圆柱的表面积教学方案(通用15篇)
选择合适的方案可以帮助我们更好地实现目标。然后,进行充分的信息收集和研究,以了解相关的背景和现状。方案案例的分析和评价可以帮助我们更好地理解方案的优缺点。
圆柱的表面积教学方案篇一
难点四:类似制作烟囱、水桶之类,很多学生由于缺少生活经验,不能灵活运用知识去解决问题。
如何有效组织教学,谈谈自己的粗浅的看法。
在六年级上学期,已经学习了长方体和正方体的表面积,学生对表面积的概念并不陌生。教学圆柱的表面积时,重点是通过制作圆柱模型、观察圆柱展开图,让学生理解圆柱的表面积是由一个曲面和两个完全相同的圆围成的。通过操作,真正建立圆柱侧面的表象。
探索并理解侧面积的计算方法是这部分教学的难点。圆柱的侧面是一个曲面,例2结合具体情境,展示了圆柱的侧面展开图,沿着高将侧面展开后是一个长方形。“化曲为直”过程中,教学重点要抓二者之间的联系,即展开后长方形的长就是圆柱的底面周长,宽是圆柱的高。通过“展”、“围”的反复操作,让学生切实建立这两者之间的联系,有利于突破难点。
圆柱的表面积包括一个侧面和两个底面。计算圆柱的侧面积时要用圆柱的底面周长乘高,而圆柱的底面积则需用到圆的面积公式。在同一题里,周长公式与面积公式混淆也是计算圆柱表面积出错的原因之一。怎样能更好的理清思路,灵活的进行计算呢?我认为,尽量将复杂的问题简单化,以不变应万变。即圆柱的侧面展开图是一个长方形,计算侧面积的直接条件是底面周长和高;圆柱的底面是圆形,计算圆的面积的直接条件是半径。当然,涉及到解决具体的问题,我们就要联系实际具体问题具体对待。
本单元的学习有利于发展学生的空间概念,有利于培养学生的思维的有序性,有利于培养学生认真审题的好习惯,提高学生灵活应用能力。
圆柱的表面积教学方案篇二
《圆柱的表面积》是在学生五年级学习了长正方体表面积面的旋转,了解了点、线、面之间的关系,和认识了圆柱的基本特征后,安排的一节课,通过让学生观察、想象、操作等活动,运用迁移规律掌握圆柱的侧面积、表面积的计算方法,并加以应用,以解决生活中的实际问题。学好这部分内容,为下节探究圆柱体积降低难度,进一步发展学生的空间观念,为学生进入中学学习其它几个几何知识打下坚实的基础,因此它具有很重要的承上启下作用。
学生对圆柱体是有一定认识的,70%的学生知道圆柱体的表面积是哪,但是全班只有10%的学生会求圆柱表面积,而且这些孩子都是在外面上过补习班或者进行预习记住圆柱的表面积计算公式的。由此可见,学生对圆柱的表面积了解的比较少,存在一定的困难。
1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质和实践能力。
重点。
难点。
圆柱体侧面积计算方法的推导以及圆柱表面积的计算方法。
一、激趣导入。
(复习圆柱体的特征)。
师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。
引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。
二、目标定向。
1、我能理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、我能通过对已有知识的迁移,探索新知识。
三、自主合作。
2、要求圆柱的表面积,首先应该计算它的底面积和侧面积。
(二)根据条件,计算圆柱的底面积。
圆柱的底面是圆形,同学们会求它的面积吗?
1、引导探究圆柱体侧面积的计算方法。
设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?
1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?
2、学生根据数据进行计算?
四、交流展示。
底面积×2+侧面积=表面积。
1、小组合作探究。(剪圆柱形纸筒)。
2、汇报交流研究结果,各小组展示。
3、小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。
(三)以小组为单位自己做例4,做完组长检查。
五、拓展延伸。
(1)底面周长是1.6米,高是0.7米。
(2)底面半径是3.2分米,高是5分米。
(1)底面直径是12米,高是16米。
(2)底面半径是3.2分米,高是5分米。
板书设计。
底面积=圆面积。
底面积×2+侧面积=表面积。
我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,在各个环节中从扶到放,让学生自己去解决,让他们在动手操作、合作探究中学习,在体验中获得数学的乐趣。
1、实践操作。
在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
让学生通过看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。其次,让学生通过动手,把自己课前准备的圆柱体模型展开,可以得到圆柱体的侧面积是一个长方形或者正方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式。
2、精讲多练。
新知的获得时间要短,课后的练习要从易到难。
本课我采取了分层练习法,先让学生练习侧面积的计算,再让学生试着把底面积乘2再加上侧面积得出圆柱体的表面积;这个计算过程很复杂,难度也很大。
数学来源于生活又服务于生活,所以我选取了两道生活中的圆柱表面积计算题,一道是完整的圆柱表面积,一道是特殊的圆柱表面积,丰富了学生的数学思维,也让学生学会了举一反三,学以致用。
当然,在这节课的教学中,还存在着一些不足。如:学生对圆周长和面积的计算不够熟练。
圆柱的表面积教学方案篇三
《圆柱的表面积》是北师大版六年级下册第一单元的圆柱与圆锥之圆柱表面积第一课时,这节课教学内容主要包括:圆柱的侧面积、表面积的计算,以及用进一法取近似值。在此前的学习中,学生已经直观认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等平面图形的性质及计算方法。通过剪一剪的活动来探索圆柱的侧面展开图除了长方形,还可能是什么图形?发现、创新是每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的兴奋点与关注点。学生自己准备的圆柱,沿高展开后还可能得到正方形,这是一种特殊现象。学生自己得出了与书上不一样的结果,觉得很兴奋。趁着学生发现探索的积极性,让学生思考还可以将圆柱的侧面怎样展开。有的说横着从中间剪一刀,立刻有人反对说那还是两个圆柱。横剪不行,竖剪过了,还能怎么剪?同学们犯起了愁。在一阵思考之后有人冒出一句:斜剪!展开之后是什么图形?有人猜是三角形,有人说是梯形,有人说平行四边形,带着种种可能同学们又开始拿出另一个准备好的圆柱,然后沿着斜线剪开,平行四边形展现在同学们面前。紧接着用长方形的面积推导侧面积公式,长方形的长是圆柱的底面周长,宽是圆柱的高。得出圆柱的侧面积等于底面周长乘高。通过圆柱侧面展开图的深入研究,同学们打开了探索、创新的思维,知道了学习不能只停留在书面的内容,应深入探讨,多方面多角度思考,要知其然,更要知其所以然。
实践也使我们体会到,创建生活课堂应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。学生在动手、动脑、动口的操作过程,实际上就是一种积极有效的意义建构过程。在这个不断的操作、观察、体验的过程中,学生都在思考,都在感悟。体验的越丰富,对概念的感悟也就越深刻。圆柱侧面计算方法和表面积计算方法都是学生在操作、体验中获得的。
圆柱的表面积教学方案篇四
预备班六年级学习内容简单,学生年龄小。所以只有教案设计适当,尝试坡度小些,变式花样精而少些,教师改变教学观念,以学生发展为主,才能在传授知识的同时,发展学生能力,培养学生创新能力,塑造学生的良好人格,落实素质教育的目标。
1、必要的铺垫。
出示实物,让学生观察。使学生对圆柱有一个感性的认识。
引导学生归纳圆柱形有哪些特征?增强学生概括能力和抽象能力。
2、在老师指导下,学生自主探究,获取新知。
老师设计以下四个层次:
(1)老师给出问题:
讨论:a、侧面展开是什么形状?
b、长方形的长等于什么?
c、长方形的宽等于什么?
(2)学生动手操作,观察,讨论。
自主发现结果:a、圆柱的侧面积=其侧面展开所得长方形的面积。
b、长方形的长=底面周长;宽=高。
(3)老师演示课件:直观看出,圆柱的表面积=圆柱的侧面+2底面面积。
层层设疑,让学生主动去探索,通过自身实践,获得新知,使学生。
获得基础知识与基本技能的过程中同时形成积极主动的学习态度,学会学习并形成正确的价值观。
3、通过变式训练,促进深化。
为了帮助学生正确运用圆柱表面积公式计算,按教学目的要求,循序渐进地采用变式训练。老师设计了3组练习。
a、思考:侧面积的计算。
b、例1:表面积的计算。
c、阅读:培养学生自学能力。
4、通过学生之间的小组合作交流、讨论,师生之间互动交流学习,实现合作学习,能够培养学生的团队精神,树立正确的人生观。
(板书:3个概念,2个公式,1次计算)。
教育家赞可夫指出:“在各科教学中要始终注意发展学生的逻辑思维,培养学生的思维的灵活性和创造性”。在数学教学中,教师要特别注意培养学生根据题中具体条件,自觉、灵活地运用数学方法,通过变换角度思考问题,发现新方法,制定新策略。
在教学过程中,我应更加重视和发展学生的好奇心,让每一个学生养成想问题、问问题、挖问题和延伸问题的习惯。让所有的学生都知道自己有权力和能力提出新见解、发现新问题。这一点对学生的发展很重要,它有利于学生克服迷信和盲从,树立起科学的思想和方法,有利于学生形成良好的学习品质。
圆柱的表面积教学方案篇五
《圆柱的表面积》教学,重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。
在本节课的教学中,我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,让学生在动手操作、合作探究中学习。将圆柱侧面积计算方法的推导作为教学难点来突破,将圆柱的表面积的计算作为重点来教学。
一、在复习引入环节,我首先通过复习圆的周长和面积的计算,为下面的计算圆柱的侧面积和表面积打下基础;复习圆柱的特征为后面侧面积和表面积的公式推导做好铺垫。
二、在侧面积和表面积的计算环节中,我首先让学生看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积的和。然后,在突破侧面积的计算方法这个难点时,让学生自己展开圆柱体模型,观察到侧面展开是一个长方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式,在这一环节中,培养了学生的观察、分析能力,同时也培养了学生的合作意识。
三、在练习题的设计中,遵循了从易到难的原则,在形式、难度、灵活性上都有体现。判断题有利于学生对知识的理解;动手测量并计算圆柱体实物表面积的题目,锻炼了学生对知识的实际应用能力,使学生感受到数学与现实生活的联系。
四、在教学方法上,充分利用了学生现有的学具和准备的圆柱体实物,让学生自己去动手、观察,推导出了圆柱的表面积和侧面积的计算公式。
在这节课的教学中,还存在着一些不足:
3、部分学生对生活问题中的圆柱表面积(不是三个面的)理解上有欠缺。
圆柱的表面积教学方案篇六
今天教学的内容是《圆柱的表面积》,圆柱的表面积教学,重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。在本节课的教学中,我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,让学生在玩中学,学中玩,以游戏闯关的形式愉悦地完成本课教学。课下,听取了老师们的评课,又联系课堂教学,我进行了深刻地反思。
一、激情导课,激发学生的求知欲。复习开始前,我问“同学们,老师今天把你们刚认识的新朋友带来了,你们猜,他是谁?”就在学生们的猜测下,我拿出了课前藏好的圆柱。我继续发问“你们认识它吗,是怎样认识的?你们还想知道它的什么?”由此展开圆柱的表面展开图。复习引入——提出长方体、正方体的表面积,导出圆柱的表面积的意义。
二、探究新知,闯关激发学习兴趣。本课教学,以闯关的形式将课程分为三部分,以闯关成功奖励一节活动课为诱饵,激发学习兴趣。第一关是侧面积的计算,探究新知时,让学生通过讨论、交流,明确圆柱侧面沿高打开是长方形,长方形的长相当于圆柱的底面周长,宽相当于圆柱的高。由此导出圆柱的侧面积的计算方法。在学生学会计算圆柱的侧面积以后,设疑:你会计算这圆柱的表面积吗?(第二关开始)学生在充分练习铺垫的基础上,合理自然地就计算出了圆柱的表面积。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学。第三关是练习阶段,以生活中的圆柱物体为例求出所需要的材料,要求学生说出要计算哪几个面,体现了数学来源于生活,数学应用于生活。
三、把握重、难点,合理利用教材。“圆柱表面积”这节课教学内容主要包括:圆柱的侧面积、表面积的计算,以及用“进一法”取近似值。教材安排了三道例题,但在教学中,我将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学,将用“进一法”取似值作为一个知识点。在突破侧面积的计算方法这个难点时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?让学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这圆柱的表面积吗?学生在充分练习铺垫的基础上,合理自然地就计算出了圆柱的表面积。在练习表面积的实际应用时又体现了数学与生活的联系。在这节课的教学中,还存在着一些不足:
一、实践操作展示得不够。在动手探索圆柱侧面积的计算方法时,大部分学生联系上节课的经验说出看法,而没有实际操作,我也没有让他们展示推导的过程,加深印象,只是让他们说一说,导致一部分学困生只能听听而已。
二、学生对圆周长和面积的计算不够熟练,所以,在计算圆柱的侧面积和表面积时显得费时费力;小组合作的初衷也是好的,但在实际教学中却没有达到预期的要求。在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。
圆柱的表面积教学方案篇七
[课后评议]。
本节课能充分发挥学生的主动性,通过动手操作、合作探究并总结出圆柱表面积的计算方法。一开始,通过观察圆柱形茶叶筒,学生了解了圆柱的.表面是由两个相同的底面和一个侧面构成的,而计算圆柱底面积就是计算圆面积。然后在学生初步理解圆柱表面积的含义后,重点安排学生进行圆柱侧面积计算方法的探索。学生通过剪、卷、滚等一系列动手操作活动探索出圆柱的侧面是一个长方形或平行四边形,从而推导出圆柱侧面积计算公式,也顺势得出圆柱表面积的计算方法。没有了生硬的填鸭式灌输教学,用的时间也稍微长了一些,但是学生在“作中思、思中学”,因而学得轻松、快乐,效果自然好很多。
[教后反思]。
一、创造性地使用教材。
圆柱的表面积教材首先沿着一条高剪开罐头盒的商标纸,使学生初步感知圆柱的侧面展开图是一个长方形,再将这个长方形与圆柱侧面相比较,得到长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而推导出圆柱的侧面积的计算方法,接着教材安排例题,已知圆柱的底面直径与高,求圆柱的侧面积,再直接给出圆柱表面积的计算方法。教材把圆柱侧面展开定位在沿高剪开得到一个长方形,逼学生“上路”,这样不利于培养学生的探索精神。我改变了这种传统的教学方法,在初步认识圆柱后直接让学生“复制”圆柱体,大胆地放手让学生自己去探索,学生在自己动手操作过程中,尝试用剪、卷、滚的方法将圆柱的表面展开,得到两个圆形的底面和一个长方形的侧面,从而切实掌握圆柱的表面展开图及侧面积、表面积的计算方法,感受到学习数学的乐趣。
二、让出课堂空间,提供学生自主探究的机会。
伟大的教育学家霍姆林斯基说过:“在每个人的心灵深处都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者。在儿童的精神世界里,这种需要特别强烈。”新课程标准中也指出:“动手实践、自主探索、合作交流是学生学习数学的重要方式。”将课堂向学生开放,学生在制作圆柱过程中发现,圆太大或太小了都做不成圆柱,只有当圆的周长与侧面图形的底边长度相等时才能做成圆柱。平形四边形、长方形、正方形的面积就是圆柱的侧面积,长方形的长、正方形的边长和平行四边形的底就是圆柱的底面周长,长方形的宽、正方形的边长和平行四边形的高就是圆柱的高,归纳出圆柱侧面积的计算方法,以及圆柱表面积的计算方法。这些都不是教师“灌”给他们的,教师只是教学中的组织者、引导者与合作者,教师的任务是引导和帮助学生去发现、去探究。课堂应是学生的课堂,教师少讲、少说,把大量的时间和空间还给学生,为学生营造一个民主、平等、宽松、和谐的学习环境,让学生自主探究,真正成为了学习的主人。
圆柱的表面积教学方案篇八
教学内容:p21-22页例3-例4,完成“做一做”及练习四的部分习题。
教学目标:
1、在初步认识圆柱的基础上理解圆柱表面积的含义,掌握圆柱表面积的计算方法,会正确计算圆柱表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的.能力。
3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。
教学难点:运用所学的知识解决简单的实际问题。
教法:启发引导法。
学法:自主探究法。
教具:课件。
教学过程:
一、定向导学(5分)。
(一)导学。
1.指名学生说出圆柱的特征.。
2.口头回答下面问题.。
(1)怎样求圆的周长与面积?
(2)怎样求圆柱的侧面积?
3、导入课题。
(二)定向。
揭示学习目标。
2、会正确计算圆柱表面积,能解决一些有关实际生活的问题。
二、自主探究(10分)。
(一)填空。
1、因为圆柱体有两个()和一个(),所以。
圆柱的表面积教学方案篇九
(1)计算圆柱体的表面积:教材14页做一做(强调作业格式要求:分三步,首先分别求出侧面积和底面积,最后求表面积)。
(2)底面直径6分米,高2分米。
(3)底面周长12.56米,高3米。
三.课堂作业:练习二第6题。
家庭作业:练习二第14题求表面积部分。
第二课教学反思。
无论是已知圆柱底面半径和高,或是已知底面直径、周长和高求表面积都必须经过七步计算(注:平方也算为一步)。这么烦琐的计算,对于学生而言是有一定难度的,且在列式中,还必须正确选用圆的`周长和面积计算公式,因此解答圆柱体的表面积其实是对学生综合应用所学面积公式的一大考验。
为适当降低教学难度,我在学生初次接触圆柱体表面积一课时,将教学目标仅定位于能够掌握公式,并能正确求出圆柱体的表面积,而不涉及灵活解决实际问题的练习(即不教学例4),整节课重在夯实基础。从列式情况来看,教学效果不错,可一到计算,问题还是频频凸显。即使我建议学生们制作了1——100的派表,可练习六第1题需要用到192派,第2题需要用到6.25派,这些结果从派表中都无法查找到结果,必须计算。三位数乘三位数学生平时练习较少,所以极易计算出错。在此,只有适当加大计算指导力度及练习密度,提升作业正确率。
补充资料:
这里,向同学们介绍另一种计算圆柱体表面积的方法。
我们把两个底面分别剪成8个相等的扇形(剪成的扇形越多越精确),取其中一个扇形再平均分成两个小扇形。把这些扇形贴紧长方形的长拼成一个近似的长方形,与原来侧面展开的长方形拼成一个大长方形。(因为我的绘图能力有限,所以图略。)。
这个大长方形的面积就是圆柱体的表面积,它的长是圆柱体的底面周长,它的宽是圆柱的高与底面半径的和。这样就可以得到另一种计算圆柱体表面积的公式,即:
小朋友,你能用两种不同的公式解答下面的题目吗?
圆柱的表面积教学方案篇十
这节课虽留有许多缺憾,与传统的教学相比,做题少了些,在计算方面,没达到较多的训练,能影响到作业及今后考试的正确率,但我感到十分成功,我为学生课堂上的生命涌动而兴奋不已,主要有以下几点体会。
一、教学目标提升了。过去我仅满足于把学生“教会”,学生始终是被动的接受。课堂上学生厌烦,老师急燥,都苦不堪言。在新课程理念指引下,我把促进学生的“发展”,做为我贯穿课堂始终的目标。充分调动学生的主动性,激发学生的探索欲望,学生由被动变为主动。不断体验到自己的智力成果带来的乐趣。
二、学生在体验中,更好的理解了数学,不断闪现出创新的火花。课前,布置学生做圆柱体,我考虑到学生已有这方面的生活经验,并不难。但要做成一个标准的圆柱体,确实要动一定的脑筋。通过动手操作,学生其实已经初步感受到圆柱体,由2个相同的圆和一个长方形围成。更难能可贵的是一些学生在做中,发现圆柱底圆周长与长方形长相等。个别没做成功的孩子,在交流活动中,也能体验到失败的原因。促进空间观念的发展。
三、我也体验到了怎么教数学。
(1)只有深入理解课程标准,认真领会新课程理念,才能在实践过程中指导教学。
(2)立足发展学生的能力,设计课堂教学的策略。
(3)树立正确的教学观,不因考试而教学,教学应以开发学生智能为使命。
四、不足改进。在进行计算圆柱表面积练习时,应大胆让学生运用计算器,提高课堂教学效率。过去总担心一旦用计算器会降低学生的计算能力,会影响今后的考试,计算器只教不用。这节课由于圆柱的表面积计算繁杂,占用较多时间且正确率不高,不能及时有效的反馈学生掌握的情况。所以应根据教学情况,让学生运用计算器来解决计算问题。
圆柱的表面积教学方案篇十一
教材分析:《圆柱的表面积》是人教版版小学数学六年级下册第二单元的内容。在这个阶段,学生已经直观认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等平面图形的性质,学习了这些图形的面积计算,学生还认识了长方体(正方体),掌握了长方体(正方体)表面积与体积的含义及其计算方法。在此基础上,本单元进一步学习圆柱和圆锥的知识。
教学目标:
知识技能:1.通过动手操作使学生理解圆柱体表面积的意义,掌握圆柱体表面积的计算方法。2.会正确计算圆柱的侧面积和表面积。
数学思考:运用知识的迁移,用“化曲面为平面”的方法得出圆柱体侧面积的计算方法;能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
问题解决;使学生能根据实际情况区分圆柱体表面积的不同情况,并灵活地选择计算方法;通过比较、观察培养学生的观察能力和空间想象力;通过独立思考、交流合作,类比推理而成功地获取知识,并能积极地运用所学知识解决实际问题。
情感态度:让学生体验出自己探究发现的快乐;感受到数学与日常生活联系广泛,激发起热爱数学的情感。
教学重点:动手操作展开圆柱的侧面积。
教学难点:圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。
学具准备:纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。
教学过程:
一、创设情境,引起兴趣。
拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?
想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)。
那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)。
二、自主探究,发现问题。
1、探究圆柱侧面的计算方法。
教师提问:将圆柱体的侧面展开,会是什么形状的呢?
这个长方形与圆柱体有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)。
即长×宽=底面周长×高。
所以,。
s侧=c×h。
(1)、现在请大家试着求出这个圆柱体茶叶罐用料多少。
学生测量,计算表面积。
(3)、动画:圆柱体表面展开过程。
三、实际应用。
四、回顾全课。
本节课你收获了什么,有什么遗憾。
圆柱的表面积教学方案篇十二
结合教学用具和学生已有认知,探索圆柱表面积的计算方法,能正确计算圆柱的表面积和侧面积,并根据公式解决实际问题。
【过程与方法】。
通过想象、操作等活动,知道圆柱侧面展开图是长方形的同时,熟记表面积的计算公式,发展空间观念。
【情感态度与价值观】。
能根据具体情境,借助圆柱表面积的计算方法解决生活中的一些实际问题,体会数学与实际生活的密切联系。
【教学重点】。
圆柱表面积的计算方法以及在生活中的应用。
【教学难点】。
(一)导入新课。
师:在前面的学习中,我们已经认识了圆柱,并且知道了生活中有很多物体的形状是圆柱。大家来看,这个圆柱形状的物体。它的制作需要一定的材料(出示一个茶叶盒)请同学们想一想,要“制作这样一个茶叶盒需要多少材料”,实际上是在求圆柱的什么?(边演示边讲解)。
(二)生成原理。
师生活动:要求“制作茶叶盒所需的材料”实际上是求圆柱的侧面积和两个底面面积(边演示边说),我们把圆柱侧面的面积叫做圆柱的侧面积,把圆柱底面的面积叫做圆柱的底面积,圆柱的侧面积加上两个底面的面积叫做圆柱的表面积。
(2)创疑激趣。
(3)小组合作交流。
小组汇报:圆柱的侧面积就等于长方形的面积,长方形的长等于圆柱底面的周长,宽等于圆柱的高,因此圆柱的侧面积也就等于圆柱的底面周长乘以高。
师:我们已经会求圆柱的侧面积,那圆柱的表面积呢?(让学生回答,教师板书求表面积的算式,并板书课题“圆柱的表面积”)。
师生活动:用字母表示侧面积和底面积的话,该如何表示圆柱的表面积。
(三)深化原理。
圆柱的表面积是圆柱的侧面积加上两个底面面积之和。如果圆柱只有一个底面,它的表面积则是侧面积和一个底面积之和。如水桶。
(四)应用原理。
(五)课堂小结。
生:测量、确定笔筒的大小。
师:如何确定?
生:确定底面半径,还有笔筒的高。
师:课后利用所学知识给自己设计一个笔筒,并做一下“做一做”。
圆柱的表面积教学方案篇十三
教学要求:
1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质和实践能力。
教学难点:圆柱体侧面积计算方法的推导。
教法运用:本节课采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探求圆柱侧面积的计算方法;同时通过多媒体的辅助教学,使新授与练习有机地融为一体,做到讲练结合,较好地突出教学重点、突破教学难点。
学法指导:采取引导放手引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。
学具:圆柱形纸筒、茶叶桶。
教学过程:
一、检查复习,引入新课。
(复习圆柱体的特征)。
师:上节课,我们认识了一个新的几何形体――圆柱。知道它是由平面和曲面围成的立体图形。
引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。
二、引导探究,学习新知。
设疑:长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?
板书:底面积×2+侧面积=表面积。
要求圆柱的表面积,首先应该计算它的底面积和侧面积。
(二)根据条件,计算圆柱的底面积。
圆柱的底面是圆形,同学们会求它的面积吗?
(多媒体逐一出示圆柱及条件,求它的底面积,并记录结果。)。
条件:(厘米)r=3d=4c=6.28。
底面积(平方厘米)28.2612.563.14。
(三)教学圆柱体侧面积的计算。
1、引导探究圆柱体侧面积的计算方法。
(1)设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?
(2)小组合作探究。(剪圆柱形纸筒)。
(3)汇报交流研究结果,多媒体课件展示。
(4)小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。
2、计算圆柱体的侧面积。
多媒体回到前面三个圆柱,逐一给出三个圆柱的高,求它的侧面积。并把结果记录下来。
条件(厘米)h=5h=8h=10。
侧面积(平方厘米)94.2100.4862.8。
1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?
2、学生根据数据进行计算?
3、汇报计算方法及结果,媒体出示结果进行验证。
表面积(平方厘米)150.72125.669.08。
(五)小结:圆柱表面积的意义及计算方法。
三、练习巩固,灵活运用。
(二)根据要求练习。
1、用铁皮制作圆柱形的通风管10节,每节长8分米,底面周长是3.4分米。至少需要铁皮多少平方分米?(只列式不计算)。
2、砌一个圆柱形的水池,底面直径2米,深3米,在池的周围与底面抹上水泥,抹水泥的部分面积是多少平方米?(只列式不计算)。
3、用铁皮制一个圆柱形的油桶,底面半径3分米,高12分米。制这个油桶至少要用铁皮多少平方分米?(得数保留整十平方分米)。
根据学生的计算结果,教学用“进一法”取近似值。
小结:计算圆柱的表面积要具体情况具体分析。要学会运用所学的知识合理灵活地解决生活中的实际问题。
(三)操作练习。
根据练习要求,小组合作测量计算制作所带的圆柱形实物的用料面积。
练习要求:(多媒体出示)。
测量:借助工具测量出需要的数据(取整厘米数),并做好记录。
计算:根据量得的数据,列出相应的算式并算出结果。
反思:
一、合理灵活地组织和利用教材。
“圆柱的表面积”这部分教学内容包括:圆柱的侧面积、表面积的计算,表面积在实际计算中的应用以及用进一步取近似值。教材共安排了三道例题,分两课时进行教学。教学时,我打破了传统的教学程序,将这些内容重新组织,合理灵活地利用教材在一课时内完成了两课时的教学任务。将侧面积计算方法的推导作为教学的难点来突破;将表面积的计算作为重点来教学;将表面积的实际应用作为重点来练习;将用进一法取近似值作为一个知识点在练习中理解和掌握。四者有机结合、相互联系,多而不乱。教学设计和安排既源于教材,又不同于教材。三道例题没有做专门的教学,但其指导思想和目的要求分别在练习过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了调堂教学效率。
二、较好地体现了教师主导与学生主体作用的统一。
本节课在教学上采用了引导、放手、引导的方法,通过教师的“导”,鼓励学生积极、主动地探究新知。
1、直观演示和实际操作相结合。
新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
2、讲练结合。
圆柱的表面积教学方案篇十四
因为疫情迟迟没有好转,离开学时间还是遥遥无期,所以培育小学秉着“停课不停学”的理念,开始了网课教学。
我今天教学的内容是人教版六年级下册《圆柱的表面积》,本节课的教学难点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,重点是灵活运用侧面积、表面积的有关知识解决实际问题。本节课的教学,从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,在各个环节中让学生自己去解决,让学生在动手操作、合作探究中学习。
一、激情导课,激发学生的求知欲。
复习开始时,我问“同学们,老师今天把你们刚认识的新朋友带来了,你们猜,他是谁?”就在学生们的猜测下,我拿出了课前藏好的圆柱。我继续发问“谁能给大家介绍一下这位新朋友?你们还想知道它的什么?”然后,让学生动手摸一摸手中的圆柱体,“谁能告诉大家你摸到了什么?”形成圆柱表面积的表象,从而很轻松的得出:圆柱的表面积等于圆柱的侧面积和两个底面面积之和。
二、把握重点,突破难点,合理利用教材。
“圆柱表面积”这节课教学内容主要包括:圆柱的侧面积、表面积的计算,以及用“进一法”取近似值。教材安排了两道例题,但在教学中,我将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学,将用“近一法”取似值作为一个知识点。再结合学生的实际,巧妙的把他们联系成一个整体,做到收中有放,放中有收。
三、教学方法上,采用直观演示和实践操作相结合。
新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作。让学生自己展开圆柱体模型,观察到侧面展开是一个长方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式。
再让学生以小组为单位,通过看一看、摸一摸,自己观察、发现,思考怎样求圆柱体的表面积? 讨论:求圆柱体的表面积需要知道哪些数据? 从而得出圆柱体表面积的计算公式。充分利用了学生现有的学具和准备的圆柱体实物,让学生自己去动手、观察,推导出了圆柱的表面积和侧面积的计算公式,并运用幻灯片辅助教学,有利于学生对知识的理解及掌握。
四、练习题的设计上由易到难,讲练结合。
在练习题的设计中,遵循了从易到难的原则,先是已知周长、半径和直径求圆柱的侧面积,在此基础上再想一想已知这三个条件怎样求出圆柱的表面积。采用分步口答的方法,让学生说出自己的想法,从而达到熟练掌握求圆柱的表面积的计算方法。例4主动放手让学生独立解答,锻炼了学生对知识的实际应用能力,使学生感受到数学与现实生活的联系。
当然,在这节课的教学中,还存在着一些不足。如:学生对圆周长和面积的计算不够熟练;另外,在练习题的设计上都是只列式不计算的方法,没有让学生真正计算出侧面积和表面积;小组合作的初衷是好的,但在实际教学中却没有达到预期的要求。在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。
圆柱的表面积教学方案篇十五
教学目标:
1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学媒体:
教学重点:
教学过程:
一、猜测面积大小,激发情趣导入。
1、用你们手上的a4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)。
3、复习:圆柱的侧面积=底面周长×高。
刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。
二、组织动手实践,探究圆柱表面积。
1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)。
生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。
3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?
生:计算的方法。
圆柱的表面积=侧面积+两个底面的面积(板书)。
4、那现在你们就算算这两个圆柱的表面积是多少?
生:(不知所措)没有数字怎么算啊?
师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?
生1:我想知道圆柱体的底面半径和高。
生2:我想知道圆柱体的底面直径和高。
生3:我想知道圆柱体的底面周长和高。
………。
师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。
5、汇报展示:
情况一:半径:31.4÷3.14÷2=5(cm)。
底面积:3.14×5×5=78.5(平方厘米)。
侧面积:31.4×18.84=591.576(平方厘米)。
表面积:591.576+78.5×2=748.576(平方厘米)。
情况二:半径:18.84÷3.14÷2=3(cm)。
底面积:3.14×3×3=28.26(平方厘米)。
侧面积:31.4×18.84=591.576(平方厘米)。
表面积:591.576+28.26×2=648.096(平方厘米)。
师:通过我们计算验证了我们刚才的判断是正确的。
接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?
生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。
生2:这样做挺麻烦的有没有更简单一点的方法呢?
6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)。
教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。
问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)。
用字母表示:s=c×(h+r)。
我们用这个方法来验证一下我们的例2看是不是比原来简单?
汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)。