圆柱表面积教案(精选17篇)
教案是教师根据教学要求和学生特点编制的教学计划,它是教学活动进行的指导和保证,对于提高教学效果具有重要意义。教案的编写能够帮助教师理清教学内容,明确教学目标,并合理安排教学步骤,帮助学生更好地理解和掌握知识,实现教与学的有机结合。要编写一份完美的教案,首先要明确教学目标,确保目标的科学性和针对性。这些教案范例覆盖了不同学科和年级的教学内容,旨在帮助教师提高教学效果。
圆柱表面积教案篇一
这节课学习子什么内容?你学到了些什么?指出:求圆柱表面积在实际应用中,要注意题里的实际情况,弄清什么时候要侧面积加两个底面积,什么时候要侧面积加一个底面积,什么时候只要求侧面积,然后计算结果。另外,在求需要材料取近似数时,一般要用进一法。
圆柱表面积教案篇二
理解求表面积、侧面积的计算方法,并能正确进行计算.
能灵活运用表面积、侧面积的有关知识解决实际问题.
一、复习准备。
(一)口答下列各题(只列式不计算).
1.圆的半径是5厘米,周长是多少?面积是多少?
2.圆的直径是3分米,周长是多少?面积是多少?
(二)长方形的面积计算公式是什么?
(三)回忆圆柱体的特征.
二、探究新知。
1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系.
2.小结:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高.
(二)教学例1.
1.出示例1。
例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的'侧面积.(得数保留两位小数)。
2.学生独立解答。
教师板书:3.14×0.5×1.8。
=1.75×l.8。
≈2.83(平方米)。
答:它的侧面积约是2.83平方米.
3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积.
(三).
1.教师说明:圆柱的侧面积加上两个底面积就是.
是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积.
(四)教学例2.
1.出示例2。
例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?
2.学生独立解答。
侧面积:2×3.14×5×15=471(平方厘米)。
底面积:3.14×=78.5(平方厘米)。
表面积:471+78.5×2=628(平方厘米)。
3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积.
(五)教学例3.
1.出示例3。
例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)。
2.教师提问:解答这道题应注意什么?
这道题是求做这个水桶要用铁皮多少平方厘米.实际上是求这个圆柱形水桶的表面积.题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积.
3.学生解答,教师板书.
水桶的侧面积:3.14×20×24=1507.2(平方厘米)。
水桶的底面积:3.14×。
=3.14×。
=3.14×100。
=314(平方厘米)。
需要铁皮:1507.2+314=1821.2≈1900(平方厘米)。
答:做这个水桶要用1900平方厘米.
4.教师说明:这里不能用“四舍五入”法取近似值.在实际中,使用的材料都要比计算得到的结果多一些.因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法.
5.“四舍五入”法与“进一法”有什么不同.
(1)“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去.
(2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一.
三、课堂小结。
归纳:,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握.如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积.另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用.
四、巩固练习。
1.底面周长是1.6米,高是0.7米。
2.底面半径是3.2分米,高是5分米。
(二)计算下面各.(单位:厘米)。
(三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积.(有盖和无盖两种)。
五、课后作业。
(二)一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?
六、
探究活动。
面包的截面。
活动目的。
培养学生的观察能力和操作能力,发展学生的空间观念.
活动题目。
有一个圆柱形的面包,要切一刀把它分成两块,截面会是什么形状的图形?
活动过程。
1、学生分组讨论.
2、利用橡皮泥捏一个圆柱体,进行实验,验证结论.
3、画出截面图,表示结论,发展空间观念.
参考答案。
1、沿水平方向横切一刀,截面是圆形.(如图1)。
2、沿垂直方向纵切一刀,截面是一个长方形.(如图2)。
3、沿侧面斜切一刀,会形成大小不一的椭圆形.(如图3)。
4、从顶面向侧面斜切一刀,会形成椭圆的一部分.(如图4)。
5、从上底面斜切一刀到下底面,会形成椭圆的一部分.(如图5)。
(图1)(图2)(图3)(图4)(图5)。
圆柱表面积教案篇三
2.掌握圆柱侧面积和表面积的计算方法。
(二)能力目标。
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
教学重点。
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点。
能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备。
1.教师、学生每人用硬纸做一个圆柱体模型。
2.投影片。
教学过程:
生:我想对老师们说,我们一定会好好表现的,不会让你们失望。
生:我们的课堂将比赛场更精彩……。
师:我坚信你们一定不会让老师失望的。
一、引入新课:
生:圆柱是由平面和曲面围成的立体图形。
生:我还知道圆柱各部分的名称……。
生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。
课件演示这一过程。
师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)。
师:你还想知道什么呢?
生:还想知道怎么求它的表面积......
二、探究新知。
指名学生摸其表面积,并追问:怎样求它的表面积?
学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)。
师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)。
小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。
师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。
课件展示其变化过程。
师生小结:(教师板书)侧面积=底面周长×高。
(评价:在体育赛场上你们是我的骄傲,在课堂上你们更是我的自豪)。
师:让我们用热烈的掌声庆祝一下我们的成功。(掌声……)。
投影呈现例一:一个圆柱,底面直径是0、4米,高是1、8米,求它的侧面积。
(1)学生独立解答。
(2)投影呈现学生的解答,并让其讲清自己的解题思路。
师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?
生:底面周长和高。
师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。
师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)。
教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)。
指名学生说解题思路,
师:这说明要计算圆柱的表面积需要抓出哪两个量?
生:底面积和侧面积。
3、反馈练习:(略)。
师:想一想,应该先求什么?再求什么?请大家动手试一试。
4实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)。
三、全课小结:这节课你有什么收获?
你有没有想提醒同学们注意的地方?
生:要注意单位,还要注意所要求得圆柱有几个底面……。
最后,你们猜猜听课的老师对你们的表现是否满意?你觉得自己的表现如何?(生:略)。
圆柱表面积教案篇四
教材40页、41页例1、例2、例3及做一做,练习十第2-5题。
素质教育目标。
(一)知识教学点。
2.掌握圆柱侧面积和表面积的计算方法。
(二)能力训练点。
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
教学重点。
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点。
能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备。
1.教师、学生每人用硬纸做一个圆柱体模型。
2.投影片。
教学步骤。
一、铺垫孕伏。
1.口答下列各题(只列式不计算)。
(1)圆的半径是5厘米,周长是多少?面积是多少?
(2)圆的直径是3分米,周长是多少?面积是多少?
2.长方形的面积计算公式是什么?
3.教师出示圆柱体模型,指同学说出它有什么特征?
二、探究新知。
1.利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。
(1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。
(2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。
2.教学例1。
(1)出示例1,指同学读题,找出已知条件和所求问题。
学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。
板书:3.14×0.5×1.8。
=1.75×1.8。
≈2.83(平方米)。
答:它的侧面积约是2.83平方米。
(2)反馈练习:完成做一做41页第1题。
学生独立解答,然后订正。
(1)教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积。
(2)让学生利用圆柱体模型展开图进行比较、区别,从而使学生清楚:圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。
4.教学例2。
(1)投影片出示例题2、圆柱的几何图形和表面积的展图。
(2)指同学读题,找出已知条件和所求问题。
(3)让学生观察圆柱表面积的展开图,并小组议论:让学生理解圆柱表面积的组成部分,再按顺序说出求表面积的具体过程。具体计算由学生完成。
(4)指学生板演,其他同学在练习本上做,并把计算结果填在书上。
教师巡视指导,注意检查学生的计算结果和计量单位是否正确。
做完后订正,订正时让学生说出有关的计算公式。
(5)反馈练习:完成做一做第2题。
指一名学生在小黑板上做,其他在练习本上做,然后订正,订正时让学生讲解题方法。
5.教学例3。
(1)出示例3,指名读题,找出已知条件和所求问题。
(2)教师提示:解答这道题应注意什么?
启发学生说出:这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的.“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。
(3)学生在练习本上做,教师巡视指导,注意检查学生的计算结果。如果发现计算结果是1800平方厘米的让该生上黑板上做。
(4)订正,让板演的学生讲解题的思路和计算结果取近似值的方法。
(5)教师说明:这里不能用“四舍五入”法取近似值。在实际中,制作水桶使用的材料要比计算得到的数多一些,这样才能保证原材料够用。那么保留整百平方厘米时,十位上即使是4或比4小,也要向前一位进1。这种取近似值的方法叫做进一法,所以这题的计算结果应是1900平方厘米。
(6)“四舍五入”法与“进一法”有什么不同。
圆柱表面积教案篇五
1、合理的利用教材。
圆柱体的表面积这部分教学内容包括:圆柱的侧面积,表面积的计算,表面积在实际计算中的应用。上老师在进行教学时,将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学。教学设计和安排既源于教材,又不同于教材。整堂课容量较大,但学生学的轻松,教学效果也比较明显。
2、教师的主导与学生主体的统一。
本堂课在教学上采用了引导、放手、引导的方法,通过教师的导,鼓励学生积极主动的探究。
新课前的复习,由平面图形到立体图形,由长、正方体的表面积到圆柱体的表面积。通过圆柱体模型的演示,引导学生复习圆柱体的特征,进而理解圆柱体的表面积的.意义。
在教学侧面积的计算时,先让学生思考该怎样计算,再让学生动手探究。在实践中,学生很清楚地看到圆柱体的侧面展开是一个长方形(正方形、平行四边形等),求圆柱体的侧面积实际上就是求一个长方形的面积。
在学生会求侧面积的基础上,再加上两个圆面积,从而总结出求表面积的计算方法,使学生认识到立体转平面,形变量不变的辨证关系,培养学生的观察分析能力。
二、不足。
圆柱体的物体在生活中很普遍,如学生的透明胶带,矿泉水瓶盖等,让学生动手测量这些物体的有关数据,解决实际问题,学生的兴趣会更高写,也让数学回归到生活。
练习中,出现三个不同直径的圆,而出示的图片却是三个圆同样大,直观效果不明显。
圆柱表面积教案篇六
学生的学习水平有差异,在学习中可能会出现有的学生不知道怎么求圆柱侧面积,不会把曲面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。学生对动手操作较感兴趣,通过探索操作活动,小组合作与自主探究相结合的学习方式,有助于提高学生观察能力、自主探究能力,并发展学生的空间观念及合作学习的能力。
圆柱表面积教案篇七
2、填空:
(1)底面半径是2分米,高是7.3分米。
(2)底面周长是 18.84米 ,高是 5米 。
4、选择正确答案的序号填在括号里。
a、底面积 b、底面周长 c、底面半径。
16、一个无盖的圆柱形铁皮水桶,底面直径是 0.4米 ,高是 0.8米 ,要在水桶里、外两面都漆防锈漆,油漆的面积大约是多少平方米?(得数保留一位小数)。
圆柱表面积教案篇八
这节课虽留有许多缺憾,与传统的教学相比,做题少了些,在计算方面,没达到较多的训练,能影响到作业及今后考试的正确率,但我感到十分成功,我为学生课堂上的生命涌动而兴奋不已,主要有以下几点体会。
一、教学目标提升了。过去我仅满足于把学生“教会”,学生始终是被动的接受。课堂上学生厌烦,老师急燥,都苦不堪言。在新课程理念指引下,我把促进学生的“发展”,做为我贯穿课堂始终的目标。充分调动学生的主动性,激发学生的探索欲望,学生由被动变为主动。不断体验到自己的智力成果带来的乐趣。
二、学生在体验中,更好的理解了数学,不断闪现出创新的火花。课前,布置学生做圆柱体,我考虑到学生已有这方面的生活经验,并不难。但要做成一个标准的圆柱体,确实要动一定的脑筋。通过动手操作,学生其实已经初步感受到圆柱体,由2个相同的圆和一个长方形围成。更难能可贵的是一些学生在做中,发现圆柱底圆周长与长方形长相等。个别没做成功的孩子,在交流活动中,也能体验到失败的原因。促进空间观念的发展。
三、我也体验到了怎么教数学。
(1)只有深入理解课程标准,认真领会新课程理念,才能在实践过程中指导教学。
(2)立足发展学生的能力,设计课堂教学的策略。
(3)树立正确的教学观,不因考试而教学,教学应以开发学生智能为使命。
四、不足改进。在进行计算圆柱表面积练习时,应大胆让学生运用计算器,提高课堂教学效率。过去总担心一旦用计算器会降低学生的计算能力,会影响今后的考试,计算器只教不用。这节课由于圆柱的表面积计算繁杂,占用较多时间且正确率不高,不能及时有效的反馈学生掌握的情况。所以应根据教学情况,让学生运用计算器来解决计算问题。
圆柱表面积教案篇九
知识与技能:
过程与方法:经历猜想、操作、验证、应用的学习过程,提高学生解决问题的能力。
情感、态度、价值观:感受数学与生活的密切关系,增强学习数学的兴趣与数学应用的意识。
[教学重点]理解求表面积、侧面积的计算方法,并能正确进行计算。
[教学难点]能灵活运用表面积、侧面积的有关知识解决实际问题。
[教学手段]。
1、教学方法:观察法、分析法、讨论法。
2、学习方法:观察、实验、合作、交流。
3、教学准备:多媒体课件。
[媒体说明]。
[教学时间]40分钟。
[教学过程]。
一、复习旧知(口答):
1、(1)已知半径或直径,怎样求圆的周长和面积?
(2)长方形的面积=。
2、什么是表面积?怎样求长方体、正方体的表面积?
二、创设情境,激发兴趣。
1、教师出示一圆柱形茶叶筒:
要制作这样一个茶叶筒,至少需要多少材料?对于这个问题,你是怎样想的?
2、拿出自备的圆柱体,仔细观察,你有什么发现?(圆柱体是由两个平面和一个曲面围成的立体图形。)。
3、你能否复制出一个同样大小的圆柱体?你打算怎么做?
三、合作探究,学习新知。
1、观察、猜测:
将圆柱的表面展开,会得到什么图形?(两个底面是一样大的圆形,侧面是一个长方形或平行四边形。)。
2、动手操作:(分组讨论后再动手操作,并汇报交流)。
1组:我们用铅笔在圆柱的侧面画出了一条高,然后把它放倒在纸上,以这条高为起点开始向前滚一圈,并在纸上做好结束的标记,这是圆柱的侧面,再把两个底印在纸上画出两个圆,合起来就能知道大概用多少纸了。
2组:我们有个大圆柱体,但没有那么大的纸能让它滚一圈,怎么办?
师:对于2组遇到的实际情况,谁有更好的办法来解决?
3组:我们发现可以用长方形纸卷成圆柱体,所以就想到把圆柱体的侧面沿一条线剪开,结果发现它正好是个长方形,再加上两个圆形的底面就可以了。
生(齐声):是圆柱体的高。
部分学生认同3组同学的发现,纷纷效仿跟着操作。
老师将3组学生动手操作的结果贴在黑板上。
3、推导圆柱的侧面积计算公式。
师:这个展开的长方形与圆柱体的哪个面有关系?有什么关系?
生:长方形的面积等于圆柱体的侧面积。
师:长方形的长、宽与圆柱体的什么有关?
生:长方形的长是圆柱体的底面周长,长方形的宽是圆柱体的高。
(板书)长方形面积=圆柱体侧面积。
长×宽=底面周长×高。
师:如果用s侧表示圆柱体的侧面积,用c表示底面周长,h表示高,那么s侧=ch。
师:如果已知底面半径为r,圆柱体侧面积也可以写成什么?(s侧=2πr8226;h)。
师:还有没有不同的想法?
4组:如果不沿高去剪,而是沿一条斜线来剪,结果就不是长方形,而是平行四边形。
5组:我们小组剪出的侧面是一个正方形,它的底面周长和高相等。
师:那你们能计算出这个侧面积吗?需要测量哪些数据?(高和直径或底面周长)。
4、反馈练习。(课件出示)。
求下面各圆柱的侧面积:
(1)c=6.28dm,h=3dm;(2)r=5cm,h=5cm;。
课件出示圆柱的表面展开图,学生根据提示填空。
因为圆柱的表面展开后可得到:两个底面是大小相等的(),一个侧面是()或()形,所以圆柱的表面积就等于两个圆面积加上一个长方形的面积。即:
6、练兵场。(课件出示)。
(1)s侧=25.12cm,s底=12.56cm;(2)d=6dm,h=40cm.
四、指导练习,及时反馈。
1、学生独立完成教材第六页练一练第一题的第一小题,集体订正。
2、教材第六页试一试:
重点交流“无盖水桶”的表面积,要计算的是哪几个面的面积。
3、教材第六页练一练第2题:
重点理解“压路机前轮转一周,压路的面积就是圆柱的侧面积”。
五、课堂小结,布置作业。
1、这节课你有什么收获?
2、课后计算自己做的圆柱体,看看每个圆柱各需要多大的材料。
[板书设计]。
圆柱表面积教案篇十
年级。
六年级。
教师。
学
习
内
容
习
目
标
点
难
点
习
过
程
学 案。
导案。
独
立
尝
试
工学。
习
过
程
学 案。
导案。
点
拨
自
学
流
解
惑
作
考
试
我
总
结
教学反思:
本节课通过交流、问答、推理等形式,调动学生学习的积极性,激发学生强烈的探究欲望,教学中通过学生的亲身体验知识的探究的过程,加深学生对所学知识的理解,学生学习的积极性被调动起来了,理解求圆柱的侧面积用2∏rh,求圆柱的表面积要用侧面积加两个底面积。学生学得轻松、愉快。
圆柱表面积教案篇十一
圆柱的表面积教学,重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。在本节课的教学中,我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”,首先我给学生一张长方形美术纸,用这张纸做成一个圆柱体,让学生以小组为单位做出它的底面,看谁的最好,学生的思维很好,给出了多种想法。
方法一:用一张纸盖住圆柱,沿着边缘剪(不会很圆)。
方法二:把圆柱立起来用笔描绘出来地面再剪(不好描,自然不会很圆)。
方法三:用尺子量出直径,算出半径,用圆规画出圆再剪(有点接近了,但是直径不会很精确)。
方法四:把圆柱压扁,量出直径,接着同上做法(误解,这里的直径其实是半个圆的周长)。
方法五:量出美术纸的长,就是底面的周长,由此求出半径,再画圆贴上(很好,能理解侧面积求解的难点)通过这些活动后,再让学生自学表面积的公式,自然水到渠成了。课堂交给学生,会有你意想不到的事情。
圆柱表面积教案篇十二
教学目标:
1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学媒体:
教学重点:
教学过程:
一、猜测面积大小,激发情趣导入。
1、用你们手上的a4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)。
3、复习:圆柱的侧面积=底面周长×高。
刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。
二、组织动手实践,探究圆柱表面积。
1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)。
生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。
3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?
生:计算的方法。
圆柱的表面积=侧面积+两个底面的面积(板书)。
4、那现在你们就算算这两个圆柱的表面积是多少?
生:(不知所措)没有数字怎么算啊?
师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?
生1:我想知道圆柱体的底面半径和高。
生2:我想知道圆柱体的底面直径和高。
生3:我想知道圆柱体的底面周长和高。
………。
师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。
5、汇报展示:
情况一:半径:31.4÷3.14÷2=5(cm)。
底面积:3.14×5×5=78.5(平方厘米)。
侧面积:31.4×18.84=591.576(平方厘米)。
表面积:591.576+78.5×2=748.576(平方厘米)。
情况二:半径:18.84÷3.14÷2=3(cm)。
底面积:3.14×3×3=28.26(平方厘米)。
侧面积:31.4×18.84=591.576(平方厘米)。
表面积:591.576+28.26×2=648.096(平方厘米)。
师:通过我们计算验证了我们刚才的判断是正确的。
接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?
生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。
生2:这样做挺麻烦的有没有更简单一点的方法呢?
6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)。
教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。
问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)。
用字母表示:s=c×(h+r)。
我们用这个方法来验证一下我们的例2看是不是比原来简单?
汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)。
圆柱表面积教案篇十三
教学内容:p21-22页例3-例4,完成“做一做”及练习四的部分习题。
教学目标:
1、在初步认识圆柱的基础上理解圆柱表面积的含义,掌握圆柱表面积的计算方法,会正确计算圆柱表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的.能力。
3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。
教学难点:运用所学的知识解决简单的实际问题。
教法:启发引导法。
学法:自主探究法。
教具:课件。
教学过程:
一、定向导学(5分)。
(一)导学。
1.指名学生说出圆柱的特征.。
2.口头回答下面问题.。
(1)怎样求圆的周长与面积?
(2)怎样求圆柱的侧面积?
3、导入课题。
(二)定向。
揭示学习目标。
2、会正确计算圆柱表面积,能解决一些有关实际生活的问题。
二、自主探究(10分)。
(一)填空。
1、因为圆柱体有两个()和一个(),所以。
圆柱表面积教案篇十四
教学过程:
一、检查复习,引入新课。
师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。
引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。
二、引导探究,学习新知。
板书:底面积×2+侧面积=表面积。
要求圆柱的表面积,首先应该计算它的底面积和侧面积。
圆柱的底面是圆形,同学们会求它的面积吗?
(多媒体逐一出示圆柱及条件,求它的底面积,并记录结果。)。
(三)教学圆柱体侧面积的计算。
1、引导探究圆柱体侧面积的计算方法。
(1)设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?
(2)小组合作探究。(剪圆柱形纸筒)。
(3)汇报交流研究结果,多媒体课件展示。
(4)小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。
多媒体回到前面三个圆柱,逐一给出三个圆柱的高,求它的侧面积。并把结果记录下来。
1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?
2、学生根据数据进行计算?
3、汇报计算方法及结果,媒体出示结果进行验证。
表面积(平方厘米)150.72 125.6 69.08。
(五)小结:圆柱表面积的意义及计算方法。
三、练习巩固,灵活运用。
教学要求:
1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质和实践能力。
教学难点:圆柱体侧面积计算方法的推导。
教法运用:本节课采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探求圆柱侧面积的计算方法;同时通过多媒体的辅助教学,使新授与练习有机地融为一体,做到讲练结合,较好地突出教学重点、突破教学难点。
学法指导:采取引导 放手 引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。
教具:圆柱体教具、多媒体课件。
学具:圆柱形纸筒、茶叶桶。
圆柱表面积教案篇十五
《圆柱体的表面积》是九年义务教育六年制小学数学第十二册第二单元的学习内容,它是在学生掌握长方形以及圆的面积计算的基础上进行教学的,为今后进一步学习立体几何知识及培养学生的空间观念打下基础。是一节数学探讨课,与生活密切联系。
(二)教学目标知识目标:通过多种形式的感知,认识圆柱体,理解圆柱体的表面积概念,初步形成空间观念。
能力目标:培养学生观察、想象、分析的能力,掌握圆柱体的表面积计算。
情感目标:通过探究合作学习,激发学生学习热情以及培养学生的合作探究意识,渗透数学来源于生活。
(三)重点、难点重点:圆柱体表面积的概念。难点:圆柱体表面积的计算。
(四)教学具准备:圆柱体实物。
《新课标》指出:数学教学应联系现实生活,使学生从中获得学习数学的情感体验,感受数学的力量。同时,通过教学实践,使学生学会自主学习和小组合作,培养学生的创新精神和小组合作精神。因此,在本节课中,我认为运用活动教学形式,采取“引导-合作-自主探究”的教学方法,使每个学生都能参与到学习中,感受学习的乐趣。
现代教育心理学认为:小学生思维的发展是从具体形象思维向抽象思维过渡的。因此,按小学认知规律从“具体感知-形成表象-进行抽象”的过程,让学生通过自己摸一摸、剪一剪、拼一拼等系列活动认识形式,采用小组合作,自主探究的学习。
(一)开门见山,由面到体。
1、新课导入:同学们,请大家回忆一下以前学过的平面图形;你还记得怎么样计算它们的面积吗?(出示长方形、正方形、平行四边形和圆)2、实物出示茶叶筒、易拉罐等立体图形,从而得出立体图形概念。3、板书揭题:圆柱体的表面积,从研究平面图形到立体图形,是学生空间形成发展中的一次飞跃。因此,在引入前,首先让学生对以前平面图形知识进行系统性回顾。然后,再出示立体图形实物,在学生头脑上建立立体图形表象,并得出立体图形概念,从而点明本节课学习内容和目标,激发学生的强烈的求知欲和学习兴趣。
(二)教师引导、自主探究。
1、引导学生认识圆柱体各个“面”的形状和面积计算。(小组合作完成)。
(1)摸一摸,数一数;圆柱体它有几个面?(引导学生按顺序观察,可按方位给每个面标上名称。如:上面、下面和侧面。)。
(2)看一看,议一议;圆柱体每个面是什么形状?
(4)指一指,说一说;从不同位置展开圆柱体的侧面,不断变换,引导学生认识。
圆柱表面积教案篇十六
难点四:类似制作烟囱、水桶之类,很多学生由于缺少生活经验,不能灵活运用知识去解决问题。
如何有效组织教学,谈谈自己的粗浅的看法。
在六年级上学期,已经学习了长方体和正方体的表面积,学生对表面积的概念并不陌生。教学圆柱的表面积时,重点是通过制作圆柱模型、观察圆柱展开图,让学生理解圆柱的表面积是由一个曲面和两个完全相同的圆围成的。通过操作,真正建立圆柱侧面的表象。
探索并理解侧面积的计算方法是这部分教学的难点。圆柱的侧面是一个曲面,例2结合具体情境,展示了圆柱的侧面展开图,沿着高将侧面展开后是一个长方形。“化曲为直”过程中,教学重点要抓二者之间的联系,即展开后长方形的长就是圆柱的底面周长,宽是圆柱的高。通过“展”、“围”的反复操作,让学生切实建立这两者之间的联系,有利于突破难点。
圆柱的表面积包括一个侧面和两个底面。计算圆柱的侧面积时要用圆柱的底面周长乘高,而圆柱的底面积则需用到圆的面积公式。在同一题里,周长公式与面积公式混淆也是计算圆柱表面积出错的原因之一。怎样能更好的理清思路,灵活的进行计算呢?我认为,尽量将复杂的问题简单化,以不变应万变。即圆柱的侧面展开图是一个长方形,计算侧面积的直接条件是底面周长和高;圆柱的底面是圆形,计算圆的面积的直接条件是半径。当然,涉及到解决具体的问题,我们就要联系实际具体问题具体对待。
本单元的学习有利于发展学生的空间概念,有利于培养学生的思维的有序性,有利于培养学生认真审题的好习惯,提高学生灵活应用能力。
圆柱表面积教案篇十七
教学目标:
2、进一步掌握圆柱表面积的计算方法,能根据实际情况正确计算,培养学生解决简单的实际问题。
3、进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。
教学重点。
教学难点。
对策:
加强数学问题与生活问题的沟通与转化。教学预设:
1、
提问:上节课我们学习了圆柱的侧面积和表面积。(板书课题:圆柱的侧面积和表面积)怎样求圆柱的侧面积?(板书:圆柱的侧面积=底面周长乘高)。
如果底面周长没有直接告诉我们,还可以告诉我们什么条件也能求侧面积?怎样求?再引导学生体会:如果不知道底面周长而告诉我们半径或直径,也需先求出底面周长后才能求侧面积。
2、
怎样求圆柱的表面积?(板书:圆柱的表面积=侧面积+2个底面积)。
告诉我们什么条件可以求圆柱的表面积?怎样求?
还可以告诉我们什么条件也能求表面积?怎样求?
1、
第24页上第5题:读题后,请学生分析:题中已知什么,要求的是什么?独立思考解题方法,指名说解题方法,体会要结合生活实际情况来确定要计算的是什么,本题中的灯笼在生活中是只要计算一个底面积的。(多请几个学生说,说到基本上掌握方法为止,去年教这个内容时先让学生计算再理解解题思路的,结果有不少学生解题思路错误,在计算上浪费了很长时间)再要求计算:指名板演,集体练习,评析校对,指导学生计算时分几大步完成,计算步骤不要分得太细,也不要列一个大综合算式。
2、
第24页上第6题:处理方法基本同第5题,但要结合第5题的教学引导学生注意:1、题中关键词“无盖”,否则会方法错误;2、计算结果的处理有后续要求。教育学生对这样的细节问题要细心、敏感。
3、
第24页上第7题:引导学生读题后可出示纸做的博士帽教具,帮助学生理解解题思路,请学生独立思考后指名交流并解答。最后提醒学生注意其中的单位变化情况。
4、
第24页上第8、9题:读题后独立思考,分析交流解题思路,说明想法,引导学生学习将生活问题转化为数学问题。再独立完成在作业本上。
5、
补充:填空:
给一块边长是6.28分米的正方形铁皮配上一个底面,做成一个圆柱形铁皮水桶。
(1)6.28÷3.14÷2求的是( )。
(2)12×3.14求的是( )。
(3)6.28×6.28求的是( )。
(4)6.28×6.28+12×3.14求的是( )。
6、
(如学生有困难可用粉笔操作演示)三、全课总结。