六年级数学反比例的应用教案设计(汇总20篇)
教案能够引导教师合理选择教学方法和教学资源。编写教案前,教师需要充分了解教学内容和学生的学习情况。通过阅读这些范文,我们可以深入了解教学设计的原理和方法,提高教学效果和质量。
六年级数学反比例的应用教案设计篇一
1、在具体情景中理解增加百分之几或减少百分之几的意义,加深对百分数意义的理解。
2、能解决有关增加百分之几或减少百分之几的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。
【教学重点】。
理解增加百分之几或减少百分之几的意义,能解决有关增加百分之几或减少百分之几的实际问题。
【教具准备】。
多媒体课件。
【学具准备】。
【教学设计】。
教学过程教学过程说明。
一、准备。
线段图是把握数量关系的重要方法之一。
你能用线段图表示下面的数量关系吗?
1.学生独立完成线段图。
2.展示学生成果。
3、教师对学生的作品进行评价。
25%=1/432人。
围棋班比围棋班25%。
航模班。
1、出示教科书p23上面的问题。
2、思考:增产百分之几是什么意思?
※学生自由发表自己的见解。
※教师评价。
杂交水稻比普通水稻增加的产量是普通水稻产量的百分之几。
3、学生独立解答问题。
4、班内交流。
方法一:7-5.6=1.4(吨)。
1.45.6。
=0.25。
=25%。
方法二:75.6。
=1.25。
=125%。
125%-100%=25%。
三、试一试。
1、出示教科书p23下面的问题。
2、几成是什么意思?
※成数主要用于农业收成。
※几成就是十分之几。
※一成就是1/10,也就是10%。
二成五就是2.5%,也就是25%。
3、学生独立解决问题。
※(2.61-2.25)2.25。
=0.362.25。
=0.16。
=16%。
四、练一练。
1.教科书p24练一练第1题。
2.科书p24练一练第2题。
3.教科书p24练一练第3题。
五、课堂总结。
通过今天的学习你有什么收获?
从复习中引导学生分析数量关系。
通过介绍某实验田普通水稻与杂交的产量,引出增产百分之几的实际问题。
引导学生分析数量关系,再一次体会百分数的意义。
引导学生用两种不同的方法解答,开拓学生的思路,发展学生思维的灵活性。
重点理解几成的意思。让学生独立完成再交流,发展学生的思维。
六年级数学反比例的应用教案设计篇二
1、使学生进一步掌握分数应用题的基本数量关系,加深认识分数应用题的结构特征、解题思路和解题方法,提高解答分数应用题的能力。
2、使学生进一步加深对比的认识,沟通比与分数之间的联系,能正确应用比的知识解答有关应用题。
使学生进一步加深对比的认识,沟通比与分数之间的联系,能正确应用比的知识解答有关应用题。
教学过程设计
教学内容
师生活动
一、 揭示课题
二、复习基本思路
三、对比练习
四、课堂小结
五、作业
今天这节课,我们复习应用题,通过复习进一步掌握分数应用题的基本数量关系,加深认识分数应用题的结构特征、解题思路和解题方法,提高解答分数应用题的能力。
1、口答列式
(1)78的1/3是多少?
(2)36的3/4是多少?
(3)4/7的1/2是多少?
提问:求一个数的几份之几是多少怎样算?
2、根据下面的条件找出单位1的量,说出数量关系式。(见可件)
提问:从上面的练习中你发现在分数应用题里,基本的数量关系是怎样的?
指出:解答分数应用题,要先找准单位1的数量,根据求一个数的几分之几是多少要用乘法的规律,单位1的.数量乘几分之几,就等于几分之几对应的数量。这是分数应用题的基本数量关系。
1、做复习第11题
2、做复习第13题
3、做复习第14题
问:这两题有什么相同和不同的地方?
提问:这两题都是比的知识的应用题,为什么列式不一样?
复习题9、12、13题
教学气氛好,同学们的表现欲强
六年级数学反比例的应用教案设计篇三
按比例分配的练习。
已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。
能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的`能力。
练习、反思、总结。
小黑板
(一)六1班男生和女生的比是3:2
1.男生人数是女生人数的( )
2.女生人数是男生人数的( ),女生人数和男生人数的比是( ).
3.男生人数占全班人数的( ),男生人数和全班人数的比是( ).
4.全班人数是男生人数的( ),全班人数和男生人数的比是( ).
5.女生人数占全班人数的( ),女生人数和全班人数的比是( ).
6.全班人数是女生人数的( ),全班人数和女生人数的比是( ).
把250按2比3分配,部分数各是多少
1、被减数是36,减数与差的比是4比5,减数是多少?差是多少?
提高练习的灵活度,以及练习的形式。
六年级数学反比例的应用教案设计篇四
【教学内容】教材第3-4页例3。
【教学目标】。
知识与技能:结合具体情境理解一个数乘分数的意义就是“求一个数的几分之几是多少”。
过程与方法:通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
情感、态度与价值观:通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
【重点难点】。
重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。
难点:推导算理,总结法则。
【新知探究】。
明确算理,探究算法。
出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)。
(一)探究几分之一乘几分之一的算理算法。
1.求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的整数乘分数的意义进行类推)。
求一个数的几分之几,我们可以用乘法来计算。
2.等于多少呢?说说你的想法,并把你的想法在纸上写下来。
3.学生进行尝试(可引导学生用画图的方式来解释自己的想法)。
4.进行交流反馈。
重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固:把1个正方形看作1公顷,先平均分成2份,每份表示公顷,再把公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(2×5)份,取其中的一份,就是公顷。
6.猜想计算方法。
六年级数学反比例的应用教案设计篇五
教学分析:
按比例分配的练习。
学情分析:
已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。
教学目标:
能运用比的意决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。
教学策略:
练习、反思、总结。
教学准备:
小黑板。
教学过程:
一、基本练习。
(一)六1班男生和女生的比是3:2。
1.男生人数是女生人数的()。
2.女生人数是男生人数的(),女生人数和男生人数的比是().
3.男生人数占全班人数的(),男生人数和全班人数的比是().
4.全班人数是男生人数的(),全班人数和男生人数的比是().
5.女生人数占全班人数的(),女生人数和全班人数的比是().
6.全班人数是女生人数的(),全班人数和女生人数的比是().
把250按2比3分配,部分数各是多少。
二、变式练习。
1、被减数是36,减数与差的比是4比5,减数是多少?差是多少?
将本文的word文档下载到电脑,方便收藏和打印。
六年级数学反比例的应用教案设计篇六
教学目标:
(1)知识目标:使学生理解按比例分配的意义。
(2)能力目标:使学生灵活掌握按比例分配应用题的数量关系和解答方法。
(3)情感目标:在教学中渗透事物是相互联系的辩证唯物主义思想。
教学重点:分析理解按比例分配应用题的数量关系。
教学难点:掌握按比例分配应用题的解答方法。
教具准备:多媒体课件。
教学过程:
一、学前准备。
60÷100=3/5。
40÷100=2/5。
这里的3/5和2/5是什么意思?
2、60:40=3:2。
你发现了什么?
二、探究新知。
1、导入新课。
在日常生活中,我们有时需要把一些数量按照一定的比来分配,你能举出这样的例子吗?
2、教学例题2。
(1)学生独立思考,相互说说:要分配什么?3:2是什么意思?
(2)探究问题解决的方法。
(3)交流。
(4)用分数怎么解答?
总面积平均分成的份数:3+2=5。
播种大豆的面积:100×3/5=60(公顷)。
播种玉米的面积:100×2/5=40(公顷)。
(5)用归一方法怎么解答?
3、归纳小结:按比例分配的应用题有什么特点?怎样解答?
4、学习例题3。
(1)小组尝试解答检验。
(2)全班交流、反馈。
三个班的总人数:47+45+48=140(人)。
一班应栽的棵数:280×=()棵。
二班应栽的棵数:280×()=()棵。
三班应栽的棵数:280×()=()棵。
(3)例题2和例题3有什么相同点和不同点。
三、巩固练习与检测。
2、一个三角形的三个内角的度数比是2:3:7,求这个三角形的各个内角的度数。
3、教材53页的2、3题。
四、小结(略)。
五、作业:练习十三的第一、二、五题。
六年级数学反比例的应用教案设计篇七
教学目标:
2、培养学生应用所学数学知识解决实际问题的能力;使学生真正成为课堂的主人;
3、通过实例使学生感受到数学来源于生活,生活离不开数学。
教学重点:
1、正确理解按比例分配的意义。
2、掌握按比例分配应用题的特征和解题方法。
教学难点:能正确、熟练地解答按比例分配的实际问题。
教学过程:
一、课前组织复习旧知。
同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某兴趣小组男生和女生的人数比是5:4,从这组比中,你能推断出什么信息呢?”(课件出示题目)。
学生自由发言,预设推断如下:
1、全班人数是9份,男生占其中的5份,女生占其中的4份。
2、以全班为单位“1”,男生是全班的,女生是全班的。
3、以男生为单位“1”,女生是男生的,全班是男生的。
4、以女生为单位“1”,男生是女生的,全班是女生的。
5、女生比男生少(或20%)。
6、男生比女生多(或25%)。
追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)。
二、探索方法,建立模型。
1.理解题意。
(1)什么是稀释液?怎样配置的?
(2)什么是按比例分配?
2.自主探究,合作学习。
自学数学书p49例题2,思考:
(1)你从例题2中得哪些信息?
(2)1:4表示什么?你从中得到哪些信息?
(3)你能用画图的方法给同位讲解吗?
(4)方法一先求什么?再求什么?方法二先求什么?再求什么的?
3.小组展讲。
小结:方法一把各部分数的比看作份数关系,先求每一份,然后再求各部分的.量;方法二把各部分的比转化成分别占总数的几分之几,根据分数乘法的意义,直接求总数的几分之几是多少。
三、巩固练习。
2.填空。
3.一个长方形的周长是28cm,长与宽的比是5:2,长与宽各是多少cm?
4.一个班,男生比女生人数多10人,男生与女生人数的比是3:2,全班有多少人?
六年级数学反比例的应用教案设计篇八
教学要求:
1、使学生进一步认识整除里的一些概念,理解和认识这些概念之间的联系与区别,能应用概念进行分析,判断,进一步发展思维能力。
2、使学生正确掌握分解质因数和求两个数的公约数,求两个或三个数最小公倍数的方法,并能按照方法分解质因数和求出两个数的公约数,两个或三个数的最小公倍数。
教学过程:
一、揭示课题。
1、口算(指名口算课本第64页第11题)。
2、引入新课。
我们已经复习了整小数的意义,今天复习数的整除(板书课题),通过复习,加深对整数特性的认识,掌握好数的整除的意义及其中的一些概念,认识概念之间的联系和区别,能熟练地用短除法分解质因数和求公约数最小公倍数。
二、复习约数和倍数。
1、提问:什么是整除(板书整除)如果a能被b整除,必须具备哪些条件?
当a能被b整除,也就是b整除a时,还可以怎样说?板书:
约数。
倍数。
2、做“练一练”第1题。
学生做在课本上,说明倍数和约数的依存关系。
3、学生练习。
(1)从小到大写出9的五个倍数。
复习约数倍数相关知识(略)。
(2)写出18的所有约数。
三、复习质数合数。
1、提问按照一个数约数的个数分类,除0以外的自然数可以分为几类:
板书:1。
质数。
合数。
怎样的数是质数?怎样的数是合数?1为什么既不是质数,也不是合数。
2、口答:
(1)说出比10小的质数和合数。
(2)最小的质数和最小的合数各是几?
(3)下面哪些是质数?哪些是合数?
785123579190。
3、提问:你能把90写成质数相科乘的形式吗(板书)这里的因数叫做90的什么数?(板书:质因数,分解质因数)。
4、做“练一练”第3题。
练后指名口答,集体订正。
四、复习公约数和公倍数。
1、学生练习。
(1)写出18和24所有的公约数,指出公约数。
(2)从小到大写出4和6的五个公倍数,指出其中最小的公倍数。
学生口答,老师板书。
提问:什么叫做公约数和公约数?什么叫做公倍数和最小公倍数?
(板书——公约数、公约数——公倍数——最小公倍数)。
2、“练一练”第4题。
集体练习,指名口答,说一说方法怎样归纳三种关系?
追问:用短除法求公约数和最小公倍数有什么相同和不同?
五、复习。
能被2、5、3整除各有什么特征。
1、提问:能被2、5、3整除各有什么特征。
(板书:——能被2、5、3整除的数)。
2、“练一练”第5题。
提问:这里能被2整除的数都是什么数?不能被整数的数都是什么数,
板书:偶数。
奇数。
想一想,自然数可以分为哪几类?
六、课堂小结。
根据板书内容,说说相互之间有什么联系。
七、课堂练习。
1、练习十一和12题。
2、课堂作业。
(练习十一第15、16题、17题中(3)(4)。
八、课外作业:练习十一第18题。
将本文的word文档下载到电脑,方便收藏和打印。
六年级数学反比例的应用教案设计篇九
2.通过观察、比较、归纳,提高学生综合概括推理的能力.。
3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.。
教学重点。
理解正反比例的意义,掌握正反比例的变化的规律.。
教学难点。
理解正反比例的意义,掌握正反比例的变化的规律.。
教学过程。
一、导入新课。
(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?
(二)教师提问。
1.你为什么马上能想到还剩多少呢?
2.是不是因为吃了的和剩下的是两种相关联的量?
教师板书:两种相关联的量。
(三)教师谈话。
在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和。
数量也是两种相关联的量.你还能举出一些例子吗?
二、新授教学。
(一)成正比例的量。
例1.一列火车行驶的时间和所行的路程如下表:
时间(时)。
1
2
3
4
5
6
7
8
……。
路程(千米)。
90。
180。
270。
360。
450。
540。
630。
720。
……。
1.写出路程和时间的比并计算比值.。
(1)。
(2)2表示什么?180呢?比值呢?
(3)这个比值表示什么意义?
(4)360比5可以吗?为什么?
2.思考。
(1)180千米对应的时间是多少?4小时对应的路程又是多少?
(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?
教师板书:时间、路程、速度。
(3)速度是怎样得到的?
教师板书:
(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?
(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.。
3.小结:有什么规律?
教师板书:商不变。
(二)成反比例的量。
1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.。
工效(个)。
10。
20。
30。
40。
50。
60。
……。
时间(时)。
60。
30。
20。
15。
12。
10。
……。
2.教师提问。
(1)计算工效和时间的乘积.。
(2)这一组题中涉及了几种量?谁与谁是相关联的量?
(3)请你举例说明谁与谁是相对应的两个数?
(4)在这一组题中两种相关联的量是如何变化的?(举例说明)。
3.小结:有什么规律?(板书:积不变)。
(三)不成比例的量。
1.出示表格。
运走的吨数。
10。
20。
30。
40。
剩下的吨数。
90。
80。
70。
60。
总吨数(和不变)。
100。
100。
100。
100。
2.教师提问。
(1)总吨数是怎样得到的?
(2)谁与谁是两种相关联的量?
(3)它们又是怎样变化的?变化的规律是什么?
运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变。
(四)结合三组题观察、讨论、总结变化规律.。
讨论题:
1.这三组题每组题中谁与谁是两种相关联的量?
2.在变化过程当中,它们的异同点是什么?
共同点:都有两种相关联的量,一种量变化,另一量也随着变化。
不同点:第一组商不变,第二组积不变,第三组和不变.。
总结:
3.分别概括。
4.强调第三组题中两种相关联的量叫做不成比例。
5.教师提问。
(1)两种量成正比例必须具备什么条件?
(2)两种量成反比例必须具备什么条件?
(五)字母关系式。
三、巩固练习。
判断下面各题是否成比例?成什么比例?
1.一种圆珠笔。
总价(元)。
1。2。
2。4。
3。6。
4。8。
6
7。2。
支数。
1
2
3
4
5
6
单价(元)。
1
2
4
5
10。
支数。
100。
50。
25。
20。
10。
(1)表中有哪两种相关联的量?
(2)说出几组这两种量中相对应的两个数的比。
(3)每组等式说明了什么?
(4)两种相关的量是否成比例?成什么比例?
2.当速度一定,时间路程成什么比例?
当时间一定,路程和速度成什么比例?
当路程一定,速度和时间成什么比例?
3.长方形的面一定,长和宽。
4.修一条路,已修的米数和剩下的米数.。
四、课堂总结。
五、课后作业。
(一)判断下面每题中的两种量是不是成正比例,并说明理由.。
1.苹果的单价一定,购买苹果的数量和总价.。
2.轮船行驶的速度一定,行驶的路程和时间.。
3.每小时织布米数一定,织布总米数和时间.。
4.长方形的宽一定,它的面积和长.。
(二)判断下面每题中的两种量是不是成反比例,并说明理由.。
1.煤的总量一定,每天的烧煤量和能够烧的天数.。
2.种子的总量一定,每公顷的播种量和播种的公顷数.。
3.李叔叔从家到工厂,骑自行车的速度和所需时间.。
4.华容做12道数学题,做完的题和没有做的题.。
六、板书设计。
六年级数学反比例的应用教案设计篇十
p1、2例1、例2和“练一练”,练习一第1-4题。
1.通过看一看、量一量、比一比来了解长方体和正方体的点、线、面的特征,认识长方体的长、宽、高及正方体的棱,理解长方体和正方体的关系。
2.培养学生观察、动手的能力及归纳的能力。
认识长方体、正方体的面、棱、顶点以及长、宽、高(棱长)的含义。
长方体和正方体的特征。
长方体和正方体的教具和学具。
1课时。
一、认识长方体的特征。
1.教学例1。
(1)我们生活中,哪些物体的形状是长方体?
学生交流。
(2)教师出示长方体教具。
长方体有几个面?分别是哪几个面?
每个人在自己的座位上最多能看到几个面?
学生交流自己所看到的结果。
教师指出:因为我们最多只能看见它的三个面,所以在画长方体的时候一般画三个面。
教师指导学生画长方体的立体图,并介绍它的棱与顶点,学生和教师一起操作。
长方体有几条棱和几个顶点?它的面和棱各有什么特征?
每个学生通过看一看、量一量、比一比去认识一下,并在小组里交流,然后全班交流。
教师根据学生的交流情况及时板书。
顶点:8个。
棱:12条,分三组,每组的长度相等。
面:6个,相对面的形状完全一样。
学生对照自己的教具再说说长方体的点、线、面的特征。
教师进一步介绍学生认识长、宽、高并板在图中板书。
2.完成相应的练一练。
3.完成练习三的第1题。
学生直接在小组里交流。
二、认识正方体的特征。
1.教学例2。
让学生模仿例1的学习方法,看一看、量一量、比一比,去研究一下正方体的特征。
(2)交流学习的结果,教师根据学生的汇报板书。
(3)比较长、正方体的特征的异同。
学生根据板书,结合立体图形,小组讨论交流。
汇报讨论的结果,教师用集合图表示它们的关系。
2.完成相应的练一练。
三、巩固练习。
1.完成练习一的第2题。
指名学生口答,集体评讲。
2.完成练习一的第3题。
(1)学生观察后判断哪个是长方体?哪个是正方体?
(2)学生直接口答。
(3)重点说说其余的几个面是否完全相同?
3.完成练习一的第4题。
让学生先分别指出它们的长、宽、高各是哪条线段,然后说。
说各是多少?
四、课堂总结。
五、布置作业。
完成练习一的第4题。
教学反思。
六年级数学反比例的应用教案设计篇十一
1.使学生理解成数和折扣的含义,以及成数和折扣与分数、百分数之间的关系;会解答有关成数和折扣的应用题。
2.提高学生分析、解答应用题的能力,发展学生思维的灵活性。
理解成数和折扣的含义;理解成数和折扣与分数、百分数的含义。
1.把下列各数化成百分数。
2.李庄去年种小麦50公顷,今年种小麦60公顷。今年比去年多种小麦百分之几?
师述:农业收成,有时用成数来表示。今天我们就来学习有关成数和折扣的应用题。
板书:分数应用题
1.成数的含义。
师述:什么是成数呢?“几成”就是十分之几,如“一成”就是十分之一,也就是10%。
(1)填空:
“三成”是十分之( ),改写成百分数是( )。
“三成五”是十分之( ),改写成百分数是( )。
(2)把下面的“成数”改写成百分数。
七成 二成五 五成 九成九
十成 二成八 七成四 八成二
2.出示例1。
(1)学生默读。
(2)这道题和复习中的第三题有什么不同之处?
(3)指名学生说解题思路。
师述:在列式计算时,我们可以直接把“成数”化成百分数,用百分数进行列式计算。
板书:
=416×(1+25%)
=52(吨)
答:今年收白菜52吨。
3.练习。
4.折扣的含义。
师述:工厂和商店为了推销商品,有时将商品减价百分之几销售,这就是平常说的打“折扣”销售。
某种商品打“八折”出售,就是按原价的80%出售,也就是减价20%。打五折出售,就是按原价的( )%出售,也就是减价( )%。
5.出示例2。
例2 商店出售一种录音机,原价330元。现在打九折出售,比原价便宜了多少元?
(1)学生读题。
(2)问:打九折出售是什么意思?
(3)求比原价便宜了多少元?你想怎样解答?
(4)指名说解题思路。
板书:方法(一) 330-330×90%
=330-297
=33(元)
方法(二) 330×(1-90%)
=330×10%
=33(元)
答:比原价便宜了33元。
6.课堂小结。
今天我们学习了哪些知识?
师述:今天我们学习了有关“成数”和“折扣”的知识,知道了“成数”和“折扣”的含义,以及“成数”和“折扣”与分数和百分数之间的关系,并且学习了有关“成数”和“折扣”的一些实际的、简单的应用题。
1.填空:
(1)某县今年棉花产量比去年增产三成。这句话的意思是( )是( )的30%。
(2)一块麦地,改用新品种后,产量增加了四成五。这句话的意思是改用新品种后产量是( )的( )%。
(3)一种皮茄克打九折出售。这句话的意思是( )是( )的90%。
(4)一批旧书打五五折出售。这句话的意思是现价比( )便宜了( )%。
2.把下面的折扣数改写成百分数。
七折 九折 六五折 八五折 六八折
3.把下面的百分数改写成“成数”。
75% 60% 42% 100% 95%
本节课从概念入手,并和原来学习的百分数应用题进行比较,学生易于找到突破口,便于学生理解、掌握本节课的重点和难点。通过和百分数应用题的比较,加深了学生对百分数应用题的理解和掌握,培养了学生分析能力。另外,课本上出现了大量生活中的实例,使学生体会到百分数就在我们身边,学好百分数应用题,能解决大量实际问题,从而提高了学生学习百分数应用题的兴趣。
六年级数学反比例的应用教案设计篇十二
1、知识目标:使学生理解和掌握求一个数的百分之几的应用题的解题思路和方法。理解百分数的含义,掌握有关百分率的计算方法。
2、能力目标:培养学生解决生产、生活中求百分率问题的能力。
3、创新目标:培养学生学会运用知识来解决生活中的实际问题。
4、德育目标:初步渗透概率统计思想。
(一)教材分析。
本节的教学重点是使学生理解和掌握求一个数的百分之几的应用题的`解题思路和方法。教学中应注重帮助学生分析题里的数量关系。
(二)学生分析。
这节知识对于学生来说是比较容易理解,教学中应让学生通过结合以前学习过的分数应用题来理解百分数应用题。
1、重点:使学生理解和掌握求一个数的百分之几的应用题的解题思路和方法。
2、难点:正确分析题里的数量关系。
3、创新点:结合生活实际来理解题意。
4、德育点:通过编题,学会将数学知识运用于生活实际。
5、空白点:出油率等百分率的总结。
计算机课件。帮助学生理解数量关系。
主要技术留空白、师生商量、启发引导。
教师行为。
学生行为。
一、导引目标。
(一)复习。
1、4是5的几分之几?
2、一根钢管长12米,用去8米。用去全长的百分之几?
(二)引入新课:
1、完成练习题。
二、组织研究。
(一)、学生自学例1。
(二)、
1、教师说明什么是发芽率。
2、学生自学例2。
合作成功。
1、自学教材。
2、小组讨论。
3、代表汇报。
三创设条件。
1、学生谈生活中还有哪些地方运用了百分率?
2、完成例2下面的做一做。自主参与。
1、结合生活实际谈生活中运用百分率的例子。
2、完成做一做。
四、引导创新。
分小组,结合生活实际进行编题练习。同学之间相互编题,相互解答。应用实践。
编题解答。
五、反思小结。
1、习二十九中的1、2、3。
2、谈谈自己本节课学得开心吗,有什么收获?还有哪些知识没学明白?
巩固提高。
1、巩固练习。
2、质疑、小结。
六年级数学反比例的应用教案设计篇十三
1、统计的意义。
提问:在小学里,我们学过哪些统计知识?
为什么要做统计工作?
2、引入课题。
在日常生活和生产实践里,经常需要对一些数据进行分析、比较、研究问题,这样就需要进行统计。在统计时,又经常要用统计表、统计图,并且常常进行平均数的计算。今天我们开始复习简单的统计,这节课先复习统计表和统计图。通过复习,要进一步认识统计表、统计图,提高整理数据制作统计表的能力,认识统计图的特征、作用,能根据统计表和统计图作简单的分析。
1、让学生看第119页前两行。
提问:怎样才能制出一张统计表?
2、做练一练第1题。
请同学们看第1题。大家把收集的原始数据分类整理,制成统计表。
学生填表后集体校正。
现在请同学们按表下面的要求分析表里的数据,把结果填在()里。
指名口答分析结果。
提问:从表里还可以看出哪些问题?
3、做练习二十三第1、2题。
让学生把练习二十三第1、2题做在课本上。
(1)口答校对第1题。
(2)出示第2题表格。
让学生口答结果,老师板书,结果让学生说说每个数据是怎样得出的。
1、说明:在进行统计时,除了用统计表,还经常要用统计图。
请同学们想一想,为什么有时要用统计图?
说明:为了把数量之间的关系表示得形象具体,便于比较和研究,有时还需要把收集到的数据制成统计图。
提问:我们学习过哪几种统计图?
2、出示:练一练第2题两个统计图。
(1)提问:这两个统计图各是什么统计图?
(2)说明:这是练一练第2题的两个统计图。从题里可以知道,这两个不同的'统计图都表示了某厂两个车间全年产值的统计数量。
提问:条形统计图是怎样表示数量的?
折线统计图是怎样表示数量及数量变化的?
(3)让学生口答第2题的两个问题。
你认为统计时用条形统计图和折线统计图各有怎样的作用?
3、做练习二十三第3、4题。
(1)让学生做第3、4题,完成在课本上。
(2)让学生口答第3题,集体订正,并说说百分率是怎样计算的。
提问:你还能想到哪些问题?
(3)让学生口答第4题,集体订正,并说说百分率是怎样计算的。
提问:你还能想到哪些问题?
这节课复习了统计表和统计图,你认为要怎样整理数据编制统计表?
统计时用条形统计图和折线统计图,各有怎样的作用?
课堂作业:练习二十三第5、6题。
家庭作业:练习二十三第7题。
教学后记:
六年级数学反比例的应用教案设计篇十四
使学生进一步认识分数乘法应用题的基本数量关系,掌握解题思路和解题方法,提高分析推理和解决实际问题的能力。
分数乘法应用题的基本数量关系式,解题思路和解题方法。
教学过程设计
教学内容:
师生活动
备注
一、复习
二、教学新课
二、 巩固练习
三、小结
四、作业
1、解答应用题。
学校舞蹈队有32人,合唱队的人数是舞蹈队的,合唱队有多少人?
一人板演。这道题你是怎样想的?
2、引入新课
1、教学例3
(1)读题,说明条件和问题。
问:题里哪个月份的产量与呢个月份的比?要先画哪个月份产量的线段?(画线段图)表示五月份产量的线段要怎样画?(画线段图)增加的台数是哪个数量的1/5?要求什么问题?指的线段上那一部分?(在线段上表示)
(1)讨论:这道题例哪个数量是单位1?为什么?哪个台数是四月份台数的1/5?
要求五月份比四月份增产多少台可以怎样想?
(学生看着线段图,自己先试着说一说。)
指名学生口述。
(2)按照这样想的过程,列式计算。
(3)小结。
2、教学试一试
解答这道题可以怎样想?
学生练习。
问:数量关系式什么?为什么用原价乘就是降低的价钱?
从上面解题的过程可以看出,解题学习的应用题也和前一节课一样,关键式先确定单位1的数量,接着要弄清与题里几分之几对应的式什么数量。这些数量之间的关系就是单位1的量乘几分之几就等于与它对应的数量。
1、练一练1
2、练习三7说出单位1的量
把数量关系填写完整
3、练一练2
口述思考过程。提问有怎样的数量关系。
4、练习三10
口答算式和结果。
为什么用求枣子比栗子多的吨数?
5、练习三12
练习三8、9、10
板书:单位1的量几分之几=对应数量
充分借助线段图使学生理解此类应用题也是在求一个数的几分之几是多少?个别同学要加小灶.
六年级数学反比例的应用教案设计篇十五
9月3日
教学内容:教材第三15—17页例1、例2和“练一练”、练习三第1—6题
教学目标:
1、使学生初步认识分数乘法应用题的特点,理解分数乘法应用题法应用题的解题思路和解题方法,认识分数分数乘法应用题的基本数量关系,分数应用题。
2、使学生分析推理和判断等思维能力得到进一步发展,并初步认识求一个数的几分之几是多少的应用题和求一个数的几倍是多少的应用题之间的联系。
教学重点:理解分数乘法应用题的解题思路和解题方法。
教学难点:初步认识求一个数的几分之几是多少的应用题和求一个数的几倍是多少的'应用题之间的联系。
教具准备:直尺、小黑板、投影片
教学过程:
一、复习引新
1、 每句话里把哪个量看作单位“1”?其中分数表示的具体意义是什么?
(1) 一块布料,用去3/5。
(2) 一块地3/7种西红柿。
2、 做15页复习题。
问:为什么要用乘法算?这里的一个数和分数相乘表示的是什么意义?
3、 引入新课。
根据一个数和分数相乘可以表示一个数的几分之几是多少,就需要用乘法计算。这节课就根据这样的道理,学习分数的应用题。(板书课题)
二、教学新课
1、教学例1。
(1)出示例1。
请大家找一找,这道题的条件有哪些,求什么问题?
(2)教学解法一。
问:从图上看用4/5,是用去谁的?就是把20米平均分成几份,用去其中的几份?
(3)教学解法二。
请同学们看线段图,讨论可以怎样解答,把它试做一下。
组织学生交流自己的解法和思路。
师帮助学生理解解题思路和方法。
(4)解法比较。
这两种解法实际都是表示把20米平均分成5份,求其中的4份是多少。
2、练一练”第1题。
指名说一说是怎样想的,并强调为什么把全班学生人数看做单位“1”。
3、教学例2。
(1)出示例2。学生读题。
问:有哪几个条件,求什么问题?
指名说一说分析过程,
4、教学“想一想”。
(1)让学生找一找,谁是谁的几分之几。
问:用线段图表示题目的意思,要先画哪个数量的线段?为什么?
(2)大家讨论,哪个数量是单位“1”?怎样列式解答?
(3)3/2是什么分数?
条件里一个数量是另一个数量的几分之几,可以是真分数,也可以是假分数。
(1)做“练一练”第2题。
(2)小结。
师总结。
巩固练习
(3)说一说下面各题里的单位“1”的量。
看了一本书页数5/6。
杨树的棵数是杉数的3/8。
(4)做练习三第1题。
指名板演,其余学生在练习本上。
集体订正,让学生说一说是怎样想的,数量关系式是怎样的。
(5) 练习三第5题。
问:三道算式有什么相同的地方?为什么都用小乘法算?
三、全课总结。
四、课堂作业:
练习三的1、2、3、4。
板书设计:
分数应用题
先确定单位“1”,接着再想要求的数量是单位“1”这
个数量的几分之几,根据一个数和分数相乘可以表示求一个
数的几分之几是多少,用单位“1”的量乘几分之几。
单位“1”的量×几分之几=对应的量
教学后记:
分数应用题
六年级数学反比例的应用教案设计篇十六
1、使学生加深认识统计的意义,进一步认识统计表,掌握整理数据编制统计表的方法,能根据统计表作简单的分析。
2、使学生进一步认识简单的统计图,明确条形统计图和折线统计图各自的特点和作用,能在看懂统计图内容的基础上作简单的分析。
教学准备:练一练第2题的两张统计图。
六年级数学反比例的应用教案设计篇十七
2.通过观察、比较、归纳,提高学生综合概括推理的能力.。
3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.。
理解正反比例的意义,掌握正反比例的变化的规律.。
理解正反比例的意义,掌握正反比例的变化的规律.。
(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?
(二)教师提问。
1.你为什么马上能想到还剩多少呢?
2.是不是因为吃了的和剩下的是两种相关联的量?
教师板书:两种相关联的量。
(三)教师谈话。
在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和。
数量也是两种相关联的量.你还能举出一些例子吗?
例1.一列火车行驶的时间和所行的路程如下表:
时间(时)。
六年级数学反比例的应用教案设计篇十八
2.学会用一个数乘分数的意义解答两步分数乘法应用题.。
教学重点。
1.掌握两步分数应用题的解题思路和方法.。
教学难点。
分析两次单位“1”的不同之处.。
教学过程。
一、复习、质疑、引新。
(一)指出下面分率句中的单位“1”.。
1.乙是甲的。
2.小红的身高是小明的。
3.参加合唱队的同学占全班同学的。
4.乙的相当于甲。
5.1个篮球的价钱是一个排球价钱的倍。
(二)口头分析并列式解答。
1.小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?
2.小华储蓄了15元,小新储蓄的是小华的,小新储蓄了多少元?
二、探索、悟理。
(一)出示组编的例题。
1.思考讨论。
(1)小华储蓄的钱是小亮的,是什么意思?谁是单位“1”?
(2)小新储蓄的是小华的,又是什么意思?谁是单位“1”?
2.汇报思路讲方法。
由此基础上试列综合算式:
(二)巩固练习。
小华有36张邮票,小新的邮票是小华的,小明的邮票是小新的,小明有多少张邮票?
1.分析数量关系,独立画图并列式解答.。
2.学生板演.。
(张)。
(张)。
答:小明有40张.。
3.综合算式。
三、归纳、明理。
用连乘解答的题有什么特点?”“解题思路是什么?”
1.认真读题弄清条件和问题。
2.确定单位“1”找准数量关系。
根据分数乘法的意义,找准“量”、“率”对应关系,即谁是谁的几分之几.。
3.列式解答。
板书:抓住分率句,找准单位“1”,
画图来分析,列式不用急.。
四、训练、深化。
(一)联想练习根据下面的每句话,你能想到什么?
1.苹果的个数是梨的.(如,梨是单位“1”;苹果少,梨多;苹果比梨少等)。
2.修了全长的。
3.现在的售价比原来降低了。
(二)先口头分析数量关系,再列式解答.。
1.鹅的孵化期是30天,鸭的孵化期是鹅的,鸡的孵化期是鸭的,鸡的孵化期是多少天?
(三)提高题.。
五、课后作业。
六、板书设计。
六年级数学反比例的应用教案设计篇十九
2、请同学们想一想:你认为怎么分合理?说一说你的分法。
1、出示题目:这筐橘子按3:2应该怎样分?
(1)小组合作(用小棒代替橘子,实际操作)。
(2)记录分配的过程。
(3)各小组汇报:自己的分法。
大班小班。
3个2个。
6个4个。
30个20个。
2、出示题目:如果有140个橘子,按照3:2又应该怎样分?
(1)小组合作。
(2)交流、展示。
(3)比较不同的方法,找找他们的共同点。
方法一:
大班小班。
30个20个。
30个20个。
方法二:画图。
140个。
方法三:列式。
3+2=5。
140=84(个)。
140=56(个)。
答:大班分84个,小班分56个,比较合理。
(还会出现用整数方法来列式计算的。)。
3、小结:解决生活中的实际问题时,同学们要认真分析数量关系,可以选用多种方法解答。
完成课本第55页:
1、独立试做:试一试。
2、独立试做练一练的1题、2题,3题抢答,并说明理由。
四、知识拓展:数学故事。(共同探讨方法)。
五、总结:1、学生看书总结本节所学内容。
2、提出自己还有些疑惑的问题。
3+2=5。
140=84(个)。
140=56(个)。
答:大班分84个,小班分56个,比较合理。
提供现实生活情境,使学生体会到数学与生活的联系,激发学生的学习兴趣,引导学生分析问题中的数学信息。
这一过程要给学生提供充分的体验时间,在实际操作中,学生会不断调整一次分配的数量,不断的产生新的解题的策略,理解按一定的比例来分配的意义。
有上面小组合作的经验与发现,这次可以操作、画图、列式等不同的方法来分,从实践中发现规律,理解部分量与总量的关系。
培养学生独立思考问题、解决问题的能力。在这一过程中,学生和老师都能及时的发现不懂的,理解不好的问题,便于及时处理。
六年级数学反比例的应用教案设计篇二十
1.巩固分数连除应用题的分析方法,掌握此类题的结构及数量关系。
2.进一步提高学生的分析概括能力及解题能力。
教学重点。
找准单位“1”,巩固分数除法应用题的解答方法。
教学难点。
掌握分数连除应用题的结构及数量关系。
教学过程。
(一)复习。
(投影)。
1.找准单位“1”,并列式解答。
2.出示准备题。
(1)读题,请学生找出已知条件和未知条件。
(3)老师指导学生画图。老师先画一条线段表示美术组人数后提问:谁和美术组比?怎么画?(生物组和美术组比,可以画在美术组上面。)谁和生物组比?(航模组和生物组比,应画在最上面。)。
提问:美术组,生物组,航模组三个数量之间有什么关系。
(4)请一名同学列式解答,然后订正。
(二)讲授新课。
老师把准备题进行改编。
指名读题,找出已知条件和未知条件。
1.指导学生画图。
提问:这道题中有哪几个量?需用几条线段来表示?(有三个量,用三条线段表示。)。
提问:和准备题比,已知条件和未知条件发生了什么变化?(给了航模组人数,求美术组人数。)。
老师按学生的回答,把准备题的图示进行修改。
2.找出含有分率的句子,进行分析。
(3)这道题中有几个单位“1”?美术组、生物组、航模组三量之间有什么关系?
(4)根据三量之间的关系,列出等量关系式。
(5)这个式子的等号两边相等吗?为什么?
人。)。
学生回答,老师板书:
3.根据等量关系列方程解答。
提问:根据上面的分析,应设谁为x?(设美术组人数为x。)。
老师板书:
解设美术组有x人。
答:美术组有30人。
看方程提问:
(3)为什么要设美术组人数为x?
(因为只有知道美术组的人数,才能求出生物组的人数。航模组又和生物组比,所以设美术组为x人。)。
师小结:对于含有两个“已知一个数的几分之几是多少,求这个数”这样条件的复合应用题,首先要找准单位“1”,在两个单位“1”都是未知的情况下,根据题中条件,准确设定其中一个单位1的量为x。
(三)巩固练习。
(投影)。
先讨论以下问题,再动笔做:找出单位“1”,画图并分析数量关系。
2.看图,找出数量间相等的关系,并列方程解答:
(1)说出这个图所反映的等量关系式。
(2)师小结:这道题出现了“小汽车是大汽车的4倍”,而不是几分之几,但它们的数量关系不变,解题思路也一样。
师:这道题和前两题比,前两题是不同数量相比较,这一道题是同一数量相比较,我们可以画单线图分析数量关系。(老师指导画图。)。
三好生4人。
学生动笔做,老师带领学生订正。
的高是多少厘米?
根据题意填空:
是()厘米。设()为x。
果树有多棵?
(四)课堂总结。
今天我们学习的应用题有什么特点?(今天学习的是由过去学过的两道分数除法应用题组成的复合题。)。
这类题分析解答时应注意什么?(弄清有哪三个量,它们之间什么关系?找出等量关系,确定设哪个量为x,再列方程解答。)。
(五)布置作业。
(略)。
课堂教学设计说明。
本节课讲的是分数连除应用题,是连续求一个数的几分之几是多少的逆解题,所以本课由分数连乘应用题引入,通过改变已知条件和未知条件,使之转变成一道分数连除应用题,为帮助学生理清数量关系,抓住新旧知识的共同因素,列方程解应用题打下了基础。本教案还重视分析思路的训练,通过设计提问和画线段图分析数量关系,为学生自己解题奠定了基础。在练习的设计中,采用不同形式,由扶到放,不但一步步强化了学生的分析思路,也进一步培养了学生逻辑思维能力。