五年级数学教案人教版教案(优秀20篇)
教案的编写过程中需要结合学生的实际情况和教材的特点进行灵活设计。教案中的教学设计要符合教学目标和课程标准的要求。接下来是一份精心准备的教案模板,供大家参考和使用。
五年级数学教案人教版教案篇一
教学目标:
1、使学生通过观察、操作等活动认识正方体和正方体的面、棱、顶点以及棱长的含义;。
2、掌握正方体的基本特征,体会正方体和长方体的联系与区别;。
3、培养学生的观察、概括能力。教学。
教学重点:
掌握正方体的特征。
教学难点:
正方体与长方体的比较。
课前准备:
教法学法实践法、讨论法。
教学过程:
一、复习导入。
1、昨天,我们学习了长方体。请大家回顾一下:长方体有哪些特征?
2、口答:说出每个图形的长、宽、高各是多少。
3、设疑:第4个图形的长、宽、高相等,说明:这样的物体叫作正方体。大家想不想研究它?这节课我们要研究它的有关知识。
(揭示课题:正方体的认识)。
二、概括特征。
1、以小组为单位发学具。
2、以小组为单位研究手中的正方体。建议:用看一看、摸一摸、数一数、量一量、比一比的方法来研究。
3、自主探究。让学生结合手中的实物进行探究,再让他们小组交流自己的发现。
4、汇报交流。
(1)让生结合实物说说面有什么特点?你是怎样验证的?从中明确:正方体的6个面是完全相同的正方形。
(2)让学生说说棱有什么特点?你是怎样验证的?从中明确:正方体的12条棱长度都相等。
(3)让生说说有几个顶点?你是怎么验证的?
5、提问:谁能完整地说一说正方体有什么样的特征?
多指名几个同学说特征。
6、结合直观图小结:正方体6个面是完全相同的正方形,它有12。
条棱,每条棱的长度都相等。它还有8个顶点。
7、提问:依据我们今天所学的知识想一想,生活中哪些物体的形状是正方体?
8、请同学们小组合作,运用手中的学具验证一下我们今天学习的正方体的特征。然后找代表说一说。完成表格。
三、观察比较,体会异同。
1、提问:长方体和正方体有哪些相同点,有哪些不同点?
2、让学生结合长方体和正方体实物进行观察、归纳,再同桌交流观察的结果。
3、汇报交流。相同点是:都有6个面、12条棱、8个顶点。
4、根据比较结果,想一想正方体和长方体有什么关系?
不同点:长方体每个面都是长方形,特殊情况有两个相对的面是正方形,相对的面完全相同,正方体6个面都是完全相同的正方形;长方体相对的棱长度相等,正方体每条棱的长度都相等。
练习完成p20做一做。
总结今天这堂课我们认识了正方体,你有哪些收获?还有什么疑问?
作业布置。
板书设计:
正方体的认识。
6个面(完全相同,都是正方形)。
立体图形正方体12条棱(长度相等)。
8个顶点。
五年级数学教案人教版教案篇二
1.小组合作,完成课本第21页第8题。
(1)3个3的倍数的偶数________________。
(2)3个5的倍数的奇数________________。
讨论:你能说出3个既是3的倍数又是5的倍数的偶数或奇数吗?
2.自主完成第22页第10题,然后与同伴交流。
3.小组合作,完成第11题,然后组内代表汇报。
4.小组交流“生活中的数学”。
五年级数学教案人教版教案篇三
上节课,我们学习了根据从某个角度观察得到的平面图形,拼搭出立体图形的方法,这节课,我们再来研究怎样根据从多个角度观察得到的三视图来拼搭立体图形。
教师出示从正面观察某立体图形得到的平面图形,如。
请同学们猜一猜,它是由几个小正方体组合而成的,并说明理由。
学生纷纷发表意见,有的说是2个,有的说3个……。
师:看来要了解物体的真面目只看一面是不够的,今天我们就一起来探索根据三视图摆立体图形。
五年级数学教案人教版教案篇四
教学目的:
1、培养学生从不同角观察分析事物的能力。
2、进一步培养学生的空间想象能力。
教学重难点:
使学生从形象构建抽象的想象能力。
教具学具:
一个球体、一个圆柱体、正方体等。
教学过程:
一:导入新课:上节课我们对一个物体从不同角度进行了观察,也发现了从中的奥秘和乐趣,今天我们将两上物体从不同角度进行观察,体验从不同角度看世界。
二:新授课。
1、师将一个球体和一个圆柱体按例2摆放在讲台上,抽生的小组为单位上台观察,燕记住从正面上面左面右面,观察到的样子记下来,再回到位置上把从四个面观察到的画出来,并同方交流。
师抽生把画出的图形展示出来,集体评议。
2、完成39页例2及做一做(展示评议)。
三:构建空间想象力。
1、将两个完全一样的正方体并排放,要求生想象画出以不同角度看到的样子(强调左右面是重合,故只能看见一个正方形)。
2、将一个正方体和圆柱体并排放,要求生想象画出从不同角度看到的样子。
完成练习八第3题。
五年级数学教案人教版教案篇五
教学内容:
课本第12~17页上的内容。
教学目标:
1.通过观察、分析、讨论、归纳、猜想的研究方法,小组合作研究出偶数+偶数=偶数,奇数+奇数=偶数,偶数+奇数=奇数。
2.经历探索加法中数的奇偶变化过程,在活动重视学生体验探究方法,培养学生分析、解决问题的能力。
3.结合小游戏使学生体会生活中有很多事情中存在数学规律,从而调动学生学习数学的兴趣。
4.通过实践报告,以小组合作的形式探究加法中奇偶性的变化规律,培养学生的小组合作意识。
教学重点:
从生活中的摆渡问题,发现数的奇偶性规律。
教学难点:
运用数的奇偶性规律解决生活中的实际问题。
教具准备:
投影、杯子。
教学过程:
一、揭示课题。
自然数包含有奇数和偶数,一个自然数不是奇数就是偶数。这一节课我们要进一步认识数的奇偶性。
二、组织活动,探索新知。
活动一:示图(右图)。
小船最在南岸,从南岸驶向北岸,
再从北岸驶回南岸,不断往返。
1、(1)小船摆渡11次后,船在南岸还是北岸?为什么?
(2)有人说摆渡100次后,小船在北岸。
他的说法对吗?为什么?
2、请任说一个摆渡的次数,学生回答在南岸还是北岸?
3、请学生画示意图和列表并观察。
4、想:摆渡的次数与船所在的位置有什么关系?
摆渡奇数次后,船在岸。
摆渡偶数次后,船在岸。
试一试。
一个杯子杯口朝上放在桌上,翻动1次,杯口朝下,反动2次杯口朝上。翻动10次后,杯口朝,反动19次后杯口朝。
1、想一想:翻动的次数与杯口的朝向有什么关系?
翻动奇数次后,杯口朝。
翻动偶数次后,杯口朝。
2、把“杯子”换成“硬币”你能提出类似的问题吗?
活动二。
圆中的数有什么特点?正方形中的数有什么特点?
圆中的数都是偶数,正方形中的数都是奇数。
试一试:(投影)。
三、巩固练习(投影出示习题)。
四、总结。
这节课同学们有什么收获和体会?
五、作业。
1、课本第17页“试一试”的题目。
2、优化作业。
五年级数学教案人教版教案篇六
1.投影出示例2。
2.分小组探究。
学生分成若干个小组,每个小组准备若干个小正方体木块。
师:现在每个小组都有若干个小正方体木块,请你们自主探究一下,怎样拼搭,能拼搭成符合兰兰看到的三视图的立体图形,看一看哪个小组最先完成并说一说是怎样摆的。
学生分组探究,教师巡视指导。
3.探究结果汇报。
我们拼搭的图形为。因为兰兰从正面看得到的平面图形和从左面看得到的平面图形都是由2个小正方形组成的长方形,因此说明这个立体图形只有一层,并且它的前面是2个小正方体,它的左面也是2个小正方体。而从上面看是两排,它的前排是2个小正方体,第二排是一个小正方体并且应该在左边,因此我们组拼成了上面的图形。
师生共同评价总结:各小组都能积极地思考,动手动脑解决问题,并说出了自己的思考过程。
3.即时练习。
指导学生完成教材第2页“做一做”。
学生根据题意自行操作,教师巡视及时发现学生在拼摆中存在的问题,并进行及时指导。
五年级数学教案人教版教案篇七
教学内容:
教学目标。
一、基础性目标:
1.通过生活中的事例,使学生初步体会数字编码思想在解决实际问题中的应用。
2.让学生通过观察、比较、猜测来探索数字编码的简单方法,学会用数进行编码,初步培养抽象、概括能力。
二、发展性目标:.
1、让学生进一步体会数在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养应用意识和实践能力。
2、使学生在数学活动中养成与人合作的良好习惯,初步学会表达和交流解决问题的过程和结果。
教学重点:
1、了解邮政编码的结构,初步体会数字编码的方法。
2、了解身份证号码中蕴含的简单信息,加深对编码方法的理解。
3、掌握利用符号和数字组合编码的方法。
教学难点:
1、了解邮政编码的结构,初步体会数字编码的方法。
2、了解身份证号码中蕴含的简单信息,加深对编码方法的理解。
3、掌握利用符号和数字组合编码的方法。
教材分析:
1、“数学广角”主要是向学生渗透一些重要的数学思想方法。本单元是通过日常生活中的一些事例,使学生初步体会数字编码思想在解决实际问题中的应用,并通过观察、比较、猜测来探索数字编码的简单方法,让学生学会运用数进行编码,初步培养学生[此文转于斐斐课件园]的抽象、概括能力。
2、在日常生活中,数有着非常广泛的应用。让学生明确,数不仅可以用来表示数量和顺序,还可以用来编码,并通过实践活动进行简单的数字编码,培养学生[此文转于斐斐课件园]的数学思维能力。
3、数字编码和我们的生活紧密相关,让学生通过生活中的具体事例,比如邮政编码、身份证号码、电话号码等,体会到运用数字或者符号来描述事物,可以比较简洁、准确地表示出事物蕴含的客观规律,也便于我们分类查询和统计。
4、通过一些生活中的事例向学生渗透数字编码思想,通过观察、比较、猜测来探索数字编码的简单方法,并通过实践活动加以应用。让学生体会到数学应用的广泛性,从而提高他们学习数学的兴趣和积极性。
教学建议:
1、恰当把握目标。
数字编码是一种抽象的数学思想方法,在这里学生只要能从邮政编码、身份证号码等具体实例中初步了解蕴含其中的一些简单信息和编码的含义,探索出数字编码的简单方法,并能在实践活动中加以应用就可以了,不要求学生掌握编码中每个数字的信息和含义。
2、注意数学与生活的联系,适度关注学生的生活经验。
教学中,教师要尽量从学生身边的具体事例来引入教学。同时,启发学生了解生活中的数学,比如通过调查了解邮政编码和身份证号码的含义,了解生活中的一些数字编码的意义等。
3、让学生动手实践,提供自主探索的空间。
学生在实践中可以有不同的编码方法,教师要允许学生采用不同的形式,并且要放手让学生亲身去体会、经历运用所学知识解决实际问题的过程,培养学生[此文转于斐斐课件园]的探索精神和实践能力。教师只是在必要时给以一定的点拨、引导。
五年级数学教案人教版教案篇八
五年级大多数学生的观察力、记忆力、思维能力符合年龄及年级特点,具有一定的学习习惯,有良好的学习态度,学习数学的信心较强;学生分析能力有一定的提高。由于各种原因部分学生数学基础较差,同时分析问题的能力、灵活性解决问题的方面也欠缺,需要下大力量来培养训练。同时也存在个别学生学习习惯较差,家长配合不到位现象,影响学生学习数学的态度。本年级的学生能够听从老师的教导,但是自主创新的意识还是比较缺乏,针对这现象在教学中对学生要加强培养自主探究意识及能力;对那些学习基础较差、家长常于疏忽的学生,应在课内课外加以帮助,使其树立学习数学的信心和兴趣,尽快养成良好的学习习惯,并同时提高学习成绩。
五年级数学教案人教版教案篇九
1.通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征。
2.掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴。
3.培养和发展学生的实验操作能力,发现美和创造美的能力。
教学重难点。
掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴。
教学工具。
课件。
教学过程。
一、引入新课:
(1)欣赏下面的图形,并找出各个图形的对称轴。
(2)学生相互交流。
你们还见过哪些轴对称图形?
(3)轴对称图形的概念:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
(4)通过例题探究轴对称图形的性质:
例题1:。
同学们用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,你能发现什么规律。
学生交流。
教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。
二、课内练习。
1.判断下面各图是否是轴对称图形,如果是,请指出它们的对称轴。
三、教学画对称图形。
例题2:。
(1)引导学生思考:
a、怎样画?先画什么?再画什么?
b、每条线段都应该画多长?
(2)在研究的基础上,让学生用铅笔试画。
(3)通过课件演示画的全过程,帮助学生纠正不足。
四、练习:
课内练习一-----第1、2题。
课后习题。
完成课后练习题相关作业。
五年级数学教案人教版教案篇十
3、培养和发展学生的实验操作能力,发现美和创造美的能力。
会利用轴对称的知识画对称图形。
1、创设情景,引发思维。
2、组织讨论,深化思维。
3、加强练习,发展思维。
1、欣赏p1的图片,你发现了这些图形有什么相同点和不同点?
2、同桌互相说说什么样的图形叫作轴对称图形?
3、仔细观察例1中的图形,你发现了什么?你知道怎么画对称图形吗?
4、试着在例2的格子图片上画一画。
5、你能用预习到的知识用纸来折、剪出一个轴对称图形吗?
一、复习引入。
1、轴对称图形的概念。
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
2、通过例题探究轴对称图形的性质。
二、例题1。
你能发现什么规律。
三、交流。
教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。
四、教学画对称图形。
例题2。
1、在研究的基础上,让学生用铅笔试画。
2、通过课件演示画的全过程,帮助学生纠正不足。
五、练习。
1、欣赏下面的图形,并找出各个图形的对称轴。
2、学生相互交流。
你们还见过哪些轴对称图形?
用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,
(1)思考。
a、怎样画?先画什么?再画什么?
b、每条线段都应该画多长?
3、课内练习一-----第1、2题。
5、《新课程标准》强调,动手实践,自主探索与合作交流是学生进行有效的数。
学学习活动的重要方式。教学中要鼓励每个学生亲自实践,积极思考,体会活动的乐趣,在乐学的氛围中,培养学生动手能力,并学会且应用新知。
轴对称。
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
五年级数学教案人教版教案篇十一
1.第3题:呈现了从不同方向观察一个立体图形得到的三个图形,让学生用正方体搭出相应的立体图形。教师可以放手让学生自主探究,然后组织全班同学讨论并流拼搭的方法。注意引导学生有步骤、简洁地进行操作。
2.第4题:先让学生独立解决问题,再组织交流。
对于第(2)小题,学生完成练习后,教师让学生展示不同的摆法,通过交流,使学生进一步体会只看到一面是无法确定物体的形状。
3.第5题:可以让学生先直接作出判断,再组织交流。
教师可以让学生说一说或在方格纸上画出,从不同的方向观察自己所搭的立体图形得到的图形;还可以让学生小组活动,由一名学生增加所给的条件,使其他人能准确地摆出这个立体图形。
5.第7题:先让学生独立思考,并根据题意要求动手摆一摆,以此来验证自己的想法。在学生独立思考的基础上,教师组织学生进行全班交流。
五年级数学教案人教版教案篇十二
教学内容:
人教版五年级数学上册第六单元《中位数》教材第105页例4、第106页例5及部分习题。
教学目标:
1、知识与技能:通过教学使学生理解中位数在统计学的意义,学会求中位数的方法。了解中位数与平均数的联系与区别,会根据数据的具体情况合理选择统计量。
2、过程与方法经历中位数的认识计算过程,体验合作探讨,理解认识的学习方法,培养学生全面多角度分析问题的意识和初步的统计观念。
3、情感态度价值观在学习活动中,感受数学知识在现实生活中广泛应用,激发学习兴趣,增强学生在生活中的数学意识,培养学生热爱体育运动的良好情感。
教学重点:
理解中位数的意义,掌握中位数的计算方法。
教学难点:
掌握求偶数个数据的中位数的方法。
教法学法:
创设情境、质疑引导、引导与讲解相结合。小组合作探究,自主实践体验。
教学准备:
多媒体课件。
教学过程:
一、复习准备。
1、师生谈话导入。
2、课件出示。
王丽同学1分钟跳绳比赛成绩如下表。
次数第一次第二次第三次第四次。
成绩124108136132。
她这四次测试的平均成绩是多少?
理解题意,让学生独立解答、汇报。
二、创设情境,生成问题。
下面让咱们去看看五(1)班7名同学正在进行的掷沙包比赛,他们的成绩如何呢?(出示教材第105页例4情景图)。
三、探索交流,解决问题。
1、出示五(1)班7名同学掷沙包成绩统计表。
姓名李明陈东刘云马刚王朋张炎赵丽。
成绩/m36.834.725.824.724.624.123.2。
引导学生观察,小组内交流。
师:这组数据中,只有两个数比平均数大,有五个数都比平均数小,用平均数表示他们掷沙包的一般水平合适吗?(不合适)想想办法:从这组数据中挑出一个数代表他们掷沙包的水平,自己找一找,和同桌说一说。
学生这是可能有些困难,教师适时引导学生认识中位数。
设计意图(创设问题情景,激发学生学习兴趣,通过估计,计算比较,发现用平均数表示一般水平不合适,从而引入新的内容——中位数,符合学生认知规律,进一步激发学生的求知欲望)。
2、介绍中位数。
平均数与一组数据中的每个数据都有直接关系,任意一个数据大小的变化都会对平均数值都会产生影响,为弥补平均数在描述某数据组的不足,下面就让我们一起来认识一位新朋友——中位数。顾名思义,中位数就是把一组数据按大小顺序排列后,位置居最中间的数据它的优点是不受偏大偏小数据的影响。
师:那么,五(1)班7名同学掷沙包成绩的这组数据中的中位数是多少呢?
生动手尝试,按大小排列找出中位数24.7。
师小结求中位数的方法。
a、按大小顺序排列b、最中间的数据。
设计意图(让学生认识理解,体验求中位数的过程,掌握求中位数的方法,并理解中位数在统计学中的意义。)。
3、小结:平均数和中位数都是反映一组数据集中趋势的统计量,但当一组数据中某些数据严重偏大或偏小时,选用中位数来表示这组数据的一般水平。
4、教学例5。
出示例5:五(2)班7名男同学的跳远成绩表。
姓名-强陈文王文贤赵军张鹏刘卫华于国庆。
成绩/m3.062.902.743.522.832.892.78。
师问:用什么数来表示这一组数的一般水平呢?
(1)让学生分别求出这一组数据的平均数和中位数。
(2)同桌之间议一议,说一说。
2.96比这一组数据中大多数数据都高,用它来表示这组数据的一般水平不合适,应选中位数。
(3)如果再增加一个同学杨东的成绩2.94m,这组数据中的中位数是多少?
小组内讨论,全班交流。
得出结论:一组数据中有偶数个数的时候,中位数是最中间两个数的平均数。
5、知识小结。
设计意图(学生在小这合作中自主探究发现知识规律,并动实践求平均数,中位数,培养学生自主学习的能力,同时使学生进一步理解中位数的意义。)。
三、巩固应用,内化提高。
1、基本练习。
2、教材第107页练习二十三第1题。
生读题,小组讨论,共同解答,汇报交流。
3、教材第107页练习二十三第2题。
学生讨论自由解答。
四、回顾整理,反思提升。
通过这节课的学习你学会了什么?你有哪些收获?
板书设计:
中位数。
例4例5。
中位数24.72.89(2.89+2.90)/2=2.895。
按大小顺序排列。
数据个数奇数:最中间的数据数据个数偶数:最中间两数的平均数。
教后反思:
教材中通过结合生活实际来比较平均数,从而产生中位数的教学的必要性。本人循着教材的思路和自身的理解设计了“平均数有时不能正确反映中等水平,有时能——发现概括平均数时候不能正确反映中等水平——该用什么数表示,学习中位数——中位数与平均数的关系,——在练习中分散难点,进一步理解为什么有时候平均数不能正确反映中等水平,而中位数则可以,深入理解中位数的稳定性。
五年级数学教案人教版教案篇十三
1、能直接在方格图上,数出相关图形的面积。
2、能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。
3、在解决问题的过程中,体会策略、方法的多样性。
整点:指导学生如何将图形进行分割,从而让学生体会到解决问题的多样性和简便性。
难点:学生能灵活运用。
(一)直接揭示课题
1、今天我们来学习《地毯上的图形面积》。请同学们把书p18页,请同学们认真观察这幅地毯图,看看它有什么特征。
2、小组讨论。
3、汇报:对称图形、边长为14米的正方形、图案由蓝色组成。
4、看这副地毯图,请你提出一些数学问题。
(二)自主探索、学习新知
1、如果每个小方格的面积表示1平方米,,那么地毯上的图形面积是多少呢?
2、学生独立解决问题。要求学生独立思考,解决问题,怎样简便就怎样想,并把解决问题的方法记录下来。
3、小组内交流、讨论。
4、全班汇报。
a)直接一个一个地数,为了不重复,在图上编号。(数方格法)
b)因为这个图形是对称的,所以平均分成4份,先数出一份中蓝色的面积,再乘4。(化整为零法)
c)用总正方形面积减去白色部分的面积。(大减小法)
d)将中间8个蓝色小正方形转移到四周兰色重叠的地方,就变成4个3×6的长方形加上4个3×3的正方形。(转移填补法)
5、师总结求蓝色部分面积的方法。
(三)巩固练习
1、第一题。
(1)学生独立思考,求图1的面积。
(2)说一说计算图形面积的方法。引导学生了解“不满一格的当作半格数”。
2、第二题。独立解决后班内反馈。
3、第三题。
(1)学生独立填空。求出每组图形的面积。学生完成后班内交流反馈答案。
(2)学生观察结果,说发现。
第(1)题的4个图形面积分别为1、2、3、4的平方数。
第(2)题与第(1)题进行比较,第(2)题的3个图形的面积分别是前面一组题的前3个图形面积的一半。
(四)总结
对于计算方格图中规则图形的面积,我们可以分割,可以直接数,可以“大减小”,还可以转移填补。
地毯上的图形面积
一个一个地数(数方格法)
平均分成4份,再乘4。(化整为零法)
总面积减去白色面积。(大减小法)
本节课从设计上讲,我充分考虑到学生是主体的新理念,采用小组合作、探索交流的教学形式,在大胆猜测、积极尝试中寻找解决问题的策略,对于不同情况优化选择。
五年级数学教案人教版教案篇十四
1、结合具体事例,经历认识“方”并解决土石方计算问题的过程。
2、了解“方”的具体含义,能够灵活运用体积计算公式解决一些简单的现实问题。
3、在综合运用所学知识解决现实问题的过程中,感受数学在生活中的广泛应用,培养数学应用意识。
熟练运用长方体和正方体的体积计算公式解决实际问题。
长方体和正方体的体积计算公式演变成“横截面的面积乘长”。
一、巧设情境,激趣引思。
同学们,前面几节课我们学习了体积的有关内容,请大家思考以下问题。
(1)什么是体积?体积的单位有哪些?它们之间的进率是多少?
(2)怎样求长方体的体积?正方体的体积,长方体和正方体体积计算的统一公式是什么?
(3)学生分组讨论,指名回答问题。
这节课我们运用体积的有关知识,解决实际生活中的问题。
二、自主互动,探究新知。
课件出示例题1:让学生读题,讨论:挖出的土与地窖的体积有什么关系?让学生尝试解决问题交流计算的结果。
教师介绍“方”,让学生用方描述挖出的土。
课件出示例题及拦河坝的和示意图。
让学生观察,问:你知道了哪些信息?师帮助学生理解题意。
怎样计算拦河坝的体积?为什么这样计算?使学生知道:拦河坝的体积=底面积×高。
让学生尝试解决问题,并交流计算的方法和结果。
三、应用拓展,反思交流。
1、应用:
(1)试一试帮助学生弄清图意,然后鼓励学生提出问题,师生合作解决。
(2)练一练第1、2题,帮助学生理解题中的事物和信息,再独立完成。
第3、4题,让学生先说一说,要解决问题,先要求出什么?
2、拓展:
练一练5板书设计:
简单的土石方计算2×1.6×1.5=4.8(立方米)拦河坝的体积=横截面面积×长答:要挖出4.8立方米的土。
横截面的面积:(8+3)×4÷2=22(平方米)土石体积:22×50=1100(立方米)答:修这个拦河坝一共需要土石1100立方米。
五年级数学教案人教版教案篇十五
书第54――55页,有趣的测量及试一试第1、2题。
1.知识与技能:结合具体活动情境,经历测量石头的试验过程,探索不规则物体体积的测量方法。
2.过程与方法:在实践与探究过程中,尝试用多种方法解决实际问题。
3.情感、态度与价值观:在观察、操作中,发展学生空间观念。
用多种方法解决实际问题。
探索不规则物体体积的测量方法。
不规则石头、长方体或正方体透明容器、水。
一、导入新课
老师出示准备好的不规则石快。
师:这个石块是什么形状的?(不规则)
什么是石块的体积?
你有什么困难?
二、教学新知
1.测量石块的体积
(1)小组讨论方案
师:我们不能直接用公式计算出石块的体积,可以怎么办呢?你有什么好的方法吗?
(2)小组制定方案
(3)实际测量
方案一:找一个长方体形状的容器,里面放一定的水,量出水面的高度后把石头沉入水中再一次量出水面的高度。这时计算一下水面升高了几厘米,用“底面积×高”计算出升高的体积。也可以分别计算放入石头前的体积与放入石头之后的总体积之差。
师:为什么升高的那部分水的体积就是石块的体积?
方案二:将石头放入盛满水的容器中,并将溢出的水倒入有刻度的量杯中,然后直接读出的水的体积,就是石头的体积。
师:为什么会有水溢出来?
这两种方案实际上都是把不规则的石头的体积转化成了可测量计算的水的体积。让学生说出“石块所占空间的大小就是石块的体积”。
1.实际应用
(1)读题,理解题意。
(2)分析:你是怎么想的?
(3)学生尝试独立解答。
(4)集体反馈,订正。
让学生运用在探索活动中得到测量的方法,即“升高的水的体积等于土豆的体积”,然后用“底面积×高”的方法计算。2×1.5×0.2=0.6(立方分米)
三、课堂小结
学习了这节课,同学们有什么感受和体会?有什么提高?
1.书第55页第2题。
本题引导学生开展测量不规则物体体积的活动。一粒黄豆比较,先测量100粒黄豆的体积,再计算出一粒黄豆的体积。
2.学生再找一些实物,测量出体积。
板书设计:
有趣的测量
方案一:
方案二:
“底面积×高”的方法计算。
2×1.5×0.2=0.6(立方分米)
五年级数学教案人教版教案篇十六
北师大版数学五年级上册第一单元第10~11页《找因数》 学情分析:
在四年级的学习中,学生已经接触了解一些因数和积的概念。学习本单元的前三个课时后,学生已基本建立因数、倍数、奇数和偶数的概念。这些为学生能顺利学习和掌握本课时的学习内容作好前期准备。
“用小正方形拼长方形”对于学生来说,并不陌生。本课教材设计以“用小正方形拼长方形”做为学生学习活动的开始,让学生在理解“用12个小正方形拼成一个长方形,有哪几种拼法?”的前提下开始学习活动,是基于学生已有的知识经验展开的。在此基础上,引导并指导学生小组活动,让学生在小组中把自己的操作过程和思考的过程表达清楚。学生在思考“有几种拼法”时,一般会用乘法进行思考:几乘几等于12,然后再一对一对地找出1与12、2与6、3与4等12的因数。这一安排是借助“拼小正方形”的活动,让学生通过形象的排列特点,理解抽象地找因数的方法。在学生操作的基础上再组织学生交流,交流的重点是学生思考的过程,体会用“想乘法算式”找一个数的因数的方法。在学生交流的过程中,引导学生关注“有序思考”的方法,并逐步体会一个数的因数个数是有限的。最后,在设计找因数的练习题时,可以让学生独立尝试,反馈时注意学生能否有序思考。
1、在用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有序思考问题的能力。
2、在1—100的自然数中,能运用多种方法,正确写出指定自然数的所有因数。
3、经历探索找一个数的因数的活动过程,培养有条理思考的习惯和能力,发展初步的推理能力。
教学重点:在用小正方形拼长方形的活动中体会找一个数的因数的方法。 教学难点:提高学生有序思考的能力。
教具:投影、课件
学具:12个1平方厘米的小正方形。
师:同学们喜欢做拼图游戏吗?
用你们课前准备好的的12个小正方形拼成一个长方形,比一比,谁的拼法多?边摆边做好记录。
1、学生:用12个小正方形自由拼(画)长方形
(教师巡视,指导个别有问题的学生,搜集学生中出现的问题.)
2、引导学生合作交流中总结出找一个数的因数的基本方法。
(学生独立写出算式并汇报)
学生观察算式,找出因数一样的算式。引导学生说出能用3种方法表示,这三种方法是:1×12=12 2×6=12 3×4=12,并指明算式一样时选择其中一种说出来。
板书:12=1×12=2×6= 3×4
师:同学们观察一下,12的因数有哪几个?
(学生说出12的因数有:1、12 、2、6、3、4。)
师:拼长方形与找因数有什么关系呢?
(指名学生说一说)
师:根据刚才的操作交流,请同学们说一说怎样找一个数的因数呢? (学生思考片刻后汇报,可以组内交流。)
引导学生说出:用乘法思路想,看哪两个数相乘得12,然后一对一对找出来。
3、引导得出“有序思考”的方法。
(学生独立思考后小组讨论,得出结论,再自由发言。)
根据学生发言小结:
找一个数的因数,要用“有序思考”的方法,即用乘法依次一对一对地找,这样有顺序的给一个数找因数,好处就是不重复也不遗漏。
师:请同学们按顺序说出12的因数。(学生汇报)
板书:12的所有因数有:1、2、3、4、、6、12。
基础练习
1、课本第9页试一试:分别找出9和15的全部因数。
学生独立思考分别找出9和15的因数;教师巡视指导,关注学生是否注意“有序思考”。
组织学生交流汇报,指明按从小到大,一个一个有序地说,以免遗漏。
2、 学生独立在书中完成第9页的练一练的第1、2、3题。
(投影展示1、2、3题,让学生说一说,集体评价。)
变式练习
1、16的因数有:( )
36的因数有:( )
一个数的最最小的因数是( ),最大的因数是( ),一个数的因数的个数是( )。
2、一个数的最大因数是17,这个数是( ),它的最小的因数是( ),17的因数是( ),一共有( )个。
一个数的最小倍数是17,这个数是( ),它( )最大的倍数,17的倍数的个数是( )。
拓展提高练习
师:同学们能不能利用找因数的方法来解决装球问题呢?请同学们先独立思考,然后小组内交流一下。
汇报:一共有几种装法呢?
思考:这种装球法与找因数有什么关系呢?
这节课你学会了什么呢?
学生汇报后师总结:同学们说得很好,这节课我们学会了找因数的方法,并能利用找因数的方法解决很多实际问题:在我们的生活中存在着很多数学奥秘,就看我们能不能发现,并应用所学知识去解决。
五年级数学教案人教版教案篇十七
教学目标:
知识与技能:会用量具测量不规则物体的体积。
过程与方法:通过对不规则物体体积计算方法的探讨,拓展学生的思维。
情感与态度:促使学生在活动中积极探索,和谐配合,进一步激发学生对周围事物规律的探究。
教学重点:探索不规则物体体积的测量方法。
教学难点:知道不规则物体的体积就是排开水的体积。
教学准备:量杯、水、沙子、橡皮泥、不规则物体(石块、石块)、乒乓球。
教学过程:
师:大家最近都在求物体的体积。这些物体,我们一起来看一看。(有各类形状的盒子(长方体和正方体),水)。
师:小胖想问问你们这些物体的体积你们会求吗?怎么求?
1、长方体和正方体形状的物体,我们会求,先测量出它们的长、宽、高各是多少,然后利用长方体和正方体的体积公式就能计算出来。
2、a、可以把水倒入长方体容器内,水的长、宽与容器内部的长、宽相等,再测量一下水的高度,根据这三个条件,水的体积就可以求出来了。
b、把容器内的水倒在量杯内,就能测出水的体积。
师:那现在有一块石头,那么这块石头的体积怎么求呢?今天,我们就要研究这个问题。
(出示课题:用量具测体积)。
师:我们首先来观看大屏幕。(视频)。
师:请大家交流一下,你看到了什么?
生:将石块放入一个装满水的容器内时,容器内的水面高度会上升。
师:大家再看一下……。
师:大家想一下,为什么将石块放入一个装满水的容器内时,容器内的水面高度会上升?
师:因为石块本身是有体积的,将石块放入一个装满水的容器内时,原本下面容器内的水就会被石块所“排开”了,这样就导致了容器内的水面高度会上升。
生:容器内水面高度会下降。
师:再将石块放入容器内呢?容器内的水面高度又会xxxx?
师:那你能否来判断一下,容器内的水面高度的上升与下降和石块的体积,两者之间究竟有怎样的联系?(大家小组讨论一下)。
生:水面升高的那部分水的体积就是石块的体积。
实验告诉我们是如何测量罐头的体积?罐头的体积是多少?
(原来水的体积是200ml,现在把罐头放入量杯全部浸没在水中,水面就升高了,现在的体积是400ml,升高部分水的体积就是200ml,水面升高的那部分水的体积就是罐头的体积。)。
师:通过实验,我们知道:水面升高的那部分水的体积就是罐头的体积。
师:刚才我们交流了很多,谁能简单概括一下测量石块体积的方法?
1、观察原来水的体积。
2、放入石块。
3、观察变化后的体积。
4、求两个体积的差。
师:a、现在老师想用你们刚才的方法测量这个石块的体积(将石块放入水中),观察一下,你有什么想说的?(石块没有被浸没)。
(不是,水面升高的这部分水的体积其实是石块浸在水里的这部分的体积,而不是整个石块的体积。)。
师:只有将石块整个都浸在水里面,水面升高那部分的水的体积就是石块的体积。
师:通过两次实验,我们可以确定:物体排开水的体积就是物体的体积。(板书)。
师:通过刚才一系列的实验讨论,我们得出了这个结论,你们真聪明,有一只乌鸦也非常聪明,相信大家都学过“乌鸦喝水”的故事,我们一起来回顾一下。
师:请同学们说一说乌鸦为什么会喝到水?
(把石块投入到杯子中,石块就把水排开了,水面就升高了。石块投的越多,水面升高的越快,当水面升高到杯口时,乌鸦就能喝到水了。)。
师:乌鸦用这种方法喝到了水,非常聪明,希望同学们在生活中,如果遇到困难,也应该多角度,多方位的去思考,找到解决问题的好方法。
师:接下去请同学们把书翻到67页,独立完成书上的第二题。
师:谁能说说这幅图你看懂了什么,这个苹果的体积又是多少?
(原来量杯中水的体积是600ml,把苹果完全浸没在水中后,水面上升到了800ml。
上升部分水的体积就是苹果的体积:800-600=200ml=200cm3。
(相同,因为两个量杯的形状、大小是相同的,水面上升的又是一样高,虽然它们的形状不同,但是它们的体积是相同的。)。
a
一个长方体水缸,长是7分米,宽是5分米,水深3分米,把一个钢球浸没在水里,水面上升0。2分米,这个钢球的体积是多少立方分米?(水缸的厚度不计)。
b
讨论题:
有一只长方体水箱,长20分米,宽5分米,水箱里放入一个长方体钢块后,水面上升了0。6分米,已知钢块的长和宽都是4分米,求钢块的高是多少分米?(水箱的厚度不计)。
判断题。
(容器的厚度不计)。
a、
1.5×1。2×4。5。
b、
1.5×1.2×6。
c、
1.5×1.2×(6—4.5)。
d、
1.5×1.2×(4.5+6)。
2。有一只长方体玻璃水缸,长10分米,宽4分米,水箱里放入一个长方体铜块后,水面上升了0。5分米,已知铜块的长是3分米,高是4分米,求铜块的宽是多少分米?(水缸的厚度不计)。
a、
10×4÷(3×4)。
b、
10×4×0.5÷4。
c、
3×4×0.5÷(10×4)。
d、
10×4×0.5÷(3×4)。
深化练习:
从里面量长、宽均为2分米,向容器中倒入4.4升水,再把一个苹果放入水中。这时量得容器内的水深是1.5分米,这个苹果的体积是多少?(玻璃容器的厚度不计)。
h独立练习:
1、水倒入一个棱长为10厘米的正方体容器内,水高3厘米,然后放入许多小石子,这时水升高到5厘米,求这些小石子的体积。(容器的厚度不计)。
2、一个底面积为16平方分米长方体鱼缸,蓄水深20cm,现将一块小假山完全放入水中,此时水面上升了2cm,求这个小假山的体积。(鱼缸的厚度不计)。
师:通过今天的学习,你有什么收获?
五年级数学教案人教版教案篇十八
1.理解和掌握循环小数的概念.
2.掌握循环小数的计算方法.
理解和掌握循环小数等概念.
理解和掌握循环小数等概念.
(一)口算。
0.8times;0.5=4times;0.25=1.6+0.38=。
0.15divide;0.5=1-0.75=0.48+0.03=。
(二)计算。
教师提问:通过计算,你发现了什么?
(一)教学例7。
例710divide;3。
1.列竖式计算。
教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)。
使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.
所以10divide;3=3.33……。
(二)教学例8。
例8计算58.6divide;11。
1.学生独立计算。
2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,
所以58.6divide;11=5.32727……。
教师提问:你有什么发现?
(小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)。
4.一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.
教师板书:循环小数.像3.33……和5.32727……是循环小数.
5.简便写法。
3.33……可以写作;。
5.32727……可以写作。
6.练习。
把下面各数中的循环小数用括起来。
1.5353……0.19292……8.4666……。
(三)教学例9。
例9一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了.大约用去了多少千克汽油?(保留两位小数)。
1.学生独立列式计算。
130divide;6=21.666……。
asymp;21.67(十克)。
答:小汽车大约装21.67千克汽油.
2.集体订正。
重点强调:保留两位小数,只要除到小数点后第三位即可.
3.练习。
计算下面各题,除不尽的先用循环小数表示所得的`商,再保留两位小数写出它的近似值.
28divide;182.29divide;1.1153divide;7.2。
(四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?
1.除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的也就是被除数能够被除数除尽.如3divide;2=1.5.小数部分的位数是有限的小数,叫做有限小数.
2.除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的如10divide;3=3.33……,小数部分的位数是无限的小数,叫做无限小数,循环小数是无限小数.
(一)计算下面各题,哪些商是循环小数?
(二)下面的循环小数,各保留三位小数写出它们的近似值.
1.29090……0.0183838……。
0.4444……7.275275……。
(一)计算下面各题,除不尽的用循环小数表示商,再保留两位小数写出它们的近似值.
(二)一列火车从南京到上海运行305千米,用了3.5小时,平均每小时行多少千米?(保留两位小数)。
五年级数学教案人教版教案篇十九
1、能直接在方格纸上数出相关图形的面积。
2、能利用分割的方法将较复杂的图形转化为简单图形,并用较简单的方法计算面积。
3、在解决问题的过程中体会策略,方法的多样性。
将复杂图形转化为简单图形,体会解决问题方法的多样性和简便性。
如何将整体图形转化为部分的图形。
多媒体课件,作业纸。
一、复习旧知。
不规则图形通过割补,平移可以转化为规则图形从而计算出它的面积,出示练习,提出问题:每个图形的面积是多少?你是怎么得知的?对于图123学生的方法会有很多,要对学生进行充分的肯定。
(设计意图:这组练习复习了已学过的知识,学生在解决面积是多少的过程中打开了思路,如图1既可以利用轴对称图形的特征先算出左边图形的面积,再乘以2得到整个图形的面积。也可以根据组合图形是平移得到特点,先算出上面一个大三角形的面积再乘2求出整个图形的面积。还可以沿对称轴将图形分割为四个三角形,再旋转平移转化为长方形算出面积,即化不规则为规则图形来计算。孩子们灵活多样的解决问题方法是为后面地毯上图形面积计算方法的多样性做了很好的铺垫。)。
二、新授。
(一)对图形特征的观察。
今天老师带来了一块漂亮的地毯,出示课件。
请同学们用数学的眼光来观察,说说这幅图有什么特点。
生1:这块地毯是轴对称图形,是由许多小正方形组成的。
师问:对称轴在哪里?有几条?
(学生到黑板前演示给全班学生看,目的是提醒孩子可以把整个图形平均分成两份或四份,为化整体到部分,知部分求整体的解题思想做准备。)。
生2:这块地毯是蓝色和白色两种颜色。
师问:能找到这两种颜色的格子与总格子数之间的关系吗?
(学生能说到蓝色格子数加上白色格子数等于总格子数,或者是另外两种变式的数量关系也可以。为用大正方形面积减去空白面积等于蓝色部分的面积这一解决问题策略做准备)。
生3:学生会说到在蓝色格子部分有的是拼成较大的长方形和正方形。
师问:能到前面来指给大家看吗?
(设计意图:注重培养学生的观察能力,能用数学的眼光看待生活问题。这正体现学习内容应当是现实的,有意义的,和富有挑战性的,这更加激起学生主动的进行观察交流等学习活动。学生在指的时候会随着观察的深入发现那些长方形也是轴对称的。当学生把蓝色的格子部分看作是一个个正方形时却发现这些正方形又不是独立的,要想按正方形面积来算就要解决两个正方形之间的重叠部分。学生对以上这些内容的发现与关注激发起学生的探索=,同时也为学生解决问题更加多样化及方法的简洁性埋下了伏笔。)。
(二)提出问题。
1、独立探究。
同学们对地毯图案有了充分的`认识,老师想知道蓝色部分的面积,你认为该怎么算?
同学们手中都有一张和大屏幕上完全一样的图,先独立思考,再把自己的想法和思路写在作业纸上。
(教师巡视学生的活动情况,并留意不同的解决问题的情况)。
2、合作交流。
师:把你自己的想法和思路和小组内成员进行交流,比一比谁发现的方法最多?
(学生小组内进行交流)。
师:大家都讨论得很充分了,谁愿意代表小组与大家分享?
3、展示提高。
生1:数方格的方法,一个一个的数,一共有108个小格,所以蓝色部分面积是108平方米。
生2:我先数出一行有几个蓝色格子,分别是6,6,10,6,10,8,8,8,8,10,6,10,6,6、再把每行的数相加,也是108平方米。
生3:数的方法太麻烦了,这是个轴对称图形,我数出左边一半6+6+10+6+10+8+8是54,再乘2就是全部面积。
生4:我找到这个图案的横竖两条对称轴,这样就把整个图形平均分成四份,我数出它的左上角蓝色格子数是3+3+5+3+5+3+3+2=27个,27乘4也是108平方米。
师:请你上来指一指你所说的左上角。
(学生上台活动)。
师:大家认为这个同学的方法怎样,谁能说说这是一种怎样的方法?
教师引导学生总结出:分整体为部分,知道部分求整体。
师:谁还有不同的方法?
生5:蓝色部分可以看作4个长6宽2的长方形,面积是48平方米。还有4个3乘3的正方形,面积是36平方米。4个4乘1的长方形,面积是16平方米。中间蓝色面积是2×4=8平方米。总面积是48+36+16+8=108平方米。
师:你能把找到的长方形上来指给大家看吗?再写出每一步的算式。
(学生按要求重新说一遍)。
生6:上下左右有4个6乘3的长方形,面积是72平方米。每个角还有7格,再乘4是28平方米。加上中间8个,蓝色部分面积也是108平方米。
生7:我是把整个图案均分成四份,每一份是边长为7的正方形,面积是7×7=49平方米,空白部分可以看作5个边长是2的正方形,面积是2×2×5等于20平方米。一份面积是用49—20—2=27平方米,再乘4得到蓝色部分面积是108平方米。
生8:如果把最中间的2个向上平移,空白部分就是2个4乘2的长方形,外加6个白色格子,用每一分面积27乘4得到蓝色面积是108平方米。
生9:用大正方形的面积减去空白部分的面积得出蓝色部分的面积,空白部分面积是每个角是12个格子,4个角面积是48平方米,中间部分是5个2乘4的长方形,面积是40平方米。用总面积14×14—12×4—5×2×4,剩下面积是108平方米。
师:谁听明白了,能结合图再具体说一说这种方法是怎样算的吗?
学生重新叙述一遍。
师:这种方法和前面方法有什么不一样?
生10:用的是地毯总面积减去白色部分面积得到蓝色部分面积。
生11:每个角有2乘2的正方形各3个,中间部分的空白可以看作5个4乘2的长方形,用14×14—2×2×3×4—4×2×5,求得蓝色部分面积是108平方米。
生12:把空白部分从上往下看,再把中间的平移,从左往右依次得到11个4乘2的长方形,用14×14—4×2×11。
生13:我和前面同学不一样的是把空白部分看作是边长为2的正方形,共有22个正方形。算式是14×14—2×2×22。
生14:14×14—4×3×4—4×10,用总面积减四个角空白部分面积,再减中间空白部分面积。
生15:我没用总面积减空白面积,当我画出图形的两条对称轴时,我发现蓝色部分都可以看作是正方形。
师用手势示意学生利用大屏幕讲解教师出示课件,引导学生观察。
生16:可这些正方形像拉环一样套在一起。
(细心的学生发现每个正方形都不是各自独立的,而是有重叠部分。)。
生17:先不管重叠部分,共有12个正方形,减去重叠的8格,加上中间8格,算式是3×3×12—8+8。
生18:先按每个正方形是3乘3是9,一共有(3×4)个正方形,用9乘12是108,9个正方形有8处重叠,而中间的8个小正方形正好和重叠的抵消,最后结果仍是108平方米。算式是3×3×(3×4)—8+8。
生19:如果平均分成四份来看的话,每一份是3×3×3=27个蓝色面积是27×4=108。
生20:我在计算过程中这几种方法都用到了,先把整体分做四个小部分,数出一部分蓝色面积是多少,再算出整体蓝色部分的面积。
(考虑到不同方法思维难度的大小与计算时间的长短和学生个体之间存在差异,允许学生有不同的选择)。
(设计意图:学生探索计算方法和书写可能用到的时间较长,因此教师在巡视的同时要关注需要帮助的孩子,同时要留意不同的解决问题的方法并随时板书在黑板上,在学生讲述自己的方法与过程中努力帮助学生寻找简便的方法。学生在这么一场对话之后会从中受益很多,充分发挥班级学习的优势)。
三、小结。
四、综合运用。
课本第一题:选择自己喜欢的方法来解决问题。
(学生汇报,重点让学生说一说运用的方法,谁的方法更简便?)。
第二题:先独立解决,再小组内交流解决方案,并作简单记录,比一比哪组方法多。
(选择自认为最简便的方法汇报)。
第三题独立解决,并对比两组题,把你的发现写在练习本上。
(学生之间进行交流)。
五年级数学教案人教版教案篇二十
1.通过观察实物、动手操作等活动,使学生认识长方体的特征,形成长方体的概念。
2.通过建立图形的表象的过程,发展学生的空间观念。
3.通过动手操作,小组合作学习,培养学生的立体思维,使学生在合作交流中体验到学习数学的乐趣,体验到生活中处处有数学。
长方体模型课件
一、情境创设新课引入
2.生活中,你还见过哪些物体的形状是长方体?
3.揭题:这节课进一步认识长方体。(板书课题)
二、引导探究小组合作
1.认识长方体各部分的名称。
(1)游戏:你们会玩摸长方体的游戏吗?
a你怎么确定摸到的一定是呢?还有什么方法?(他是用“面”、“棱”、“顶点”描述这个长方体的。)
b小组内互相说一说:什么是长方体的面、棱、顶点?(我想什么是长方体的“面、棱、顶点”你们可能有所了解,在资料袋中也有提示说明。)
c全班反馈
d教师小结:刚才同学们用自己的语言描述了长方体的面、棱、顶点。
2.探究长方体面、棱、顶点的特征
a它们之间有联系吗?各有什么特征?
b分小组活动。(下面小组分工合作,利用学具,通过摸一摸,数一数,量一量,剪一剪,比一比,看看有什么精彩的发现?将发现写在记录表上。)
c全体发馈,同学提问。(根据小组的发现,谁能向他们提出问题?)
d你们还有问题吗?
e教师提问:正方体与长方体有关系吗?为什么说是特殊的长方体?(预设:认识长方体长、宽、高特征;正方体与长方体的关系)
f教师小结:刚才同学们用自己的方法研究了长方体的特征,你可以画出一个长方体吗?
3.教学如何画长方体。(如果这样放最多可以看见他的几个面?还有哪几个面看不见?)(在画图时,除了画前、后两个面是长方形,其它的面看上去成了平行四边形,实际上它还是长方形)
三、运用新知体验价值
1.如果现在只看到长方体的长、宽、高,你还能画出一个长方体吗?(闭上眼睛,画长方体。)
2.说出长方体各个面的面积。说出长方体各个面的面积。
3.猜一猜:根据长、宽、高长度,它可能是生活中的什么物体?
4.做一个如图的长方体宝宝床的床架,至少需要多少分米长的木条?
5.你准备选择下面哪一种尺寸的床板?(单位:分米)
32×920×10
四、全课总结拓展创新
1.想一想:为何北大校区众多建筑设施的外观造型都是长方体呢?
2.实验活动:用准备的材料做一个长方体(再次体验长方体的特征)。