公式:pn(k)=c(n,k)p^k(1—p)^(n—k),k=0,1,2,...,n。当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有a与a的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式。
高二数学知识点篇七
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。
前n项和公式为:sn=na1+n(n—1)d/2或sn=n(a1+an)/2(2)<
以上n均属于正整数。
从(1)式可以看出,an是n的`一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。
在等差数列中,等差中项:一般设为ar,am+an=2ar,所以ar为am,an的等差中项,且为数列的平均数。
且任意两项am,an的关系为:an=am+(n—m)d
它可以看作等差数列广义的通项公式。
从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an—1=a3+an—2=…=ak+an—k+1,k∈{1,2,…,n}
若m,n,p,q∈n_,且m+n=p+q,则有am+an=ap+aq,sm—1=(2n—1)an,s2n+1=(2n+1)an+1,sk,s2k—sk,s3k—s2k,…,snk—s(n—1)k…或等差数列,等等。
和=(首项+末项)×项数÷2
项数=(末项—首项)÷公差+1
首项=2和÷项数—末项
末项=2和÷项数—首项
末项=首项+(项数—1)×公差
高二数学知识点篇八
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式:
注意下面四点:
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与p1、p2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
①点斜式:直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:,直线斜率为k,直线在y轴上的截距为b
③两点式:()直线两点,
④截矩式:
其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。
⑤一般式:(a,b不全为0)
注意:各式的适用范围特殊的方程如:
平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);
(一)平行直线系
平行于已知直线(是不全为0的常数)的直线系:(c为常数)
(二)垂直直线系
垂直于已知直线(是不全为0的常数)的直线系:(c为常数)
(三)过定点的直线系
(ⅰ)斜率为k的直线系:,直线过定点;
(ⅱ)过两条直线,的交点的直线系方程为
(为参数),其中直线不在直线系中。
当,时;
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
相交
交点坐标即方程组的一组解。
方程组无解;方程组有无数解与重合
设是平面直角坐标系中的两个点,则
一点到直线的距离
在任一直线上任取一点,再转化为点到直线的距离进行求解。