必修二教案数学(精选15篇)
教案的编写过程应注重反思和调整,不断提升教学设计和组织能力。那么我们该如何撰写一份优秀的教案呢?首先,我们需要明确教学目标,明确所要达到的知识、技能和态度,确保教学目标具有针对性和可测量性。其次,我们应合理组织教学内容,将知识点有机地组织起来,形成系统的教学内容结构。接着,我们要设计合理的教学活动和教学方法,激发学生的学习兴趣和积极参与。最后,我们需要进行评估和反思,及时调整教学策略,不断提高教学效果。下面是一些教案的实际运用案例,供大家参考,了解教案在教学中的具体应用。
必修二教案数学篇一
人教版语文必修1-5册通假字(人教版高二必修)。
1今老矣,无能为也已矣。
2行李之往来,共其乏困供。
3夫晋,何厌之有餍。
4秦伯说,与郑人盟悦。
5失之所与,不知智。
6秦王必h见臣悦。
7今日往而不反者,竖子也返。
8燕王诚振怖大王之威震。
9秦王还柱而走环。
10群臣惊愕,卒起不意,尽失其度猝。
11距关,毋内诸侯,拒纳。
12张良出,要项伯邀。
13愿伯具言臣之不敢倍德也背。
14旦日不可不蚤自来谢项王早。
15令将军与臣有s隙。
16因击沛公于坐座。
17匪来贸丝,来即我谋非。
18于嗟鸠兮,无食桑葚吁。
19士之耽兮,犹可说也脱。
20淇则有岸,隰则有泮畔。
21凉婢囟改错措。
22饔粢赜髻奄郁悒。
23何方圜之能周兮圆。
24进不入以离尤兮罹。
25芳菲菲其弥章彰。
26箱帘六七十奁。
27蒲苇纫如丝韧。
28契阔谈宴。
29取诸怀抱,悟言一室之内晤。
30冯虚御风凭。
31长乐王回深父甫。
32所守或匪亲非。
33则无望民之多于邻国也毋。
34无失其时毋。
35颁白者不负戴于道路矣斑。
36涂有饿莩而不知发途。
37以为轮。
38虽有槁暴又。
39合从缔交,相与为一纵。
40师者,所以传道受业解惑也授。
41或师焉,或不焉否。
42一尊还酹江月樽。
43秦王以十五城请易寡人之璧,可予不否。
44拜送书于庭廷。
45召有司案图按。
46秦自公以来二十余君穆。
47唯大王与群臣孰计议之熟。
48畔主背亲叛。
49与旃毛并咽之毡。
50掘野鼠去草食而食之l。
51空自苦亡人之地无。
52信义安所见乎现。
53王必欲降武,请毕今日之o欢。
54因泣下衿,与武决去诀。
55乃瞻衡宇横。
56景翳翳以将入影。
57俨骖w于上路严。
58云销雨霁消。
59北冥有鱼溟。
60小知不及大知,小年不及大年智。
61汤之问棘也是已矣。
62此小大之辩也辨。
63德合一君,而征一国者耐。
64御六气之辩变。
65臣以险衅,夙遭闵凶悯。
66零丁孤苦,至于成立伶仃。
67常在床蓐,臣侍汤药褥。
68祖母今年九十有六又。
必修二教案数学篇二
1、基本概念:
(1)必然事件:在条件s下,一定会发生的事件,叫相对于条件s的必然事件;。
(2)不可能事件:在条件s下,一定不会发生的事件,叫相对于条件s的不可能事件;。
(3)确定事件:必然事件和不可能事件统称为相对于条件s的确定事件;。
(4)随机事件:在条件s下可能发生也可能不发生的事件,叫相对于条件s的随机事件;。
(5)频数与频率:在相同的条件s下重复n次试验,观察某一事件a是否出现,称n次试验中事件a出现的次数na为事件a出现的频数;对于给定的随机事件a,如果随着试验次数的增加,事件a发生的频率fn(a)稳定在某个常数上,把这个常数记作p(a),称为事件a的概率。
必修二教案数学篇三
1.要读好课本。
有些“自我感觉良好”的学生,常轻视课本中基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海,到正规作业或考试中不是演算出错就是中途“卡壳”。因此,同学们应从高一开始,增强自己从课本入手进行研究的意识。
2.要记好笔记。
首先,在课堂教学中培养好的听课习惯是很重要的。当然听是主要的,听能使注意力集中,要把老师讲的关键性部分听懂、听会。听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。科学的记笔记可以提高45分钟课堂效益。
3.要做好作业。
在课堂、课外练习中培养良好的作业习惯也很有必要.在作业中不但做得整齐、清洁,培养一种美感,还要有条理,这是培养逻辑能力的一条有效途径,必须独立完成。同时可以培养一种独立思考和解题正确的责任感。在作业时要提倡效率,应该十分钟完成的作业,不拖到半小时完成,疲疲惫惫的作业习惯使思维松散、精力不集中,这对培养数学能力是有害而无益的。
4.要写好总结。
一个人不断接受新知识,不断遭遇挫折产生疑问,不断地总结,才有不断地提高。“不会总结的同学,他的能力就不会提高,挫折经验是成功的基石。”自然界适者生存的生物进化过程便是最好的例证。学习要经常总结规律,目的就是为了更一步的发展。
通过与老师、同学平时的接触交流,逐步总结出一般性的学习步骤,它包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。坚持“两先两后一小结”(先预习后听课,先复习后做作业,写好每个单元的总结)的学习习惯。
1.课前预习教材。课前可以把教材上第二天老师要讲的内容看一下,看看哪些能看懂,哪些不懂。这样老师在讲课的时候我们就能带着问题去听,把自己没看懂的问题听懂。
2.上课专心听讲。这是很重要的,很多同学以为自己什么都弄懂了,就自己做自己的题目。其实即使是自己看懂了的,也可以看看老师也没有另外的理解方法,老师的方法是不是比自己好。听老师有时候讲比自己看更好。
小编推荐:高一数学怎么学才能学好。
3.课后认真复习。刚学的知识,还没完全被消化吸收成为自己的知识,如果不及时复习,就很容易忘记。所以,课后一定要抽出一些时间,及时对所学进行巩固。
4.通过习题巩固。数学是理科,需要通过一定量的习题来巩固,量变积累到了一定量才能质变嘛。这个并非要各位打题海战术,只要求各位做到熟练为止。
5.错题反复研究。自己准备一个错题本,把考试时候做错的题目记录下来,写上做错的原因,反复研究,避免再次出错。
必修二教案数学篇四
用坐标法解决几何问题的步骤:
第二步:通过代数运算,解决代数问题;
第三步:将代数运算结果“翻译”成几何结论、
重点与难点:直线与圆的方程的应用、
问 题设计意图师生活动
生:回顾,说出自己的看法、
2、解决直线与圆的位置关系,你将采用什么方法?
生:回顾、思考、讨论、交流,得到解决问题的方法、
问 题设计意图师生活动
3、阅读并思考教科书上的例4,你将选择什么方 法解决例4的'问题
生:自 学例4,并完成练习题1、2、
生:建立适当的直角坐标系, 探求解决问题的方法、
8、小结:
(1)利用“坐标法”解决问对知识进行归纳概括,体会利 师:指导 学生完成练习题、
生:阅读教科书的例3,并完成第
问 题设计意图师生活动
题的需要准备什么工作?
(2)如何建立直角坐标系,才能易于解决平面几何问题?
(3)你认为学好“坐标法”解决问题的关键是什么?
必修二教案数学篇五
一)、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二)、适当多做题,养成良好的解题习惯。
要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三)、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
必修二教案数学篇六
教学目标。
熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。
掌握两角和与差的正、余弦公式,能用公式解决相关问题。
教学重难点。
熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。
教学过程。
复习。
两角差的余弦公式。
用-b代替b看看有什么结果?
必修二教案数学篇七
引用:本文《高中化学必修二教案(人教版)》来源于师库网,由师库网博客摘录整理,以下是的详细内容:开发利用金属矿物和海水...《基本营养物质》教案化学反应的速率和限度化学能与热能化学与资源综合利用、环...最简单的有机化合物dd...《生活中两种常见的'有机...来自石油和煤的两种基本...引用:师库网温馨提示本篇内容来源于师库网,旨在用于课件制作交流,非盈利性质,仅供参考,针对本文的问题如需了解更详细,可留言或者联系客服tags:教案、课件、师库网、教案网、课件网
必修二教案数学篇八
教学目标。
1、理解平面向量的坐标的概念;。
2、掌握平面向量的坐标运算;。
3、会根据向量的坐标,判断向量是否共线.
教学重难点。
教学重点:平面向量的坐标运算。
教学难点:向量的坐标表示的理解及运算的准确性.
教学过程。
平面向量基本定理:。
什么叫平面的一组基底?
平面的基底有多少组?
引入:。
1.平面内建立了直角坐标系,点a可以用什么来。
表示?
2.平面向量是否也有类似的表示呢?
必修二教案数学篇九
掌握三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型·。
·利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·。
一、练习讲解:《习案》作业十三的第3、4题。
(精确到0·001)·。
米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?
本题的解答中,给出货船的`进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。
练习:教材p65面3题。
三、小结:1、三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型·。
2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·。
四、作业《习案》作业十四及十五。
必修二教案数学篇十
一)、培养良好的学习兴趣。
1、课前预习,对所学知识产生疑问,产生好奇心。
2、听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
3、思考问题注意归纳,挖掘你学习的潜力。
5、把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能对概念的理解切实可靠,在应用概念判断、推理时会准确。
二)、建立良好的学习数学习惯。
习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。良好的学习数学习惯还包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
三)、有意识培养自己的各方面能力。
数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。
必修二教案数学篇十一
2.教学重点。
函数单调性的概念,判断和证明简单函数的单调性.。
3.教学难点。
函数单调性概念的生成,证明单调性的代数推理论证.。
1.教学有利因素。
2.教学不利因素。
1.理解函数单调性的相关概念.掌握证明简单函数单调性的方法.。
为达成课堂教学目标,突出重点,突破难点,我们主要采取以下形式组织学习材料:
(一)创设情境,引入课题。
问题1:观察下列函数图象,请你说说这些函数有什么变化趋势?
设函数的定义域为,区间.在区间上,若函数的图象(从左向右)总是上升的,即随的增大而增大,则称函数在区间上是递增的,区间称为函数的单调增区间(学生类比定义“递减”,接着推出下图,让学生准确回答单调性.)。
(二)引导探索,生成概念。
问题2:(1)下图是函数的图象(以为例),它在定义域r上是递增的吗?
(2)函数在区间上有何单调性?
预设:学生会不置可否,或者凭感觉猜测,可追问判定依据.。
问题3:(1)如何用数学符号描述函数图象的“上升”特征,即“随的增大而增大”?
(2)已知,若有.能保证函数在区间上递增吗?
拖动“拖动点”改变函数在区间上的图象,可以递增,可以先增后减,也可以先减后增.。
(3)已知,若有,能保证函数在区间上递增吗?
拖动“拖动点”,观察函数在区间上的图象变化.。
(4)已知,若有。
能保证函数在区间上递增吗?
设计说明:可先请持赞同观点的同学说明理由,再请持反对意见的学生画出反驳,然后追问:无数个也不能保证函数递增,那该怎么办呢?若学生回答全部取完或任取,追问“总不能一个一个验证吧?”
问题4:如何用数学语言准确刻画函数在区间上递增呢?
问题5:请你试着用数学语言定义函数在区间上是递减的.。
(三)学以致用,理解感悟。
判断题:你认为下列说法是否正确,请说明理由.(举例或者画图)。
(1)设函数的定义域为,若对任意,都有,则在区间上递增;
(2)设函数的定义域为r,若对任意,且,都有,则是递增的;
(3)反比例函数的单调递减区间是.。
例题:判断并证明函数的单调性.。
必修二教案数学篇十二
1.使学生了解奇偶性的概念,回会利用定义判定简单函数的奇偶性。
2.在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和非凡到一般的思想方法。
3.在学生感受数学美的同时,激发学习的爱好,培养学生乐于求索的精神。
教学重点,难点。
重点是奇偶性概念的形成与函数奇偶性的判定。
难点是对概念的熟悉。
教学用具。
投影仪,计算机。
教学方法。
引导发现法。
教学过程。
一.引入新课。
前面我们已经研究了函数的单调性,它是反映函数在某一个区间上函数值随自变量变化而变化的性质,今天我们继续研究函数的另一个性质。从什么角度呢?将从对称的角度来研究函数的性质。
(学生可能会举出一些数值上的对称问题,等,也可能会举出一些图象的对称问题,此时教师可以引导学生把函数具体化,如和等。)。
学生经过思考,能找出原因,由于函数是映射,一个只能对一个,而不能有两个不同的,故函数的图象不可能关于轴对称。最终提出我们今天将重点研究图象关于轴对称和关于原点对称的问题,从形的特征中找出它们在数值上的规律。
二.讲解新课。
2.函数的奇偶性(板书)。
学生开始可能只会用语言去描述:自变量互为相反数,函数值相等。教师可引导学生先把它们具体化,再用数学符号表示。(借助课件演示令比较得出等式,再令,得到,详见课件的使用)进而再提出会不会在定义域内存在,使与不等呢?(可用课件帮助演示让动起来观察,发现结论,这样的是不存在的)从这个结论中就可以发现对定义域内任意一个,都有成立。最后让学生用完整的语言给出定义,不准确的地方教师予以提示或调整。
(1)偶函数的定义:假如对于函数的定义域内任意一个,都有,那么就叫做偶函数。(板书)。
(给出定义后可让学生举几个例子,如等以检验一下对概念的初步熟悉)。
提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?(同时打出或的图象让学生观察研究)。
学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义。
(2)奇函数的定义:假如对于函数的定义域内任意一个,都有,那么就叫做奇函数。(板书)。
(由于在定义形成时已经有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)。
例1。判定下列函数的奇偶性(板书)。
(1);(2);
(3);;
(5);(6)。
(要求学生口答,选出12个题说过程)。
解:(1)是奇函数。(2)是偶函数。
(3),是偶函数。
学生经过思考可以解决问题,指出只要举出一个反例说明与不等。如即可说明它不是偶函数。(从这个问题的解决中让学生再次熟悉到定义中任意性的重要)。
从(4)题开始,学生的答案会有不同,可以让学生先讨论,教师再做评述。即第(4)题中表面成立的=不能经受任意性的考验,当时,由于,故不存在,更谈不上与相等了,由于任意性被破坏,所以它不能是奇偶性。
可以用(6)辅助说明充分性不成立,用(5)说明必要性成立,得出结论。
(3)定义域关于原点对称是函数具有奇偶性的必要但不充分条件。(板书)。
由学生小结判定奇偶性的步骤之后,教师再提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明。
例2。已知函数既是奇函数也是偶函数,求证:。(板书)(试由学生来完成)。
(4)函数按其是否具有奇偶性可分为四类:(板书)。
例3。判定下列函数的奇偶性(板书)。
(1);(2);(3)。
由学生回答,不完整之处教师补充。
解:(1)当时,为奇函数,当时,既不是奇函数也不是偶函数。
(2)当时,既是奇函数也是偶函数,当时,是偶函数。
(3)当时,于是,
当时,,于是=,
综上是奇函数。
教师小结(1)(2)注重分类讨论的使用,(3)是分段函数,当检验,并不能说明具备奇偶性,因为奇偶性是对函数整个定义域内性质的刻画,因此必须均有成立,二者缺一不可。
三.小结。
1.奇偶性的概念。
2.判定中注重的问题。
四.作业略。
五.板书设计。
2.函数的奇偶性例1.例3.
(1)偶函数定义。
(2)奇函数定义。
(3)定义域关于原点对称是函数例2。小结。
具备奇偶性的必要条件。
(4)函数按奇偶性分类分四类。
探究活动。
(2)判定函数在上的单调性,并加以证实。
在此基础上试利用这个函数的单调性解决下面的问题:
必修二教案数学篇十三
1. 掌握数轴的三要素,能正确画出数轴。
2、会用数轴上的点表示有理数;;会求一个有理数的相反数;能利用数轴比较有理数的大小。
【过程与方法】 经历从现实情景抽象出数轴的过程,体会数学与现实生活的联系
【情感态度与价值观】 感受数形结合的思想方法;
【教学重点】会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来。
【教学难点】利用数轴比较有理数的大小。
(一)创设情境,引入课题
(1)(出示投影1)问题:三个温度计所表示的温度是多少?
学生回答.
(2)在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.
这种表示数的图形就是今天我们要学的内容―数轴(板书课题)
(二)得出定义,揭示内涵
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(教师示范画数轴,边说边画):
(1)画直线,取原点
(2)标正方向
(3)选取单位长度,标数(强调:负数从0向左写起)。
概念:规定了原点、正方向和单位长度的直线叫做数轴。
(三)强化概念,深入理解
1、下列图形哪些是数轴,哪些不是,为什么?
学生回答,相互纠正,理解数轴三要素,巩固数轴概念。
2、学生自己在练习本上画一个数轴。教师在黑板上画
(四)动手练习,归纳总结
1、在数轴上的点表示有理数。
一个学生在黑板上完成,其他同学在自己所画数轴上完成。
明确“任何一个有理数都可以用数轴上的一个点来表示”
2.指出数轴上a,b,c,d各点分别表示什么数。@师愿教育
3、通过数轴比较有理数的大小。观察类比温度计回答问题
(1)在数轴上表示的两个数,(右 ) 边的数总比 ( 左)边的数大;
(2)正数都(大于 )0,负数都(小于)0;正数(大于)一切负数。
例1、比较下列各数的.大小: -1.5 , 0.6, -3, -2
巩固所学知识
(五)、归纳小结,强化思想
师生总结本课内容。
1、数轴的概念,数轴的三要素
2、数轴上两个不同的点所表示的两个有理数大小关系
3、所有的有理数都可以用数轴上的点来表示
师:你感到自己今天的表现怎样?
习题2.2 1、2、3
选作第4题
必修二教案数学篇十四
(2)了解区间的概念;。
(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;。
【问题诊断分析】在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。
问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.
1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?
1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?
设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。
问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的`图象,都有的一个臭氧层空洞面积s与之相对应。
问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。
设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。
必修二教案数学篇十五
1、使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数确定的。
(2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式。
(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的`前几项。
2、通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力。
3、通过由求的过程,培养学生严谨的科学态度及良好的思维习惯。
(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等。
(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系。在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列。函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法。由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法。
(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助。
(4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等。如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系。
(5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况。
(6)给出一些简单数列的通项公式,可以求其项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的。