八年级数学分式基本性质说课稿(通用17篇)
总结可以让我们更清楚地了解自己的优点和缺点,为进一步提升做好准备。写总结时要注意避免空泛和笼统的描述,应该结合具体的事例和数据进行分析。在这里,小编为大家准备了一些优秀的总结范文,供大家参考。
八年级数学分式基本性质说课稿篇一
各位老师:
下午好!
《分数基本性质》是北师大版小学数学第九册内容。是在三年级下册已经体验了分数产生的过程,认识了整体“1”,初步理解了分数的意义,能认、读、写简单的分数,会简单的同分母分数加减法的基础上,学习真假分数,分数基本性质,约分通分、比大小等知识,为后续学习分数与小数互化、分数乘除法四则混合运算打好基础。
学生已经知道了真假分数,掌握了分数与除数的关系及商不变性质,再来学习分数基本性质。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小却不变。学生在这种“变”与“不变”中发现规律,掌握新知识。
1.知识目标:经历探索分数基本性质的过程,理解并掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。
2.能力目标:培养学生观察、比较、抽象、概括等初步的逻辑思维能力,并且能够正确认识和理解变与不变的辨证关系。
3.情感目标:经历观察、操作和讨论等数学学习活动使学生进一步体验数学学习的乐趣。通过学生的成功体验,培养学生热爱数学的情感。
能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数理解分数基本性质的含义,掌握分数基本性质的推导过程。
根据本节课的教学内容和教学目标采用讲授法,小组合作学习。
准备大小相等的圆形纸片,水彩笔等。
一、故事设疑,揭示课题。
我将以唐僧师徒分饼的故事创设问题情景。八戒吃第一块饼的1/4,沙和尚吃第二块饼的2/8,悟空吃第三块饼的4/16,他们谁吃的多呢?以此引入新课,激发学生思考的兴趣,积极参与到课堂教学中来。并在这个环节设计学生动手折、画、标等活动,折出1/4,2/8,4/16,用彩笔在折的圆上涂出1/4,2/8,4/16,再用铅笔标出分数。在动手做的过程中初步理解分数基本性质。
二、合作探索,寻找规律。
请同学们观察1/4,2/8,4/16;3/4,6/8,12/16这两组分数,分子分母有什么变化,分数又有什么变化?组织讨论交流汇报。如果没有概括出“把0除外”就设计一组练习:分子分母同乘0,完善结论;如果概括出来了,就顺势进行验证。推导出分数基本性质-----分数的分子分母都乘或除以相同的数(0除外),分数的大小不变。
三、巩固练习。
练习题的设计有简单到复杂,例:分数的分子乘5,要使分数的大小不变,分母();2/3=??()/186/21=2/()等这样的题,进行练习。
四、梳理知识,沟通联系。
小结分数基本性质,请同学们回忆“商不变性质”。------在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。
然后比较这两个性质的联系。这样设计主要是为了共建知识之间的联系,有助于学生灵活迁移应用,触类旁通。
五、多层练习,巩固深化。
1.(1)把5/6和1/4化为分母为12而大小不变的分数。
(2)把2/3和3/4化为分子为6而大小不变的分数。
2.考考你:1/4的分子加上3,要使分数的大小不变,分母应加上()。
六、全课小结。
作为一位优秀的人民教师,时常需要用到说课稿,借助说课稿我们可以快速提升自己的教学能力。我们该怎么去写说课稿呢?以下是小编为大家收集的五......
作为一位不辞辛劳的人民教师,时常需要用到说课稿,说课稿有助于顺利而有效地开展教学活动。如何把说课稿做到重点突出呢?下面是小编收集整理的......
9篇作为一名优秀的教育工作者,时常需要编写说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。那么写说课稿需要注意哪些问题呢?下面是小编......
八年级数学分式基本性质说课稿篇二
通过类比分数的基本性质及分数的约分、通分,推测出分式的基本性质、约分和通分,通过例题、练习来巩固这些知识点。
教学目标。
知识与技能。
3.说出分式通分、约分的步骤和依据,总结分式通分、约分的方法;。
4.说出最简分式的意义,能将分式化为最简分式。
过程与方法。
经历与他人合作探究分式的基本性质及应用的过程,通过类比分数的基本性质,推测出分式的基本性质。
情感态度价值观。
体会知识点之间的联系,在已有数学经验的基础上,提高学数学的乐趣。
教学重点、难点。
重点:1.分式的基本性质;2.利用分式的基本性质约分、通分;3.将一个分式化简为最简分式、将分式通分。
难点:分子、分母是多项式的分式的约分和通分。
教学方法。
启发引导,讲练结合。
教学媒体课件。
课时安排。
1课时。
教学设计过程。
(一)复习引入。
1.分式的定义;。
通过回顾我们可以得出:
八年级数学分式基本性质说课稿篇三
《分数的基本性质》在分数教学中占有重要的地位,在小学数学学习中起着承前启后的作用。它既以分数的意义、分数的大小比较为基础,又与整数除法及商不变的性质有着内在的联系,更分数的约分、通分的依据,也进一步学习分数加减法计算、比的基本性质的基础。因此,分数的基本性质该单元的教学重点之一。
学生在三年级上学期已经初步认识了分数,以及同分母分数的大小。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。五年级学生已经养成了合作学习的习惯,并且已经具有了一定的分析和解决问题的能力,再加上他们所具有的一定的生活经验,因此能够在教师的引导下完成“质疑——探索——释疑——应用”这一完整的学习过程。
依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:
知识与技能:让学生亲身经历“分数基本性质”抽象概括的过程,理解和掌握分数的基本性质,并能初步运用分数的基本性质解决简单的数学问题。
过程与方法:让学生经历发现问题、探究问题、解决问题的全过程,在观察、猜想、验证等探索活动中,培养学生观察--探索--抽象--概括的能力以及合情推理能力,体验解决问题策略的多样性。
情感与态度:使学生在分数基本性质的探究活动中,获得成功的体验,建立自信心,感受到数学的严谨性,及渗透事物相互联系、发展变化的辩证唯物主义观点。
教学重点:理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。
教学难点:让学生经历自主探索,发现和归纳分数的基本性质,并会应用分数的基本性质解决相关问题。
教学准备:三张同样大小的长方形纸张,彩色笔。
树立以“以学生发展为本”、“以学定教”的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。创设了一种“情境导入、动手体验、自主探索”的课堂教学形式,以“自主探究”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。
有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,自主探究法,合作交流的学习方式,让学生通过独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。
为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了以下五步教学环节:
1、创境设疑:回顾旧知,引发思考。
2、自主探究:动手实践,发现规律。
3、交流归纳:揭示规律,巩固深化。
4、分层精练:多层练习,多元评价。
5、感悟延伸:课堂小结,加深理解。
第一环节:创境设疑。
结合六一儿童节的到来,创设分蛋糕的情景,妈妈分得公平吗?课始便迅速地抓住了学生的好奇心,使课堂教学有了一个好的开始。鼓励学生当小法官,则极大地调动了学生的积极性,使他们在心理上产生悬念,进一步激发学生的学习兴趣,为后面的学习做好了铺垫。这样设计也从学生已有的经验和情感出发,找准新知的最佳切入点,为学生后面的联想和猜想巧设“孕伏”。
第二环节:自主探究。
通过折纸、涂色的动手操作活动,使学生亲身经历并获得非常具体、真切的感知,为探究分子、分母的变化规律提供认知基础。教师通过五个有层次的问题,分层质疑,分层提问,分层评价,尽量地关注到了每一个层次的学生,引导学生逐步在自主探索、合作互助的学习方式中初步理解并能简单概括出分数的基本性质,并及时强调了0除外的意义,使学生体验到解决问题策略的多样性,发展学生的实践能力和创新精神,培养学生的合作意识。
第三环节:交流归纳。
在这一环节,教师引导学生在观察与分析、探索与思考分数的基本性质的基础上不断生成新问题,通过质疑,借助知识的迁移,沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间相互联系”的辨证唯物主义观点,培养学生观察--探索--抽象--概括的能力。
第四环节:分层精练。
这个环节让学生对分数的基本性质再一次的体验,感受,研究,同时也整节课的亮点之一,练习分层,评价分层,通过分层练习,关注到每一个层次的学生,让每一个学生都有发展。教师结合本班学生的学习特点,设计了由浅入深,由易到难的练习,基本练习让90%的同学体验到了学习的快乐,综合练习让80%的同学品尝到了成功的喜悦,拓展练习则留到课后,让学生在自主探究中、讨论交流中、知识的沉淀中进一步加深对知识的理解和掌握。
第五环节:感悟延伸。
通过小结、反思,查漏补缺,学生在交流收获、互相帮助的过程中,使学生对知识有个系统的回顾和认识,从而进一步培养学生的知识概括能力。
总之,本节课教学坚持了“学生探索的主体”这一教学原则,面向全体学生,充分的引导学生动手实验,自主探索,质疑延伸,合作交流,让每一个学生在探索的过程中感受数学和日常生活的紧密联系,体验学习数学的快乐,培养了创新精神和实践能力。
八年级数学分式基本性质说课稿篇四
今天听了冯老师执教的《比的'基本性质》,冯老师课堂上快节奏的教学,学生精神饱满的学习,给我留下了深刻的印象,教师作为课堂的引领者,冯老师做到了引导者的驾驭,掌控课堂,带领学生在快节奏,高效率的氛围中有效学习,收获颇丰。
1、《比例的基本性质》作为一节认识比例后的概念教学课,冯老师能够抓住概念教学的特点,扎实有效的开展教学,整节课思路清晰,环环相扣,师生互动性良好,突出数学概念的形成过程,重视学生获取知识的思维过程。
2、数学语言的严谨性、严密性是数学特有的,在课堂中,冯老师自己的语言的语简洁有力,不罗嗦,而对于学生的语言更是强调到位,让全体学生认真倾听,纠正数学语言中不足、不准的地方,集体强调,如对于一个分数形式的比的读法,比如对于两个比判断过程中的表述问题,冯老师都强调到位,一语中的。
3、课堂练习设计有针对性,有梯度,层层深入,教师能够吃透教材,把握考试的重点,将考试的知识要点在课堂上贯穿,这体现在教师设计的小组竞赛题上,体现在教学新课后的运用上,教师在让学生回答问题时,能够对学生的表现及时给与指正,反馈及时。练习的效果、练习的质量都非常高。
4、利用积分评价,调动了学生的积极性,特别是后面的抽取分值的方法,点燃了学生的学习热情,更将本节课的学习知识得到了延续,在教学中,冯老师还注重了对学生激励性评价,使得学生学习气氛很好。
5、课堂环节设计的题目吸引学生的眼球,有种数学中有语文,学科不分家的感觉,这些颇有新意的设计,“众人拾柴火焰高”,“试手气,展才气”等,既温馨,又很好的激发了学生学习的兴趣。
八年级数学分式基本性质说课稿篇五
各位老师:
下午好!
《分数基本性质》是北师大版小学数学第九册内容。是在三年级下册已经体验了分数产生的过程,认识了整体“1”,初步理解了分数的意义,能认、读、写简单的分数,会简单的同分母分数加减法的基础上,学习真假分数,分数基本性质,约分通分、比大小等知识,为后续学习分数与小数互化、分数乘除法四则混合运算打好基础。
学生已经知道了真假分数,掌握了分数与除数的关系及商不变性质,再来学习分数基本性质。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小却不变。学生在这种“变”与“不变”中发现规律,掌握新知识。
1.知识目标:经历探索分数基本性质的过程,理解并掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。
2.能力目标:培养学生观察、比较、抽象、概括等初步的逻辑思维能力,并且能够正确认识和理解变与不变的辨证关系。
3.情感目标:经历观察、操作和讨论等数学学习活动使学生进一步体验数学学习的乐趣。通过学生的成功体验,培养学生热爱数学的情感。
能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数理解分数基本性质的含义,掌握分数基本性质的推导过程。
根据本节课的教学内容和教学目标采用讲授法,小组合作学习。
准备大小相等的圆形纸片,水彩笔等。
一、故事设疑,揭示课题。
我将以唐僧师徒分饼的故事创设问题情景。八戒吃第一块饼的1/4,沙和尚吃第二块饼的2/8,悟空吃第三块饼的4/16,他们谁吃的多呢?以此引入新课,激发学生思考的兴趣,积极参与到课堂教学中来。并在这个环节设计学生动手折、画、标等活动,折出1/4,2/8,4/16,用彩笔在折的圆上涂出1/4,2/8,4/16,再用铅笔标出分数。在动手做的过程中初步理解分数基本性质。
二、合作探索,寻找规律。
请同学们观察1/4,2/8,4/16;3/4,6/8,12/16这两组分数,分子分母有什么变化,分数又有什么变化?组织讨论交流汇报。如果没有概括出“把0除外”就设计一组练习:分子分母同乘0,完善结论;如果概括出来了,就顺势进行验证。推导出分数基本性质-----分数的分子分母都乘或除以相同的数(0除外),分数的大小不变。
三、巩固练习。
练习题的设计有简单到复杂,例:分数的分子乘5,要使分数的大小不变,分母();2/3=??()/186/21=2/()等这样的题,进行练习。
四、梳理知识,沟通联系。
小结分数基本性质,请同学们回忆“商不变性质”。------在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。
然后比较这两个性质的联系。这样设计主要是为了共建知识之间的联系,有助于学生灵活迁移应用,触类旁通。
五、多层练习,巩固深化。
1.(1)把5/6和1/4化为分母为12而大小不变的分数。
(2)把2/3和3/4化为分子为6而大小不变的分数。
2.考考你:1/4的分子加上3,要使分数的大小不变,分母应加上()。
六、全课小结。
八年级数学分式基本性质说课稿篇六
《分数的基本性质》在分数教学中占有重要的地位,在小学数学学习中起着承前启后的作用。它既以分数的意义、分数的大小比较为基础,又与整数除法及商不变的性质有着内在的联系,更分数的约分、通分的依据,也进一步学习分数加减法计算、比的基本性质的基础。因此,分数的基本性质该单元的教学重点之一。
学生在三年级上学期已经初步认识了分数,以及同分母分数的大小。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。五年级学生已经养成了合作学习的习惯,并且已经具有了一定的分析和解决问题的能力,再加上他们所具有的一定的生活经验,因此能够在教师的引导下完成“质疑——探索——释疑——应用”这一完整的学习过程。
依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:
知识与技能:让学生亲身经历“分数基本性质”抽象概括的过程,理解和掌握分数的基本性质,并能初步运用分数的基本性质解决简单的数学问题。
过程与方法:让学生经历发现问题、探究问题、解决问题的全过程,在观察、猜想、验证等探索活动中,培养学生观察--探索--抽象--概括的能力以及合情推理能力,体验解决问题策略的多样性。
情感与态度:使学生在分数基本性质的探究活动中,获得成功的体验,建立自信心,感受到数学的严谨性,及渗透事物相互联系、发展变化的辩证唯物主义观点。
教学重点:理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。
教学难点:让学生经历自主探索,发现和归纳分数的基本性质,并会应用分数的基本性质解决相关问题。
教学准备:三张同样大小的长方形纸张,彩色笔。
树立以“以学生发展为本”、“以学定教”的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。创设了一种“情境导入、动手体验、自主探索”的课堂教学形式,以“自主探究”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。
有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,自主探究法,合作交流的学习方式,让学生通过独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。
为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了以下五步教学环节:
1、创境设疑:回顾旧知,引发思考。
2、自主探究:动手实践,发现规律。
3、交流归纳:揭示规律,巩固深化。
4、分层精练:多层练习,多元评价。
5、感悟延伸:课堂小结,加深理解。
第一环节:创境设疑。
结合六一儿童节的到来,创设分蛋糕的情景,妈妈分得公平吗?课始便迅速地抓住了学生的好奇心,使课堂教学有了一个好的开始。鼓励学生当小法官,则极大地调动了学生的积极性,使他们在心理上产生悬念,进一步激发学生的学习兴趣,为后面的学习做好了铺垫。这样设计也从学生已有的经验和情感出发,找准新知的最佳切入点,为学生后面的联想和猜想巧设“孕伏”。
第二环节:自主探究。
通过折纸、涂色的动手操作活动,使学生亲身经历并获得非常具体、真切的感知,为探究分子、分母的变化规律提供认知基础。教师通过五个有层次的问题,分层质疑,分层提问,分层评价,尽量地关注到了每一个层次的学生,引导学生逐步在自主探索、合作互助的学习方式中初步理解并能简单概括出分数的基本性质,并及时强调了0除外的意义,使学生体验到解决问题策略的多样性,发展学生的实践能力和创新精神,培养学生的合作意识。
第三环节:交流归纳。
在这一环节,教师引导学生在观察与分析、探索与思考分数的基本性质的基础上不断生成新问题,通过质疑,借助知识的迁移,沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间相互联系”的辨证唯物主义观点,培养学生观察--探索--抽象--概括的能力。
第四环节:分层精练。
这个环节让学生对分数的基本性质再一次的体验,感受,研究,同时也整节课的亮点之一,练习分层,评价分层,通过分层练习,关注到每一个层次的学生,让每一个学生都有发展。教师结合本班学生的学习特点,设计了由浅入深,由易到难的练习,基本练习让90%的同学体验到了学习的快乐,综合练习让80%的同学品尝到了成功的喜悦,拓展练习则留到课后,让学生在自主探究中、讨论交流中、知识的沉淀中进一步加深对知识的理解和掌握。
第五环节:感悟延伸。
通过小结、反思,查漏补缺,学生在交流收获、互相帮助的过程中,使学生对知识有个系统的回顾和认识,从而进一步培养学生的知识概括能力。
总之,本节课教学坚持了“学生探索的主体”这一教学原则,面向全体学生,充分的引导学生动手实验,自主探索,质疑延伸,合作交流,让每一个学生在探索的过程中感受数学和日常生活的紧密联系,体验学习数学的快乐,培养了创新精神和实践能力。
作为一位不辞辛劳的人民教师,时常需要用到说课稿,说课稿有助于顺利而有效地开展教学活动。如何把说课稿做到重点突出呢?下面是小编收集整理的......
八年级数学分式基本性质说课稿篇七
3月1日在学校的教研活动中,冯老师给我们做了一节精彩的课——《比例的基本性质》,结合本次教研活动主题“课堂练习设计的有效运用”,谈几点自己的体会:
1、练习要贯穿整节课的始终,从问题导学开始,冯老师就利用比的意义引入,然后让学生根据比例的'意义判断两个比能否组成比例,在复习中导入新课;接着老师在新课教学后及时的训练,在合作交流中将练习设计成“试手气,展才气”,将易混、易错的题集中展示给学生,不仅调动了学生学习的积极性,也提高了学生的辨别能力。
2、本节课的练习集中体现了课堂教学内容的精华,整节课高密度高容量的练习,容不得学生有丝毫的懈怠,这也是冯老师长期训练的结果。
3、冯老师的练习设计体现了层次性,关注了所有的学生,真正让所有学生每天都有一点进步。
总而言之,冯老师的这节课给我们起到了引领示范的作用,值得我们学习。
建议:如果能在拓展练习中设计一些生活中的问题,让学生感到比例的基本性质在生活中的运用,就更好了。
八年级数学分式基本性质说课稿篇八
老师们:
大家好!今天我说课的内容是北师大版八年级下册数学第三章《分式》第一节第二课时《分式的基本性质》。下面,我将从九个方面对本课加以说明。
一、说教学理念。
我的教学理念是:根据建构主义理论,以新课改理念为指导,以人为本,面向全体学生,从最后一名抓起,努力使我的课堂真正成为:民主的、平等的、开放的、和谐的、充满了激趣的、师生互动、交流的课堂。培养学生学习对生活有用的数学;学习对终生发展有用的数学!
二、说学情调查。
八年级学生具备了一定的数学知识和技能,具有较强的争胜心和表现欲,迫切希望得到老师的表扬和鼓励;但思维的深度和广度还不够;需要老师巧妙设疑、灵活引导、及时激励。
三、说教材分析。
【1】、教材所处的地位、作用及与前后的联系。
本节教材是本单元的第一节,从知识结构来看,本节是学生在已经掌握分数的基本性质和分式的定义的基础上,进一步学习分式的基本性质。也为后面学习分式的有关运算打下基础;从研究方式上来看,它是自主探究——合作交流相结合的学习方法的又一次应用;从解决问题的思想方法来看,它强化了学生的类比转化数学思维能力,促进了数学修养的提高。所以这一节无论从知识性还是思想性来讲,在初中数学教学中都占有重要的地位。
【2】、三维教学目标。
根据教学大纲和学生的认知水平,我确定本节课教学目标是:
(一)知识与技能:
1、推导并掌握分式的基本性质,灵活运用分式的基本性质进行分式的变形。
2、了解分式约分的步骤和依据;掌握分式约分的方法。
3、了解最简分式的定义,能将分式化为最简分式。
(二)过程与方法:
使学生通过观察、讨论、类比等活动,获得一些探索性质的初步经验。
(三)情感与价值观:
1、通过与分数的类比,使学生初步掌握类比的思想方法:即类比——联系——归纳——拓展。
2、培养学生与同伴的合作交流能力。
【3】、教学重点。
八年级数学分式基本性质说课稿篇九
听了冯老师的这一课后,我感到受益匪浅。最突出的有以下几大亮点:
1、冯老师每一环节的名称也起得颇有新意,“温故而知新,可以为师矣”,“众人拾柴火焰高”,“试手气,展才气”等,既温馨,又很好的激发了学生学习的兴趣。
2、思路清,环节紧。找准新旧知识切入点提问导入:让生回顾比例的意义,引出比例各部名称,再让生猜测比例内项乘积与外项乘积的关系,然后让生自主计算验证,并通过举一反三发现出内项乘积与外项乘积的等量关系,最后导生抽象概括出比例的基本性质。这样一环紧扣一环,条理相当清楚。
3、学生的主体地位得到充分体现。在探索比例的性质这一环节,教师导生自觉弄清四个项,并给充分的时间让生猜想同项的乘积是否相等,再进行动手计算验证,并通过多练习使生发现与总结出比例的性质。整个环节都由生自主构建知识的形成,使生尝到了学习成功的喜悦,因而信心十足。
4、本节课的练习形式多样,针对性强,层层深入,反馈及时。教师注重新旧知识的结合,使学生所学更加的系统。
5、冯老师的评价多样,有语言的激励性评价,有小组积分评价,使得学生学习气氛很好。在教学结束时,冯老师抽学生在“比例性质”中各选一字,看后面的分值给小组加分,好似给整节课画了一个完美的句号。而更妙的是其中一字后面居然是问号,冯老师让学生想这个问号代表几就可以组成比例了,达到了锦上添花的效果。
八年级数学分式基本性质说课稿篇十
教学目标:
1.让学生通过经历预测猜想实验分析合情推理探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
3.培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。
教学重点:
教学难点:
让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
教学过程:
一、故事情景引入。
好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?奶奶的话刚讲完,小红就嘟着嘴叫了起来:奶奶你不公平!分给小兵的多,分给我的少!小明连忙叫着:奶奶不公平,奶奶偏心!只有小兵在偷着乐。
同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。
讨论完了请举手。
生甲:我觉得不公平,小红分得多。
生乙:我觉得小明分得多。
生丙:我觉得公平,他们三个分得一样多。
师:看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。
二、新授。
师:下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)。
请你们把这三张圆片叠起来,比一比大小,看看怎么样?
生:三张圆片一样大。
1.师:下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。
首先,请在第一张圆片上表示出它的1/3;
再在第二张圆片上表示出它的2/6;
然后在第三张圆片上表示出它的3/9。
好了,大家动手分一分。(教师巡视指导)。
2.师:分完了的请举手?
老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)。
下面请哪位同学说一说,你是怎么分的?
生:把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。
生:把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。
师:那九分之三又是怎么得到的呢?大家一起说。
生:把这块圆片平均分成九份,取其中的三份,就是它的九分之三。
图1。
(学生说的同时,教师操作,分完后把圆片贴在黑板上。)。
3.师:同学们,观察这些圆的阴影部分,你有什么发现?
小结:原来三个圆的阴影部分是同样大的'。
师:现在再来评判一下,奶奶分月饼公平吗?为什么?(请几名学生回答)。
生:奶奶分月饼是公平的,因为他们三个分得的月饼一样多。
生甲:通过图上看起来,这三个分数应该是一样大的。
生乙:这三个分数是相等的。
师:刚才的试验证明,它们的大小是相等的。(板书,打上等号)。
4.研究分数的基本规律。
师:我们仔细观察这一组分数,它的什么变了,什么没变?
生甲:三个分数的分子分母都变了,大小没变。
师:那它的分子分母发生了怎样的变化呢?让我们从左往右看。
第一个分数从左往右看,跟第二个分数比,发生了什么变化?
生乙:它的分子分母都同时扩大了两倍。
师:跟第三个分数比,它又发生了什么变化?(生回答)对了,它的分子分母都同时扩大了三倍。
再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)。
学生发言。
小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。(板题)。
八年级数学分式基本性质说课稿篇十一
一般地,如果a、b(b不等于零)表示两个整式,且b中含有字母,那么式子a/b就叫做分式,其中a称为分子,b称为分母。分式是不同于整式的一类代数式,分式的值随分式中字母取值的变化而变化。当分式的分子的次数低于分母的次数时,我们把这个分式叫做真分式;当分式的'分子的次数高于分母的次数时,我们把这个分式叫做假分式。
将本文的word文档下载到电脑,方便收藏和打印。
八年级数学分式基本性质说课稿篇十二
在探究比的基本性质时,教师先让学生在已有的知识基础上大胆猜想,然后让学生以同桌为单位进行验证,展示验证过程,再让学生归纳出比的基本性质;在探究化简比的方法时,教师安排了两次活动,第一次,安排学生独立自主探究,解决例1第一部分,第二次,由于内容有一定难度,教师让学生以小组(4人)为单位,先自己思考,再小组内交流方法并解决问题,最后全班展示交流,总结方法,解决了例1第二部分。在本节课的两次新知学习中,教师没有过多讲解,方法的探究,结论的归纳都是出自学生之口,学生真正经历了知识的产生过程。
在探究化简比的方法时,教材例1中只安排了整数比整数,分数比分数,小数比整数三种类型,基于对教材知识体系和学生实际的了解,教师把"做一做中的小数比小数,小数比分数两种类型的题充实到例1中,这样使学生较全面的掌握了化简比的方法,降低了练习难度,效果较好。
本课教学设计紧凑,环环相扣,容量大,节奏快,充分利用了课上的每一分钟无论在学生验证猜想时,还是探究化简比的方法时,教师都要求全员参与。练习设计层次性强,有梯度,题型灵活多样,尤其是快乐ab卷中设计了两种难度的练习,供不同层次的学生选择,关注了全体.
教师在教学过程中,不仅注重了对学生个体的评价还注重了对小组合作学习的评价,同时也注重了培养学生的评价意识。在谈收获时,学生也能够正确地对组内成员进行评价,合作意识得以凸显;尤其在快乐ab卷中,教师设计了学生自评,组内成员互评,对教师课堂教学的评价版块,这种多元化评价的设计既有利于学生的发展又有利于教师课堂教学的改善。
例如:在学生总结比的基本性质时,个别学生说出了"0除外",这时教师就应该抓住这一问题,为什么"0除外",进行强化,砸实这个知识点。
教师在今后教学中应在创设情境和设计过渡语方面下功夫,力求充分调动学生的学习热情。
八年级数学分式基本性质说课稿篇十三
本节内容分两课时完成。我设计的是第一课时的教学,主要内容是分式概念、掌握分式有意义,值为0的条件。因为它是在学生学习了分数、整式及因式分解的基础上,又一代数学习的基本内容,是小学所学分数的延伸和扩展,而学好本节课,为今后继续学习分式、函数、方程等知识作好铺垫,特别是对“分式有无意义的讨论”为以后学习反比例函数作了铺垫。因此它起着承上启下的作用。
2、教学目标。
一节课的教学目标准确与否,直接关系到这节课的整体设计,关系到学生发展的水平和教学效果的好坏,因此预设教学目标时,我力求准确。依据新课程的要求,我将本节课的教学目标确定为以下3个方面:
(1)知识与技能目标:让学生经历用分式表示现实情境中数量关系的过程,从而了解分式概念,学会判别分式何时有意义,进一步培养学生代数表达能力和分析问题、解决问题的能力、以及创新能力。
(2)过程与方法目标:经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。
(3)情感与态度目标:通过丰富的数学活动,使学生获得成功的经验,体验数学活动充满探索和创造,体会分式的模型思想,培养学生的辩证唯物主义观点。
3、教学重难点及关键:
分式概念是《分式》这一章学习的起点和基础,因此我把理解分式的概念确定为本节课的教学重点。又由于初中学生的认知结构中存在着这样的障碍:不善于概括数学材料、缺乏对字母及其他数学符号用于运算的能力,所以判定分式有意义、分式的值为0时的条件,自然就成了本节课的教学难点。而部分学生容易忽视分式的.分母值不能为0这个条件,因此我认为突破这个难点的关键是通过类比分数的意义,加强对分式分母值不能为0的理解。
一、教法学法分析。
1、学情分析。
由于我校八年级学生,基础比较扎实,学习能力较强。通过小学分数的学习,学生头脑中已经形成了分数的相关知识。学生可能会用学习分数的思维去认识、理解分式。但是分式的分母不再是具体的数,而是抽象的含字母的整式,会随着字母的取值的变化而变化。为了帮助学生确实掌握所学内容,我在教学过程中特别设置了巩固性练习,对于教材中的例题和习题将作适当的延伸和拓展及变式处理。
2、教学方法:
针对本班学生情况,为了适合学生已有的认识水平和认知规律,更好地突出重点、化解难点,在教学过程中,我采用“引导――发现式教学法”,引导学生运用类比的思维方法进行自主探究。在实施教学的过程中注意学生分析问题、解决问题等能力的培养。让学生全面地掌握分式的意义,体会到数学不是一门枯燥的学科,对学习数学充满信心。为了提高课堂效果,适当的辅以多媒体技术,激发学生的学习兴趣,同时也增大教学容量,提高教学效率。
3、学法指导。
观察、概括、总结、归纳、类比、联想是学法指导的重点。
在课堂教学中,不是老师单纯的传授知识,而是在老师指引下让学生自己学。要把教法融于学法中,在学法中体现教法。在活动过程中,我将引导学生体会用类比的方法,扩展知识的过程,培养他们学习的主动性和积极性。让学生通过对问题的讨论归纳,在与老师的交流中学习知识,从而达到“学会”和“会学”的目的。
二、教学过程(多媒体教学)。
《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”在教学过程中,我充分考虑到如何更多地向学生提供从事数学活动的机会,坚持以知识为载体,思维为主线,能力为目标的设计原则,所以我将本节课的教学过程设为以下六个环节:
第一环节是“创设情景、提出问题”:为了引导学生从自己熟悉的生活背景中发现、掌握和运用数学,在现实情境中进一步理解用字母表示数的意义,在这一环节里我设计一道有关四川汶川特大地震捐款的事例,并设置了6个问题。从学生熟悉的整式及其运算入手,引导学生从旧知中去发现分式,找到新知的“生长点”和学生思维的“最近发展区”,从而更好地进行分式概念的建构活动。落实教学目标。
针对学生的发现,在第二个环节“类比联想形成概念”
我将采用“议一议”的方式引导学生继续观察新式子的特征,类比分数,合理联想。从而使学生水到渠成地概括出分式的概念及一般表示形式。
第三环节“指导运用巩固概念”
通过小组内互举例子,互说判定过程,鼓励学生积极参与活动,在活动过程中强化分式概念,并及时纠正学生可能因分数负迁移所造成的认知障碍,注意辨析与的本质区别和不是分式的问题,指出判断一个代数式是不是分式,不是决定于这个式子里是否含分数线,关键要看分母中是否含有字母。最后指出“整式和分式统称为有理式”。同时还让学生明白:分数线具有(1)表示括号;(2)表示除号双重意义。
到此学生对分式的概念有了初步的认识,但并不完整。接下来如何识别分式有意义,是本节课的难点,也是探究学习的好素材。课本中分式有意义的条件是直接给出的,而我在以往的教学中发现学生往往忽视这个条件或是对分母整体不为零认识模糊,为了更好地突破难点,我在第四环节“循序渐进再探新知”创设了以下活动供学生自主探究分式有意义的条件:
首先是组织学生独立填写表格:
表格的设计,是为了让学生通过对分式中的字母赋值,将“代数化”了的分式还原为他们熟悉的分数。通过填表,不同层次学生的发现将会有差异,此时正是倾听与交流的好时机,通过互相说服和推广,他们最终会达成共识:分式的值与字母取值有关,分式并不都有意义。继而引导学生通过再次类比分数,将陌生问题向熟悉问题转化,自主得出“分式有意义”的条件,建立完整的分式概念,同时渗透从特殊到一般的数学思想。
我抓住这一契机,给出:
(2)、概括分式在什么条件下有意义(对一般表达式里的分母b作出取值限定:b不能等于零)为了能让学生对刚获得的新知识进行最基本的应用,在这一环节我安排了例题1是一个有关分式求值及判别分式何时有意义的问题,比较简单,可以由学生在自主完成的基础上同桌交流,然后师生评述,使全体学生特别是学有困难的学生都能达到基本的学习目标,获得成功感。
几个问题由浅入深、由易到难,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,消化知识。
八年级数学分式基本性质说课稿篇十四
今天听了冯老师的这节公开课后,给我的触动很深,她扎实的教学功底,严谨的教风很值得我们学习,本节课的亮点有:
1、复习题的设计抓住了新旧知识的连结点,为概念的学习作好铺垫。
本课中,教师抓住了新旧知识的联系点点,设计了铺垫练习,为实现知识的正迁移作好准备。先是用填空题的训练,给学生复习了商不变的性质和分数的基本性质,然后引导学生联系比与除法、分数的关系,说一说这样做的依据是什么。这样设计复习题,有助于学生通过寻求比与除法、分数的关系建构比的基本性质这一概念,符合学生认识事物的规律和迁移规律。
2、很好的运用了猜测——验证——应用的教育理念。
首先让学生提出课本中的问题:联系比和除法、分数的关系想一想,在比中有什么相应的规律?然后先让学生说出个人的猜想,再自己举例验证,或者四人小组分工合作举例验证。通过交流,使学生看到各种角度(除法与比,分数与比)、各种方式(同乘,同除)的验证情况。接着得到了比的基本性质的内容,教师通过找关键词的方式让学生在头脑中形成清晰的表象,通过活学活用的练习。
(1)4:5的前项扩大2倍,要使比值不变,比的后项应该()。
(2)、如果3:2的后项变成10,要使比值不变,比的前项应该为()这两题及时巩固了新知,非常合理。最后学生会发现学习逼得基本性质的作用是为了化简比,进而学习如何化简比的方法,顺理成章。
3、练习形式多样,扎实有效。
既有随着知识学习的反馈练习,也有集中练习,既有口答的练习,又有动笔完成的训练,真正起到了练习的效果。
建议:给予学困生思考的时间,放慢语速就更好了。
将本文的word文档下载到电脑,方便收藏和打印。
八年级数学分式基本性质说课稿篇十五
今天听了冯老师的这节公开课后,给我的触动很深,她扎实的教学功底,严谨的教风很值得我们学习,本节课的亮点有:
本课中,教师抓住了新旧知识的联系点点,设计了铺垫练习,为实现知识的正迁移作好准备。先是用填空题的训练,给学生复习了商不变的性质和分数的基本性质,然后引导学生联系比与除法、分数的关系,说一说这样做的依据是什么。这样设计复习题,有助于学生通过寻求比与除法、分数的关系建构比的基本性质这一概念,符合学生认识事物的规律和迁移规律。
首先让学生提出课本中的问题:联系比和除法、分数的关系想一想,在比中有什么相应的规律?然后先让学生说出个人的猜想,再自己举例验证,或者四人小组分工合作举例验证。通过交流,使学生看到各种角度(除法与比,分数与比)、各种方式(同乘,同除)的验证情况。接着得到了比的基本性质的内容,教师通过找关键词的方式让学生在头脑中形成清晰的表象,通过活学活用的练习。
(1)4:5的前项扩大2倍,要使比值不变,比的后项应该()。
(2)、如果3:2的后项变成10,要使比值不变,比的前项应该为()这两题及时巩固了新知,非常合理。最后学生会发现学习逼得基本性质的作用是为了化简比,进而学习如何化简比的方法,顺理成章。
既有随着知识学习的反馈练习,也有集中练习,既有口答的练习,又有动笔完成的训练,真正起到了练习的效果。
建议:给予学困生思考的时间,放慢语速就更好了。
八年级数学分式基本性质说课稿篇十六
《比的基本性质》这节课是六年级上册第三单元的知识,李老师按照复习旧知(除法和分数),猜测比的性质,然后让学生验证,最后应用这个比的基本性质去化简,解决生活中的问题,整个教学过程清楚有条理,各个环节相扣。
李老师上这节课准备很认真,整堂课中充分运用了转化、迁移、归纳的数学思想。对分数的基本性质、除法的商不变规律进行复习,从而迁移到比的基本性质,很好地运用了这三者的联系。在推导比的基本性质中,还运用了猜测、归纳、验证,体现了数学的严谨。在教学过程中李老师采用启发点拨,唤起回忆,让学生自己去获取新知。并适时激发思维,提高学生灵活运用知识的能力。在学生掌握分数和小数比的化简方法后,老师又提出新问题:把:0.125化成最简单的整数比都有哪几种化简方法?这一问,激起学生的兴趣,大家积极动脑想不同的化简方法。这种教学方式极大限度地调动学生积极思维,培养了学生独立思考、灵活运用已有知识的能力,提高了学生分析问题和解决实际问题的能力。
八年级数学分式基本性质说课稿篇十七
1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题。
2.培养学生观察、分析、思考和抽象、概括的能力。
3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育。
教学过程。
一、谈话我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、整数的互化方法。今天我们继续学习分数的有关知识。
二、导入新课例1.用分数表示下面各图中的阴影部分,并比较它们的大小。
1、分别出示每一个圆,让学生说出表示阴影部分的分数。
(1)把这个圆看做单位1,阴影部分占圆的几分之几?
(2)同样大的.圆,阴影部分占圆的几分之几?
(3)同样大的圆,阴影部分用分数表示是多少?
2、观察比较阴影部分的大小:
(1)从4幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等。)。
(2)阴影部分的大小相等,可以用等号连接起来。
3、分析、推导出表示阴影部分的分数的大小也相等:
(1)4幅图中阴影部分的大小相等。那么,表示这4幅图的4个分数的大小怎么样呢?(这4个分数的大小也相等)。
(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来)。
4、观察、分析相等的分数之间有什么关系?
(1)观察转化成,的分子、分母发生了什么变化?(的分子、分母都乘上了2或的分子、分母都扩大了2倍。)。
(2)观察例2.比较的大小。
1、出示图:我们在三条同样的数轴上分别表示这三个分数。
2、观察数轴上三个点的位置,比较三个分数的大小:从数轴上可以看出:
3、观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律,
1、观察前面两道例题,你们从中发现了什么变化规律?“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变。”
2、为什么要“零除外”?
3、教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”(板书:“基本性质”)。
4、谁再说一遍什么叫分数的基本性质?教师板书字母公式:
1、请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?(和除法中商不变的性质相类似。)。
(1)商不变的性质是什么?(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变。)。
(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算。2、分数基本性质的应用:我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解决一些有关分数的问题。例3把和化成分母是12而大小不变的分数。
板书:
教师提问:
(1)?为什么?依据什么道理?(,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以,)。
(2)这个“6”是怎么想出来的?(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)。
(3)?为什么?依据的什么道理?(,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以,)。
(4)这个“2”是怎么想出来的?(这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)。