人工智能论文(通用13篇)
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
人工智能论文篇一
:随着社会信息技术和计算机网络技术的发展,人们对网络应用的需求也原来越多,这就需要不断研究计算机网络技术,由于人工智能在一定程度上成为科学技术前言领域,所以世界上各个国家对人工智能的发展越来越重视。本文首先分析其所具有的重要意义,然后研究其在应用过程中的作用,提出以下内容。
计算机;人工智能;应用;分析
目前由于人工智能的不断成熟,人们在生活方面以及工作的过程中,智能化产品随处可见。这不仅对人们在工作中的效率进行提高,同时还对其生活质量进行加强。所以人工智能的发展在一定程度上离不开计算机网络技术,只有对计算机网络技术进行相应的依靠,才能够让人工智能研究出更多的成果。
由于计算机技术的快速发展,网络信息安全问题在一定程度上是人们目前比较关注的一个重要问题。在网络管理系统应用中,其网络监控以及网络控制是其比较重要的功能,信息能够及时有效的获取以及正确的处理对其起着决定性作用。所以,对计算机技术智能化进行实现是比较必要的。由于计算机得到了不断的深入以及管广泛的运用,在一定程度上导致用户对网络安全在管理方面的需求比较高,对自身的信息安全进行有效的保证。目前网络犯罪现象比较多,计算机只有在具备较快的反应力和灵敏观察力的状况下,才能够对用户信息进行侵犯的违法活动进行及时遏制。充分的利用人工智能技术,建立起相对较系统化的管理,让其不仅对信息进行自动的收集,同时还能够对网络出现的故障进行及时诊断,对网络故障及时遏制,运用有效的措施对计算机网络系统进行及时的恢复,保证用户信息的安全。计算机技术在发展的过程中对人工智能应用起着决定性作用,人工智能技术也在一定程度上对计算机技术的发展起着促进作用。不断的跟踪动态化信息,为用户提供准确的信息资源。总的来说,计算机网络在管理的过程中有效的运用人工智能,对网络管理水平进行不断的提高。
2.1安全管理应用
网络安全所具有的漏洞相对比较多,用户在网络中自身的资料信息安全是现阶段人们比较关注以及重视的主要问题。在对网络安全进行管理时,可以对人工智能技术进行充分的运用,在一定程度上能够对用户自身的隐身进行有效的保护。主要表现为:一是,智能防火墙的应用;二是,智能反应垃圾邮件方面;三是,入侵检测方面等。智能防护墙主要应用的就是智能化识别技术,通过概率以及统计方式、决策方法和计算等对信息数据不仅进行有效的识别,同时还能对其相应的处理,对匹配检查过程中需要的计算进行消除,充分认识网络行为特征值,访问可以直接进行控制,把存在的网络及时发现,拦截以及阻止有害信息的弹出。智能防火墙能够在一定程度上避免网络站点受到黑客的攻击,遏制病毒传播,对相关局域网进行相应的管理和控制,反之就会导致病毒以及木马的传播。在智能防火墙中,比较重要的就是入侵检测,它属于防护墙后的.第二安全闸门,在对网络安全保证方面起着重要的作用。针对入侵检测技术而言,主要能够在一定程度上对网络中的数据进行有效的分析,并且对其进行及时的处理,把部分数据过滤出去,数据检测后的报告分析报告给用户。入侵检测在对网络性能不产生影响的前提下监测网络,为操作上的失误以及内外部攻击提供一定的保护。针对智能型反垃圾而言,其自身的邮件系统能够对用户邮箱进行有效的监测,对邮箱进行相应识别,把邮箱中存在的垃圾充分的筛选出来。如果邮件进入邮箱后,就会进行扫描邮箱,在一定程度上把垃圾邮箱的分类信息发给用户,提醒用户要对其进行及时的处理,避免给邮箱安全带来影响。
2.2人工智能agent技术应用分析
针对人工智能agent技术而言,它属于人工智能代理的一种技术,属于不同部分所组成的软件实体,包括:一是,知识域库;二是数据库;三是解释推理器;四是各个agent之间的通讯部分等。人工智能agent技术通过任何一个agent域库对新数据的相关信息进行处理,并且沟通以至完成任务。人工智能agent技术能够在一定程度上通过用户自定义对信息获得自动搜索,然后将其发送到指定位置。人们通过agent技术得到人性化服务。例如:用户在用电脑查相关信息时,该技术不仅能对信息进行处理,同时还能够进行有效的分析,最后把有用的信息出题给用户,充分节省用户的时间。agent技术为用户在日常生活中提供相应的服务,例如:在网上进行购物以及会议等方面的安排。它不仅自主性以及学习性,让计算机对用户所分配的任务自动完成,进一步推动机计算机网络技术的发展。
2.3在网络系统管理以及评价过程中的应用分析
针对网络管理系统来说,其智能化在一定程度上需要人工技能的不断发展。在对网络综合管理系统进行建立的过程中,不仅可以对人工智能中的专家知识库进行充分的利用,同时还能够对存在的技术问题进行有效的解决和处理。网络存在着动态以及变化性,所以,网络在管理的过程中会面临着困难,这就需要对网络管理技术人工智能化进行实现。在人工智能技术中,其专家知识库主要指的就是把各个相关领域专家的知识以及经验进行相应的结语出来,录入系统中,只有这样才能形成比较完善的知识库系统,促进智能计算机程序的发展和提高。如果遇到某个领域问题的过程中,要充分利用专家经验程序对其进行及时的处理。专家知识经验系统促进计算机网络管理得到顺利开展的同时,对系统评价相关进行工作不断的提高和加强。
科学技术在发展的同时,也促进人工智能技术的提高,计算机在网络技术中得到了比较多的需求,在一定程度上提高其应用范围和领域,因此可以看出,人工智能其应用发展前景是比较广泛的,人类对人工智能技术的进一步研究,会在未来开创出更多的应用领域。
人工智能论文篇二
摘要:社会在发展、时代在进步,信息技术水平也在不断的提高,在此时代背景下,越来越多的技术手段开始在各个领域渗透和融入,而科技的进步,使得各类的先进技术衍生出来,其中的人工智能技术可谓是典型代表,许多的技术人员意识到人工智能技在计算机中的发展和应用,所以对人工智能技术在计算机中的应用和发展这一课题进行分析具有一定的必然性,以下内容是个人的见解。
关键词:人工智能技术;计算机;发展;应用;
受科学技术手段的推动性影响,人类文明的发展步伐日渐加快,现阶段,已经基本步入到了信息化的时代背景下,计算机在当下已经是各行各业中常见的辅助工具,甚至许多行业的发展已经视计算机技术为基本的动力支撑,同时增加了技术应用的要求,在此社会不断发展的趋势下,只有使得计算机技术逐步朝向着个性化以及智能化的方向发展,方可体现人工智能技术手段的作用,并为计算机技术手段的长远化发展提供相应的保障。
一、人工智能技术的发展
人工智能一般指的是借助计算机技术手段,将其作为有效的基础,对人类的行为以及思想进行模拟的综合学科,它所涉及的行业较多,比如,心理学以及哲学等等均为典型,而后实现对人体触觉或是感知方面的模拟,通常会将其安装到机械设备之上,并使得机器更具智能化特色,借助智能化处理方式或是智能化编程等方法,逐步实现自动化操作、智能化运行,对人类难以完成的、高难度的、威胁较大的工作进行有效处理,极大的提高工作效率,进而保证人们的人身财产安全。
现阶段,人工智能技术已经初步取得了一定的成就,相关的专家学者在研究和探讨以后,也发现了人工神经网络体系构建的发展方向,希望借此完成工程项目设计工作,实现软件系统和智能化模块的有机结合,对软件的性能进行改良,进而符合用户的实际需求,在基本达到了人工智能的目标以后,还需要对用户界面进行优化和改良,最终为人工智能技术的发展和更新提供更多的保障。
二、人工智能技术手段在计算机中的应用
(一)网络安全方面的应用
最近几年来,人工智能技术的运用已经成为未来几年来许多领域的发展趋向,它的利用将计算机网络的优势全方位的体现,值得一提的是,它在计算机网络安全方面所占据的地位在日渐提高,同时其应用价值也不断凸显。
而后,入侵检测也是计算网络安全工作落实的主要工作,这一过程中,防火墙可发挥自身的作用,这一过程中它的运行效果,将会给整体的系统运作安全性带来极大的影响,可通过数据整合、搜集的方式,将有价值的参数呈现给用户,通过邮件的形式发送给用户,随着时间的推移,邮件数量也会不断的增加。经过笔者的分析和探讨,建议将智能型垃圾邮件系统安装到用户的系统之中,而后再实施风险检测,及时告知用户相关的风险信息,并给予一定的提示,引导用户妥善处理垃圾信息。
(二)企业管理方面的应用
现阶段,人工智能技术手段已经被越来越多的企业管理者所认知,比如,自动报警系统和监控系统的应用就为典型代表,它们的运用,利于企业实现智能化的管理目标,为企业的内部运作营造安全的氛围和环境,此外,还可以一定程度的减少企业的运作成本,逐步达到资源配置和优化的效果,将企业的运营和发展目标落实到实处,体现出企业管理的智能化和现代化特色。
(三)教学领域的应用
随着新课程改革的推进,使得标准化教学体制也在日趋深化,逐步实现了计算机技术和教学工作的有机融合,人工智能计算机辅助教学系统的运用体现了极大的应用优势,为传统教学模式的优化和改革注入了新的活力,可借此方法,完成教学方法和教学内容的表达,进而相应的的提高教学效率,确保教学质量。
此外,引入人工智能技术的过程中,也需要重视知识库的运用,将其作为教学中有效的辅助工具,而后把教学中的要点以及相关定义等融入到知识库职之中,教师的在落实教学工作之时,可对知识库之内的理论知识加进行准确推理,为学生呈现更加直观的推理过程和运算过程,得出推理后的结果。从教学领域日后的发展角度来讲,人工智能技术理念的引入,可谓是以此教学模式的革新,也是突破传统教学模式桎梏的有效途径。
(四)家居行业的应用
当前,人们的生活质量和生活水平日渐提高,从而自然而然的增加了对于住房家居的应用需要,在此社会发展形势之下,可将人工智能技术手段应用到家居生活中,尽可能满人们的日常生活需要,比如,运用人工智能技术,对门窗的闭合进行有效控制,或是对家居环境进行调整,营造良好的生活氛围。
三、结语
综上所述,在此信息技术发展如此迅猛的时代背景下,人工智能技术手段的运用被许多行业所认识和关注,此项技术是一项典型的新型技术手段,它的应用体现了极大的优势,与域外发达国家相比较,我国的人工智能技术水平仍旧不足,但是,其发展速度却相对较快,在我国的诸多行业中得到了广泛运用,它的未来发展前景相对较佳,值得大力推广。
参考文献
[2]黄鑫。分析计算机人工智能识别技术的应用瓶颈[j].数字技术与应用,20xx,26(7):244.
人工智能论文篇三
简要地介绍了人工智能科技技术的基本概念。对专家系统、人工神经网络、模糊理论、遗传算法等人工智能技术的含义进行了介绍,并对这些技术在电力系统中的应用和存在问题进行了分析。
人工智能技术(ai artificial intelligence)是一项将人类知识转化为机器智能的技术。它研究的是怎样用机器模仿人脑从事推理、规划、设计、思考和学习等思维活动,解决需要由专家才能处理好的复杂问题。在应用方面,以专家系统、人工神经网络、遗传算法等最为普遍 。
1.1 专家系统(es)
专家系统是利用知识和推理来解决专家不能解决的问题。传统程序需要固定程序和复杂算法,输入数据并得出结果。专家系统集中大量的符号处理,采用启发式方法模拟专家的推理过程,通过推理,利用知识解决问题。它具有逻辑思维和符号处理能力,能修改原来知识,适合于电力系统问题的分析。
1.2 人工神经网络(ann)
人工神经网络是大量处理单元广泛互联而成的网络,是一种模拟动物神经系统的技术。神经网络具有自适应和自学习的能力,能并行处理分布信息。电力系统应用人工神经网络可以进行实时控制、状态评估等。
1.3 遗传算法(ga)
遗传算法是一种进化论的数学模型,借鉴自然遗传机制的随机搜索算法。它的主要特征是群体搜索和群体中个体之间的信息交换。该方法适用于处理传统搜索方法难以解决的非线性问题。
1.4 模糊逻辑(fl)
当输入是离散的变量,难以建立数学模型。而模糊逻辑则成功地应用在潮流计算、系统规划、故障诊断等电力系统问题。
1.5 混合技术
以上各种智能控制方法各有局限性,有些甚至难以处理电力系统实际问题。因此需要结合各个算法的优势,采用人工智能混合技术。其中包括:模糊专家系统、神经网络模糊系统、神经网络专家系统等技术。
2.1在电能质量研究中的应用
人工智能技术可以对电压波动、电压不平衡、电网谐波等电能质量参数进行在线监测和分析。在检测和识别电能质量扰动时能克服传统方法的缺陷。专家系统随着经验的积累、扰动类型变化而不断扩充和修改,便于用户的.掌握[3] 。
此外,专家系统和模糊逻辑可用于培训变电站工作人员。智能软件可以模拟故障情形,有利于提高运行人员的操作技能。
2.2 变压器状态监测与故障诊断专家系统
变压器事故原因判断起来十分复杂。判断过程中,必须通过内外部的检测等各种方法综合分析作出判断。变压器监测和诊断专家系统首先对油中气体进行分析。异常时,根据异常程度结合试验进行分析,决定变压器的停运检查。若经分析发现变压器已严重故障,需立即退出运行,则要结合电气试验手段对变压器的故障性质及部位做出确诊。
变压器监测和诊断专家系统通过诊断模块和推理机制,能诊断出变压器的故障并提出相应对策,提高了变压器内部故障的诊断水平,实现了电力变压器状态检修和在线监测。
2.3 人工智能技术在低压电器中的应用
低压电器的设计以实验为基础,需要分析静态模型和动态过程。人工智能技术能进行分段过程的动态设计,对变化规律进行曲线拟合并进行人工神经网络训练,建立变化规律预测模型,降低了开发成本。
低压电器需要通过试验进行性能认证。而低压电器的寿命很难进行评价。模糊识别方法,从考虑产品性能的角度出发,将动态测得的反映性能的特性指标作为模糊识别的变量特征值,能够建立评估电器性能的模糊识别模型。
2.4 人工智能在电力系统无功优化中的应用
无功优化是保证电力系统安全,提高运行经济性的手段之一。通过无功优化,可以使各个性能指标达到最优。但是无功优化是一个复杂的非线性问题 。
人工智能算法能应用于电力系统无功优化。如改进的模拟退火算法,在求解高中压配电网的无功优化问题中,采用了记忆指导搜索方法来加快搜索速度。模式法进行局部寻优以增加获得全局最优解的可能性,能够以较大概率获得全局最优解,提高了收敛稳定性。禁忌搜索方法寻优速度较快,在跳出局部最优解方面有较大优势。遗传算法在解决多变量、非线性、离散性的问题时有极大的优势。要求较少的求解信息的,模型简单,适用范围广。
2.5 人工智能在电力系统继电保护中应用
自适应型继电保护装置能地适应各种变化,改善保护的性能,使之适应各种运行方式和故障类型。它能够有效地处理各种故障信息,获得可靠的保护。
借助于人工智能技术不但能够提取故障信息,还能利用其自学习和自适应能力,根据不同运行工况,自适应地调整保护定值和动作特性。
2.6 人工智能在抑制电力系统低频振荡的应用
大规模电网互联易产生低频振荡,严重威胁着电力系统的安全。人工智能为电力系统低频振荡的控制提供了技术支持。神经网络、模糊理论、ga等人工智能技术应用于facts控制器和自适应pss的研究,为抑制电力系统低频振荡提供了新的手段。
作为一门交叉学科,人工智能将随着其他理论的发展而进入新的发展阶段。应用新方法解决问题,或促进各种方法的融合,保持简单的数学模型和全局寻优情况下,寻求到更少的运算量,提高算法效率,将是未来发展的趋势。
随着电力系统的发展,电力系统的复杂性不断增加,不确定因素越来越多。随着人工智能技术的不断发展和提高,利用人工智能技术来解决电力系统的问题将会受到越来越多的重视。
随着我国电力系统的持续稳步发展,电力系统数据量不断增加,管理上复杂程度大幅度增长,市场竞争的加大,为人工智能技术在电力系统的应用提供了广阔前景。
但人工智能技术的基本理论还不成熟,只是停留在仿真和实验阶段。人工智能的开发是一个长期的过程,需要不断改进和完善,并在实际应用中接受检验。
人工智能论文篇四
图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。文章简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。
1图像识别技术的引入
图像识别是人工智能科技的一个重要领域。图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。图像识别,顾名思义,就是对图像做出各种处理、分析,最终识别我们所要研究的目标。今天所指的图像识别并不仅仅是用人类的肉眼,而是借助计算机技术进行识别。虽然人类的识别能力很强大,但是对于高速发展的社会,人类自身识别能力已经满足不了我们的需求,于是就产生了基于计算机的图像识别技术。这就像人类研究生物细胞,完全靠肉眼观察细胞是不现实的,这样自然就产生了显微镜等用于精确观测的仪器。通常一个领域有固有技术无法解决的需求时,就会产生相应的新技术。图像识别技术也是如此,此技术的产生就是为了让计算机代替人类去处理大量的物理信息,解决人类无法识别或者识别率特别低的信息。
1.1图像识别技术原理
其实,图像识别技术背后的原理并不是很难,只是其要处理的信息比较繁琐。计算机的任何处理技术都不是凭空产生的,它都是学者们从生活实践中得到启发而利用程序将其模拟实现的。计算机的图像识别技术和人类的图像识别在原理上并没有本质的区别,只是机器缺少人类在感觉与视觉差上的影响罢了。人类的图像识别也不单单是凭借整个图像存储在脑海中的记忆来识别的,我们识别图像都是依靠图像所具有的本身特征而先将这些图像分了类,然后通过各个类别所具有的特征将图像识别出来的,只是很多时候我们没有意识到这一点。当看到一张图片时,我们的大脑会迅速感应到是否见过此图片或与其相似的图片。其实在“看到”与“感应到”的中间经历了一个迅速识别过程,这个识别的过程和搜索有些类似。在这个过程中,我们的大脑会根据存储记忆中已经分好的类别进行识别,查看是否有与该图像具有相同或类似特征的存储记忆,从而识别出是否见过该图像。机器的图像识别技术也是如此,通过分类并提取重要特征而排除多余的信息来识别图像。机器所提取出的这些特征有时会非常明显,有时又是很普通,这在很大的程度上影响了机器识别的速率。总之,在计算机的视觉识别中,图像的内容通常是用图像特征进行描述。
1.2模式识别
模式识别是人工智能和信息科学的重要组成部分。模式识别是指对表示事物或现象的不同形式的信息做分析和处理从而得到一个对事物或现象做出描述、辨认和分类等的过程。
计算机的图像识别技术就是模拟人类的图像识别过程。在图像识别的过程中进行模式识别是必不可少的。模式识别原本是人类的一项基本智能。但随着计算机的发展和人工智能的兴起,人类本身的模式识别已经满足不了生活的需要,于是人类就希望用计算机来代替或扩展人类的部分脑力劳动。这样计算机的模式识别就产生了。简单地说,模式识别就是对数据进行分类,它是一门与数学紧密结合的科学,其中所用的思想大部分是概率与统计。模式识别主要分为三种:统计模式识别、句法模式识别、模糊模式识别。
2图像识别技术的过程
既然计算机的图像识别技术与人类的图像识别原理相同,那它们的过程也是大同小异的。图像识别技术的过程分以下几步:信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。
信息的获取是指通过传感器,将光或声音等信息转化为电信息。也就是获取研究对象的基本信息并通过某种方法将其转变为机器能够认识的信息。
预处理主要是指图像处理中的去噪、平滑、变换等的操作,从而加强图像的重要特征。
特征抽取和选择是指在模式识别中,需要进行特征的抽取和选择。简单的理解就是我们所研究的图像是各式各样的,如果要利用某种方法将它们区分开,就要通过这些图像所具有的本身特征来识别,而获取这些特征的过程就是特征抽取。在特征抽取中所得到的特征也许对此次识别并不都是有用的,这个时候就要提取有用的特征,这就是特征的选择。特征抽取和选择在图像识别过程中是非常关键的技术之一,所以对这一步的理解是图像识别的重点。
分类器设计是指通过训练而得到一种识别规则,通过此识别规则可以得到一种特征分类,使图像识别技术能够得到高识别率。分类决策是指在特征空间中对被识别对象进行分类,从而更好地识别所研究的对象具体属于哪一类。
3图像识别技术的分析
随着计算机技术的迅速发展和科技的不断进步,图像识别技术已经在众多领域中得到了应用。20xx年2月15日新浪科技发布一条新闻:“微软最近公布了一篇关于图像识别的研究论文,在一项图像识别的基准测试中,电脑系统识别能力已经超越了人类。人类在归类数据库imagenet中的图像识别错误率为5.1%,而微软研究小组的这个深度学习系统可以达到4.94%的错误率。”从这则新闻中我们可以看出图像识别技术在图像识别方面已经有要超越人类的图像识别能力的趋势。这也说明未来图像识别技术有更大的研究意义与潜力。而且,计算机在很多方面确实具有人类所无法超越的优势,也正是因为这样,图像识别技术才能为人类社会带来更多的应用。
3.1神经网络的图像识别技术
神经网络图像识别技术是一种比较新型的图像识别技术,是在传统的图像识别方法和基础上融合神经网络算法的一种图像识别方法。这里的神经网络是指人工神经网络,也就是说这种神经网络并不是动物本身所具有的真正的神经网络,而是人类模仿动物神经网络后人工生成的。在神经网络图像识别技术中,遗传算法与bp网络相融合的神经网络图像识别模型是非常经典的,在很多领域都有它的应用。在图像识别系统中利用神经网络系统,一般会先提取图像的特征,再利用图像所具有的特征映射到神经网络进行图像识别分类。以汽车拍照自动识别技术为例,当汽车通过的时候,汽车自身具有的检测设备会有所感应。此时检测设备就会启用图像采集装置来获取汽车正反面的图像。获取了图像后必须将图像上传到计算机进行保存以便识别。最后车牌定位模块就会提取车牌信息,对车牌上的字符进行识别并显示最终的结果。在对车牌上的字符进行识别的过程中就用到了基于模板匹配算法和基于人工神经网络算法。
3.2非线性降维的图像识别技术
计算机的图像识别技术是一个异常高维的识别技术。不管图像本身的分辨率如何,其产生的数据经常是多维性的,这给计算机的识别带来了非常大的困难。想让计算机具有高效地识别能力,最直接有效的方法就是降维。降维分为线性降维和非线性降维。例如主成分分析(pca)和线性奇异分析(lda)等就是常见的线性降维方法,它们的特点是简单、易于理解。但是通过线性降维处理的是整体的数据集合,所求的是整个数据集合的最优低维投影。经过验证,这种线性的降维策略计算复杂度高而且占用相对较多的时间和空间,因此就产生了基于非线性降维的图像识别技术,它是一种极其有效的非线性特征提取方法。此技术可以发现图像的非线性结构而且可以在不破坏其本征结构的基础上对其进行降维,使计算机的图像识别在尽量低的维度上进行,这样就提高了识别速率。例如人脸图像识别系统所需的维数通常很高,其复杂度之高对计算机来说无疑是巨大的“灾难”。由于在高维度空间中人脸图像的不均匀分布,使得人类可以通过非线性降维技术来得到分布紧凑的人脸图像,从而提高人脸识别技术的高效性。
3.3图像识别技术的应用及前景
计算机的图像识别技术在公共安全、生物、工业、农业、交通、医疗等很多领域都有应用。例如交通方面的车牌识别系统;公共安全方面的人脸识别技术、指纹识别技术;农业方面的种子识别技术、食品品质检测技术;医学方面的心电图识别技术等。随着计算机技术的不断发展,图像识别技术也在不断地优化,其算法也在不断地改进。图像是人类获取和交换信息的主要来源,因此与图像相关的图像识别技术必定也是未来的研究重点。以后计算机的图像识别技术很有可能在更多的领域崭露头角,它的应用前景也是不可限量的,人类的生活也将更加离不开图像识别技术。
4总结
图像识别技术虽然是刚兴起的技术,但其应用已是相当广泛。并且,图像识别技术也在不断地成长,随着科技的不断进步,人类对图像识别技术的认识也会更加深刻。未来图像识别技术将会更加强大,更加智能地出现在我们的生活中,为人类社会的更多领域带来重大的应用。在21世纪这个信息化的时代,我们无法想象离开了图像识别技术以后我们的生活会变成什么样。图像识别技术是人类现在以及未来生活必不可少的一项技术。
人工智能论文篇五
随着新型科技的持续更新,工程中逐渐应用新科技,这也是科技朝着应用式与开放式方向发展的开始。电子工程在传统工程基础上的革新,随着人工智能化发展,逐渐转换为信息化产业链接。这一智能化技术机械生产明显减少,经济效益与产量提升,我国逐渐进入到智能化阶段。
(一)发展历程
在机械电子工程发展初期,主要体现为手工制作,生产力水平较低,资源技术等对其发展产生制约。为了提升生产效率,逐渐朝着机械工业方向发展。
在生产线阶段,机械工程已逐渐发展到流水线生产,实现标准化大批量生产,这一生产模式使劳动力得到解放,生产力水平大大提升,同时生产效率也得到提高。但是仍然存在一些不足,比如,部分生产仍就以进口为主,生产成本较大,在市场方面缺少适应力;灵活性较差,难以满足不断变化的市场需求。
在机械电子产业发展阶段中,产品生产能够适应市场的需求,对于不断变化的产品需求产业化发展能够满足。
(二)机械电子工程主要特征
机械电子工程是复杂综合性学科,同各类学科之间都有着密切的联系。机械电子工程发展要以计算机、电子以及机械为基础,结合其他学科做出合理、科学的设计。在设计的过程中,要求每一个模块都能够实现有机结合,进而使得各个模块都能将其最大优势发挥出来。机械电子产品内部结构简单明了,并不复杂,无需复杂原件的投入,这样能在一定程度上使产品性能得到提升,进而扩大消费市场。
人工智能是一门复杂,并且综合性较强的学科,所涉及到的学科比较多。也可以说,21世纪人工智能是最伟大学科之一。人工智能实现了对人的智能模拟,并且能通过计算机使认得智能化得到进一步的延伸,人工智能这门学科有着较好的发展潜力。人工智能在发展的过程中主要经历下列几个阶段。
初步阶段。人工智能在17世纪开始发生萌芽,法国在这一阶段成功诞生世界上的第一部计算机,这一计算器只是单纯的能进行加法简单运算,但是仍就轰动世界,进而在世界范围内,对这项技术开始进一步研宄。在最初阶段,人工智能并没有明显的进展,主要是在实践的过程中积累与总结知识,这为今后人工智能发展奠定坚实的基础。
发展初始阶段。美国人在二十世纪首次提出人工智能专业用语。在这个发展阶段,人工智能主要以证明与阐释为主要体现,在这一时期对于人工智能的研宄就是首要任务。
发展起伏阶段。随着人们对于人工智能的不断深入研宄,人工智能也处于持续的发展阶段,但是在实践过程中发现,要想使人工智能模仿和人类思维同步是非常困难的。大部分对于人工智能的科学研宄仅仅是停留于简单映射层面,对于逻辑思维的研宄仍就没有突破性进展。不论怎么说,在发展的起伏阶段,人功能智能也在发展中得到了技术创新,特别是在系统方面、计算机机器人以及语言掌握方面取得了较大的成就。
起伏阶段发展以后。在这一阶段,人工智能的相关研究得到了发展,尤其是第五届国际人工智能联合会议的召开,人工智能逐渐朝着知识层面的方向发展,大部分的人工智能研都会结合相应的知识工程,在这个阶段中,人工智能发展的高度是前所未有的,在一定程度上促进了人工智能应用于实际工程中。
稳步发展阶段。随着互联网技术的快速发展,对于人工智能研宄方向发生重大转变,由原本的单一主体朝着集中统一主体的方向发展。关于人工智能在实际中的运用以及研究,受到了互联网技术的影响。网络的普及与快速发展,在一定程度上促进了信息化的发展,信息在传送方面发生率重大性变革。在人们逐渐进入信息化社会后,在信息有效处理方面人工智能的发展到了重要的作用,在模拟设计方面,机械电子工程的发展需要人工智能的大力支持。
随着我国社会经济的持续发展,社会不断的进步,对于信息人们越来越重视。在21世纪,互联网技术得到快速发展,同时信息的传递也逐渐注入新鲜血液。互联网应用的普及说明人们正朝着信息时代的方向迈进,在社会逐步信息化以后,更加需要有人工智能这一技术的支持,特别是机械电子工程发展中有着重要作用,机械电子系统本身缺少一定的稳定性,这样在机械电子工程设计方面就有着较大阻碍存在。在现代社会中,信息的处理量持续增大,并且较为复杂,有些时候需要同时对不同类型的信息进行处理,所以需要采取人工智能的.支持才能完成信息处理。人工智能主要包含模糊推理系统、神经网络系统这种两种方法。神经网络系统倾向于对人脑结构的综合分析,模糊推理系统更加重视对于语言信号的分析与理解。随着现代社会的发展,仅仅采取单一的人工智能方法,明显已经无法适应目前社会中不断变化的市场需求,所以,对于人工智能相关问题的研宂正逐渐朝着多方位、全面的人工智能方向转变。多方位全面人工智能系统通过模糊推理系统和神经网络系统相互统一的方式,扬长补短,将二者有效的结合起来,使得二者的优势得到最大程度的发挥。
智能同机械电子工程之间在相互影响的过程中,逐渐产生崭新的行业。首先通过现代科技逐渐,将人工智能融入到机械电子工程中,使机械工业发展潜力得到充分挖掘。其次随着机械电子工程发展难度的加大,对于人工智能也就提出来新的要求,这从某种程度上来推动了人工智能发展。在将机械电子工程与人工智能有效结合的基础上,促进社会生产力发展,同时也能促进有关经济产业的快速发展,这种效应将会对整个社会产生一定影响,使我国经济得到全面发展。
人工智能论文篇六
摘要:
随着科学技术的不断创新与完善,人工智能化发展得到了质的飞跃。人工智能技术应用作为电气工程自动化过程的重中之重,是一个不可或缺的关键部分,直接关系到电气工自动化的稳定持续发展。人工智能领域涵盖的内容主要包括了图像识别、机器学习、智能搜索、语言识别以及专家系统等。为了推动我国电气自动化控制的创新发展,相关企业要加强对人工智能的研究开发工作,为社会创造出更多的价值效益。本文将进一步对人工智能在电气工程自动化中的应用展开分析与探讨。
关键词:
人工智能;电气工程;自动化控制;应用
当前是一个科学技术时代,电气工程发展要与时俱进,跟上时代前进的脚步。电气工程行业要想有效实现电气自动化控制和管理,就必须充分发挥出人工智能技术的作用。人工智能的研究范围不仅涵盖了图像语言识别和自动化控制,还包括了专家系统和人工神经网络等内容。因此,电力企业必须通过合理利用人工智能技术,才能有效实现对各项机械设备的自动化控制,从而大大降低企业的人工成本,保障企业创造出更多的经济效益和社会效益。
一、人工智能简述
二、电气工程自动化过程应用人工智能的主要优势
(一)利于参数的优化调节。
相比较传统的控制器,通过利用人工智能技术控制有利于各项参数的科学优化调节,同时还较为简单易学,具备了良好的适应能力。合理调整人工智能的相关参数,能够最大限度提升智能函数的各项性能。此外,人工智能控制器无需专家的现场指导帮助,其能够根据计算机事先设置好的合理数据,正确运用反馈的信息与语言进行设定,此外设置好的参数能够进一步完成修改和扩展作业,具有快捷方便的特征。
(二)受相关因素影响较小。
电力企业在传统电气工程建设中所应用的人工控制器会受到各种不确定因素的影响,导致在工作过程中出现各种问题,不利于企业安全稳定的持续发展。而通过在电气工程自动化中应用人工智能技术,能够有效省去获取精确动态模型的步骤,适应能力较强,无需为其提供固定不变的工作环境和参数设置,总体来说受到外界的因素影响较小,能够保障各项机械设备安全可靠的运行生产。
(三)自动化控制过程中产生误差小。
由于在电气工程自动化中有效融合了人工智能技术,该项技术的运行不会过多受到外界因素的干扰,造成严重的运行故障问题,从而确保机器事先设置好的参数在实际操作过程中不会发生任何变动,从而有效避免了实际值与理论值出现很大偏差的问题,充分保障了电气工程自动化的高效控制管理。
(四)具备良好的一致性。
(五)降低企业人力物力。
成本通过在电气工程自动化控制中应用人工智能技术,能够有效减少各项电力机器设备对变压器与线路的需求,企业也无需再专门调度安排更多的工作人员对设备进行管理维护,从而最大限度降低了企业在人力和物力上的投资成本,有利于企业更好地发展。
三、人工智能在电气工程自动化中的实践应用
(一)完善电气自动化性能,提高产品质量。
众所周知,人工智能技术最为显著的特征就是模拟人类大脑思维,设计人员通过将人工智能技术中的遗传算法有效融入到各项电器设备中,不仅仅能够完善优化各项产品的具体性能,还能够最大限度提升电子自动化性能,从而有效提高各项电气设备的工作质量和效率,充分保障了电气工程自动化控制过程的科学准确性。此外,人工智能技术在电气工程自动化领域的应用,能够降低企业人力成本的支出,推动我国电气工程高速稳定地发展进步。电力企业基于人工智能技术的辅助下,187页)能够将cad应用到任何电器产品设计工作中,从而大大缩减了各种电力产品的开发设计周期,并且拓宽了cad技术的研究应用程度,降低了设计人员的工作难度和任务量,在保障电器产品高质量的前提下,创造出更大的经济效益。
(二)实现智能化控制,提高工作效率。
人工智能技术所使用的智能化控制器,通过将人工智能与电气工程自动化控制有效结合在一起,能够最大化发挥出智能化控制器的作用。例如,智能化控制器能够科学根据下降和响应的具体时间完成对调节控制程度的合理控制,基于这种情况下,人工智能能够大大改善电气自动化控制管理的相关性能[3],为电气工程自动化建设工作打下扎实的基础。与此同时,电力企业通过引进应用先进的智能化控制器,能够实现电气工程自动化控制相关数据的实时分析调节,无需专门安排专家技术人员在现场进行指导和监督,相关工作人员在控制室通过计算机就能够实现远程控制操作,从而有效提高自动化控制管理的工作效率。
(三)改善故障诊断技术,提高诊断水平。
电力企业在电力工程自动化控制过程中,会遇到各种运行故障问题。例如,常见的发电机断电、变压器过热等事故,对于这些运行故障,传统的诊断方法是通过收集相关气体样本,并对其进行科学分析判断,最终得出发生该故障的具体结论,有针对性地采取解决措施。传统故障诊断方法除了需要维护检修人员花费较多的时间与精力,电力企业还必须安排管理人员对各项设备进行实时监控,这无疑加大了企业的人力支出成本。而通过利用人工智能诊断技术,在故障诊断过程中有效融入模糊理论、专家技术以及神经网络,能够大大提高电气设备故障的诊断效率,在第一时间发现问题并解决问题,从而降低了企业在人力成本上的支出,保障企业各项电力设备安全可靠地持续运行,满足社会对于高质量电力的需求。
四、结语
综上所述,为了推动我国电气工程自动化的稳定持续发展,政府相关部门要加强与社会企业的联系与合作,共同大力推广应用人工智能技术,不断提高电气工程自动化技术水平。通过在各项机器设备中加入智能化控制器,从而有效实现各个控制环节的自动化,方便企业内部人员的管理和维护,充分保障产品生产的高质量,满足社会用户的各项需求,为国民经济发展贡献最大的力量。
参考文献:
人工智能论文篇七
电气自动化控制系统是由计算机控制系统对电气设备的运行进行自动控制,电气自动化控制系统的应用能够大大提高电气设备的工作效率,提高机械设备工作的精确性,为企业带来了良好的经济效益,但是随着电气设备自动化程度的不断提高,要求电气设备自动化控制系统要实现智能化操作。人工智能技术是通过计算机系统模拟人的智能,在计算机的控制下,实现电气设备控制系统的模拟人的智能,例如进行图像分析与处理、语音识别以及专家控制系统等等。可以说将人工智能技术应用在电气自动化控制系统中是电气自动化技术发展的必然趋势。
人工智能技术是以计算机技术为基础,融合多门学科的综合性科学技术,其主要是通过计算机模拟构建人的智能,并且创建机器人系统和专家系统实现对电气自动控制系统的智能化操作。人工智能技术的突出特点是:一是操作性。人工智能技术主要是依托计算机的控制实现对电气设备的控制,因此人工智能技术具有很强的逻辑性,便于控制人员进行操作;二是价值大。人工智能技术不仅融合了计算机技术,而且其还实现了对电气设备的自动化控制与监测,实现了以较小的投入获得更大的经济效益的目的。比如通过人工智能技术可以减少人工操作环节,进而为企业节省相当多的人力资源成本费用;三是准确性比较高。人工智能技术主要是计算机依据人的智能建立计算机控制系统,实现对电气设备的精确性操作,比如利用人工智能技术可以对电气设备的运行情况进行智能检测与处理,避免了人工检测所存在的弊端。
人工智能技术的最大优势就是通过对电气控制系统信息的收集、研究,制定出具体的有效处理措施,从而代替传统的依靠人脑进行操作的模式。将人工智能技术应用到电气自动化控制系统中具有重要的意义:
2.1能够有效解决电气自动化控制过程中存在的病态结构问题
电气自动化控制过程中因为电气设备精密度越来越高,因此在运行过程中所出现的病态结构很难应用传统的方式表达出来,而人工智能技术则可以有效解决此类问题,其完全有能力利用定量与定性相结合的控制方式对控制系统进行计算与分析。
2.2实现自动控制系统的数据采集与处理功能
将人工智能技术应用到电气自动化控制中能够依托专家系统对电气设备进行实时监视,并且对相关信息进行自动收集与储存,一旦发现存在潜在故障或者存在事故的事件,人工智能技术就会自动采取相应的.控制方式,对故障进行自动处理,进而避免了电气系统故障的进一步扩大化。
2.3简化了人工操作过程,降低了人工操作造成的损失
人工智能技术通过计算机设备就可以实现对电气设备的自动化控制,比如电气系统的人工智能化控制系统就可以通过鼠标对控制开关进行自动控制,并且对励磁电流进行调整。同时电气人工智能控制系统还设定了应用管理权限,限制了相应操作人员的权限,实现了专人专岗制度,细化了操作责任制度。
3.1人工智能技术在电气自动化设备中的应用
我们知道电气自动化控制系统属于非常负责的控制系统,其不仅包含复杂的元件,而且还需要操作人员严格按照自动化控制系统的要求进行操作,而将人工智能技术应用到电气设备中可以实现计算机的自动化操作,最重要的就是可以代替传统的需要人工进行设备检测的落后模式,实现了对电气设备的运行状态、故障检测以及维修意见等一体的功能,降低了人工操作的失误性,提高了电气设备的应用寿命,为企业节省了大量的成本。
3.2人工智能技术在电气控制过程中的应用
将智能技术应用到电气自动化控制过程中,是人工智能技术发展的重要动力,通过人工智能化的电气控制系统不仅可以提高电气设备的工作效率,而且还可以降低电气自动化控制中的故障发生率。人工智能技术主要师模糊控制、专家控制以及神经网络控制和集成智能控制。本文以专家控制为例,专家控制就是将专家系统的设计规范和运行机制与电气控制刘楠相结合实现实时控制系统的设计,其主要是对自动控制的知识获取、表示以及推理机制的建立。
3.3在事故和故障诊断中人工智能技术的应用分析
人工智能技术在电气设备故障中的作用是非常大的,尤其是对发动机的故障检修是具有重要作用的,我们知道在电气设备中由于其结构比较复杂,依靠人工很难对其进行深入的检测,因此需要借助人工智能技术实现对设备的检修。我们以变压器为例,将智能技术应用到变压器的故障检修中首先就是先收集电压器油体中分解的气体,然后通过对油体气体的分析,找出故障的原因,进而自动形成解决措施。这样有效避免了人工检测所出现的失误现象。另外人工智能技术在电气设备操作中的应用价值也比较大。通过人工智能技术可以实现电气自动化控制环节的简单化,比如在机床加工中,如果运用人工智能技术则能够有效降低机床操作的复杂性,并且能够对机床的运行信息进行收集与储存,便于日后对相关信息的查询。
总之,人工智能技术在电气化领域中应用,不但能够最大限度的降低人工参与的程度,提升控制系统的数字化、智能化程度,还能够大幅降低企业运营的成本,提高其利润空间,并将生产效率提高到一个全新的层面。因此,相关部门应加强对人工智能技术的研究,使其能够为企业的发展以及社会的进步发挥出更为突出的作用。
人工智能论文篇八
1.1制订本标准的目的是为了统一科学技术报告、学位论文和学术论文(以下简称报告、论文)的撰写和编辑的格式,便利信息系统的收集、存储、处理、加工、检索、利用、交流、传播。1.2本标准适用于报告、论文的编写格式,包括形式构成和题录著录,及其撰写、编辑、印刷、出版等。本标准所指报告、论文可以是手稿,包括手抄本和打字本及其复制品;也可以是印刷本,包括发表在期刊或会议录上的论文及其预印本、抽印本和变异本;作为书中一部分或独立成书的专著;缩微复制品和其他形式。1.3本标准全部或部分适用于其他科技文件,如年报、便览、备忘录等,也适用于技术档案。2定义2.1科学技术报告科学技术报告是描述一项科学技术研究的结果或进展或一项技术研制试验和评价的结果;或是论述某项科学技术问题的现状和发展的文件。科学技术报告是为了呈送科学技术工作主管机构或科学基金会等组织或主持研究的人等。科学技术报告中一般应该提供系统的或按工作进程的充分信息,可以包括正反两方面的结果和经验,以便有关人员和读者判断和评价,以及对报告中的结论和建议提出修正意见。2.2学位论文学位论文是表明作者从事科学研究取得创造性的结果或有了新的见解,并以此为内容撰写而成、作为提出申请授予相应的学位时评审用的学术论文。学士论文应能表明作者确已较好地掌握了本门学科的基础理论、专门知识和基本技能,并具有从事科学研究工作或担负专门技术工作的初步能力。
硕士论文应能表明作者确已在本门学科上掌握了坚实的基础理论和系统的专门知识,并对所研究课题有新的见解,有从事科学研究工作或独立担负专门技术工作的能力。博士论文应能表明作者确已在本门学科上掌握了坚实宽广的基础理论和系统深入的专门知识,并具有独立从事科学研究工作的能力,在科学或专门技术上做出了创造性的成果。2.3学术论文学术论文是某一学术课题在实验性、理论性或观测性上具有新的科学研究成果或创新见解和知识的科学记录;或是某种已知原理应用于实际中取得新进展的科学总结,用以提供学术会议上宣读、交流或讨论;或在学术刊物上发表;或作其他用途的书面文件。学术论文应提供新的科技信息,其内容应有所发现、有所发明、有所创造、有所前进,而不是重复、模仿、抄袭前人的工作。3编写要求报告、论文的中文稿必须用白色稿纸单面缮写或打字;外文稿必须用打字。可以用不褪色的复制本。报告、论文宜用(210mm×297mm)标准大小的白纸,应便于阅读、复制和拍摄缩微制品。报告、论文在书写、打字或印刷时,要求纸的四周留足空白边缘,以便装订、复制和读者批注。每一面的上方(天头)和左侧(订口)应分别留边25mm以上,下方(地脚)和右侧(切口)应分别留边20mm以上。4编写格式4.1报告、论文章、条的编号参照国家标准gb1.1《标准化工作导则标准编写的基本规定》第8章“标准条文的编排”的有关规定,采用阿拉伯数字分级编号。4.2报告、论文的构成5前置部分5.1封面5.1.1封面是报告、论文的外表面,提供应有的信息,并起保护作用。封面不是必不可少的。学术论文如作为期刊、书或其他出版物的一部分,无需封面;如作为预印本、抽印本等单行本时,可以有封面。5.1.2封面上可包括下列内容:a.分类号在左上角注明分类号,便于信息交换和处理。一般应注明《中国图书资料分类法》的类号,同时应尽可能注明《国际十进分类法udc》的类号。
b.本单位编号一般标注在右上角。学术论文无必要。
c.密级视报告、论文的内容,按国家规定的保密条例,在右上角注明密级。如系公开发行,不注密级。
d.题名和副题名或分册题名用大号字标注于明显地位。
e.卷、分册、篇的序号和名称如系全一册,无需此项。
f.版本如草案、初稿、修订版……等。如系初版,无需此项。
人工智能论文篇九
〔摘要〕人工智能飞速发展,正在改变人类生活,推动人类进步。人工智能学者从认知科学、心灵哲学以及控制论等不同视角对人工智能进行研究,但对于人工智能哲学根源的追溯与厘清较少。古希腊毕达哥拉斯主义的数论思想、亚里士多德演绎逻辑系统与分析哲学中的逻辑分析与语言分析方法以及简单性哲学原则为人工智能研究纲领、研究框架以及研究方法等奠定了基础,哲学核心问题决定了人工智能的研究进路。只有对人工智能的哲学思想源流进行追溯与探究,才能理解人工智能的理论基础,以更好地把握人工智能的发展规律并合理预测人工智能的发展趋势。
〔关键词〕人工智能,数论,简单性原则
人工智能发展如火如荼,学者除了对人工智能技术本质、人工智能社会影响、发展路径及伦理问题等进行研究之外,还关注人工智能中的哲学问题。对人工智能的研究不能仅仅局限于技术层面及科学基础层面的反思,也要涉及对人工智能的哲学思考。博登指出:“在科学家族中,没有一门学科比ai与哲学的关系更密切。”〔1〕3人工智能与哲学紧密联系,特别是心灵哲学与语言哲学,认知科学与认知心理学等学科也为人工智能发展奠定了科学基础。迄今为止,对于人工智能哲学的研究还没有形成完整的理论体系,学者多从哲学视角对人工智能中的问题进行探讨,从哲学思想源流挖掘人工智能基础的著述不多。笔者尝试从人工智能的数论基础、逻辑学、分析哲学基础以及简单性原则等视角分析人工智能的哲学思想根源。
人工智能先驱西蒙与纽维尔作为人工智能符号主义(symbolicism)学派的代表,他们的研究着眼于计算机程序的逻辑结构、符号操作系统以及编程语言,这与古希腊哲学家毕达哥拉斯学派的“数论”思想一脉相承。在毕达哥拉斯看来,数是万物的本原,万物皆数。“按照普罗克洛在《欧几里德〈几何原理〉注释》中,‘数学’这个词也是毕达哥拉斯学派首先使用的”〔2〕268。毕达哥拉斯将科学研究的基础建构在数学的基础之上。毕达哥拉斯哲学思想的核心即“数”是万物的本原。按照毕达哥拉斯的数论思想,与其说水、火、土等都是万物的本原,不如用一个简单词“数”来解释万物的存在。
“数是万物的本原”包含着万物之中存在着某种数量关系的含义,不管是天体结构、音阶音律以及建筑結构等万物都存在数量关系。毕达哥拉斯学派认为数是宇宙的元素,科学研究就是寻找纷繁复杂现象之后的数量关系。例如,物理学是研究事物运动方面的数量关系,几何学是研究事物点、线、面、体之间的数量关系等。他们将事物的本质归结为数的规律,认为事物的本质就是数。按照亚里士多德“四因说”来看,毕达哥拉斯的“数”既是构成事物的形式因,又是构成事物的质料因。质料因指的是构成事物的原始质料,就好比建造房屋用的砖木石瓦,形式因即构成事物的样式和原型,就好比造房屋的图纸或建筑师头脑里的房屋原型。这样的思想家(毕达哥拉斯主义学派)认为数既是事物的质料、同时又是形成事物的变化和它们的不变状态的形式”〔3〕21-22。因此,数对于事物来说,既是质料因又是形式因。
毕达哥拉斯的哲学思想还表现在数的和谐论。他认为万物包括宇宙在内都由数构成,并且万物可以还原为数;他还认为宇宙是和谐的,并把和谐的宇宙称为“科斯摩斯”。科斯摩斯原意就是“秩序”的意思,认为世界存在内在秩序与内在规律,人类可以通过数量之间的关系找到世界的既定秩序。
毕达哥拉斯的“万物皆数,数之和谐”思想既具有本体论含义,也具有方法论意味。他的哲学思想影响了古希腊科学的发展,亚里士多德的逻辑学体系、欧几里德的几何学体系、托勒密的天文学体系、盖伦的医学体系这四大古希腊的科学成就皆受毕达哥拉斯主义哲学思想的影响。不但如此,毕达哥拉斯的哲学思想还影响了西方整个自然科学的发展。达芬奇、哥白尼、开普勒、伽利略、牛顿等人都自称是“毕达哥拉斯主义者”。达芬奇认为天体是一架服从确定自然法则的机器,自然界有确定的规律;15-16世纪带有毕达哥拉斯主义成分的新柏拉图主义者把自然事物的行为解释成数学结构;哥白尼日心说体系的理论基础也是依据毕达哥拉斯主义哲学理论来构造行星运动简单、和谐的天体几何学模型;开普勒认为自己是毕达哥拉斯主义者,他的目标就是追求造物主心中数的和谐;伽利略也是毕达哥拉斯主义的追随者,他认为“自然之书是用数学语言书写的”,自然的真理存在于数学事实中。毕达哥拉斯的数论思想还影响了莱布尼兹。莱布尼茨有一个梦想,就是给出一套理想符号系统或语言和确定的语言变换或演算规则,把日常问题转变成理想语言,利用演算规则清楚地求解问题的答案。在此基础上,莱布尼兹提出“通用机”的天才设想。莱布尼茨尝试发明人工智能通用机,他设计出一种二进制计算法,用二进制数代替原来的十进制数,二进制数即“1”和“0”。莱布尼兹虽然制作出了简单机器,但其只能进行简单的算术计算,还不是莱布尼兹设想的能够进行复杂数据处理的通用机。尽管如此,莱布尼兹思想还是影响了整个计算机系统的发展。
图灵与冯·诺依曼的人工智能机器也受毕达哥拉斯主义数论的影响,他们运用数的和谐以及数量关系的计算尝试让“莱布尼兹之梦”在现实生活中得以实现。图灵通过基本的数学运算将数学运算符号化为运算符,并用一个无限长纸带来表述计算过程,制造出了图灵机,这就是莱布尼茨所说的“通用机”。图灵认为人脑类似通用机,图灵提出一台计算机在多大程度上可以模仿人的活动,进而提出“机器能否思维”这个哲学问题。图灵坚持通过特定算法程序,把可计算的数量关系都转化为由一台图灵机来计算。冯·诺依曼指导发明第一台基于运算器与存储器的计算机,他为图灵通用机设计出一个物理模型——edvac,edvac可以执行加、减、乘、除等数学操作。与图灵一样,冯·诺依曼把人脑与机器类比,机器通过存储器储存数据,通过数学规则设计出把思维当成数据的程序,通过简单、和谐的数字制造出能进行复杂数字处理的机器。不管是图灵的通用机还是冯·诺依曼的edvac都是为了解决“莱布尼兹之梦”,其哲学思想均根源于毕达哥拉斯的“数论”哲学思想。除了图灵与莱布尼茨,纽维尔与西蒙等符号主义人工智能先驱也认为,不管是人类智能还是机器智能都是根据确定的或者规范的规则来进行符号操作的。不但如此,基于认知模拟的强人工智能也把心理状态作为计算状态,所谓认知就是计算,这是对基于数论的计算主义教条的信仰,人类智能类似于信息处理系统。联结主义人工智能不同于符号主义人工智能,它否认智能行为来自于在形式规则下对符号进行操作的观点,“符号主义人工智能中的信息处理包括明确的应用和形式规则,但是联结主义人工智能没有这样的规则”〔4〕1366-1367。与符号主义人工智能不同,联结主义人工智能的工作原理是寻找神经网络及其间的联结机制及学习算法。虽然联结主义与符号主义人工智能有区别,但联结主义人工智能与符号主义人工智能的共同假设都是把认知看作信息处理,且信息处理都具有可计算性。可见,毕达哥拉斯的“万物皆数,数之和谐”思想为符号主义人工智能与联结主义人工智能的发展奠定了基础。
除了毕达哥拉斯的数论思想,古希腊亚里士多德的演绎逻辑系统也是人工智能的哲学思想源泉。人工智能符號主义学派也称为逻辑主义学派,可见逻辑思想在人工智能发展中的重要地位与作用。即使是深受胡塞尔后期的现象学、海德格尔的存在现象学和梅洛-庞蒂的知觉现象学影响的人工智能专家德雷福斯,也肯定演绎逻辑以及形式系统在人工智能发展中的作用。在德雷福斯看来,符号主义人工智能的基础是逻辑学,是哲学中的理性主义。人工智能的主要设想是可以运用计算机的逻辑运算来模拟人类思考的过程。图灵尝试依靠逻辑发明通用机,“我希望数字计算机能够最终激起人们对符号逻辑的极大兴趣……人与这些机器进行交流的语言……构成一种符号逻辑”〔5〕288。马丁·戴维斯直接把符号主义学派的源头追溯到亚里士多德,“把逻辑推理简化为形式的努力可以追溯到亚里士多德”〔6〕200。亚里士多德是逻辑学的创始人,他认为逻辑学是获得真正知识的重要工具,逻辑学是哲学的基础。亚里士多德注重演绎推理,特别重视三段论推理,他认为三段论推理是一切思维运动的基本形式。三段论是一种典型的演绎推理模式,它由普遍性公理和推理规则经过严密的逻辑论证得出必然性结论。图灵的通用机以及符号主义人工智能的根本基础,都可以归结为逻辑或者演绎推理。
集逻辑分析方法与语言分析方法于一体的分析哲学也是人工智能的思想源泉,分析哲学把逻辑学看作一切学科的基础,数学的基础也是逻辑学,数学也要用逻辑符号来表示。分析哲学产生于20世纪初,代表人物是石里克与卡尔纳普等人,其理论来源于英国的经验论者休谟、法国的实证主义者孔德、英国的逻辑主义者密尔和哲学家与心理学家马赫等人的观点。弗雷格的《算术基础》、罗素与怀特海合著的《数学原理》、石里克的《普通认识论》以及维特根斯坦的《逻辑哲学论》是分析哲学的代表著作。分析哲学的基本观点是:哲学的任务是对知识进行分析,强调通过对语言的逻辑分析来消除形而上学问题,认为一切综合命题都以经验为基础等。分析哲学家认为一切科学研究必须从经验出发,哲学的主要任务是运用现代数理逻辑和语言分析把复杂的概念分析为简单的概念,分析哲学家想通过对语言的逻辑分析澄清语句、语词的意义,通过语义上升,抛弃含混、模糊、有歧义的自然语言,把自然语言的语句转换成逻辑命题,通过分析逻辑命题的意义清除伪哲学问题,达到拒斥形而上学的目的。分析哲学注重逻辑分析与语言分析,强调语言分析的重要性,分析哲学把科学的任务界定为发现真理,而逻辑的任务在于识别真理的规律。罗素立足于把哲学建成严密的科学,哲学像科学一样可以获得真理性的知识。在罗素看来,哲学和科学只有程度之分,没有本质区别。哲学问题都是逻辑问题,逻辑问题就是科学问题。对科学问题进行分析还原之后,如果这个问题是逻辑问题,则它是哲学问题,否则就不是哲学问题。因此,逻辑是哲学的基础。通过逻辑分析进行还原涉及语言,那么,所有哲学问题命题都是语言表达式,语言结构是逻辑结构,是科学命题的真正的逻辑形式。
罗素的逻辑原子论从本体论角度坚持奥卡姆剃刀的最小化原则,从语言角度上坚持思维经济原则,语言表述坚持最小词汇量原则。“如无必要,勿增实体”。罗素从逻辑学角度坚持逻辑前提或者公理最小化原则,“宁可构造,勿要推论”。根据公理与推理规则建构的逻辑学公理系统影响了图灵、冯·诺依曼及其以后的人工智能专家。冯·诺依曼致力于为新机器设计逻辑方案,戈德斯坦把冯·诺依曼看成将逻辑应用于计算机的第一人,“据我所知,冯·诺依曼是一个清楚地懂得计算机本质上执行的是逻辑功能的人”〔7〕69。冯·诺依曼在edvac的报告中也提到,不但从数学的观点,而且从工程史和逻辑学家的观点来探讨大规模计算的机器。在人工智能哲学先驱德雷福斯看来,自从古希腊人发明了逻辑与几何,就把一切推理归结为计算。人工智能中符号主义的基础是逻辑学,是哲学中的理性主义、还原论传统。他们把计算机看成操作思想符号的系统,试图用计算机来表达对世界的形式表述。心灵与计算机都是物理符号系统。在德雷福斯看来,“伽利略发现人们可以忽略的品质和技术上的考虑,从而能找到一种用来描写物质运动的纯形式化系统,同样我们可以设想,一位研究人类行为的伽利略可能会把所有语义上的考虑(对意义的依赖),变成为句法(形式化)操作技巧”〔8〕76。人工智能的代表人物数理逻辑学家皮茨与生理学家麦卡洛克撰写了《神经活动中内在观念的逻辑运算》,他们的思想受到罗素与怀特海《数学原理》的启发,坚持把一切数学还原为逻辑,甚至神经网络也可以用逻辑来表达。德雷福斯认为人工智能的发展建立在四种假设之上,即生物学假设、心理学假设、本体论假设以及认识论假设。其中认识论假设指的是一切知识都可被形式化,可以被编码成数字形式;本体论假设指的是存在一组在逻辑上相互独立的事实,知识可以被编入计算机程序。纽维尔认为:“人工智能科学家把计算机看成操作符号的机器,他们认为,重要的是每一样东西都可以经编码成为符号,数字也不例外。”〔9〕196在符号主义者看来,符号是人类认识外部世界的基本单元。人工智能的逻辑学派将人的认识对象通过数学逻辑的方式抽象为符号,利用计算机的程序符号来模拟人认知世界的过程。符号主义学派主要依靠计算机的逻辑符号来模拟人的认知过程。人工智能的重量级人物纽维尔与西蒙构造了第一个真正意义的人工智能程序,称之为“逻辑专家”,可见人工智能专家受逻辑学思想影响之深,“任何表现出一般智能的系统,都可以证明是一个物理符号系统”〔10〕41。西蒙与纽维尔认为,作为一般的智能行为,物理符号系统具有的计算手段既是必要的也是充分的。纽维尔与西蒙把其理论来源追溯到分析哲学家弗雷格、罗素与怀特海,“该假设的起源要追溯到弗雷格、怀特海与罗素就形式化逻辑提出的方案:以逻辑方式获取基本的概念式数学观念,把证明和演绎观念置于可靠的根基上”〔11〕。德雷福斯认为,真正的专家解决问题是诉诸直觉与整体性,在此基础上对人工智能的认识论假设与本体论假设进行批判,但他同意专家系统必须使用某种类型的概论度量的逻辑标准,“认知模拟的先驱者们——已经继承了霍布斯推理就是计算的主张,笛卡尔的心理表述、莱布尼兹的‘普遍文字’的思想——所有知识都可以在一组初始概念中得到表示”〔11〕。正如德雷福斯所言,“人工智能就是试图找到主体(人或计算机)中的哲学本原元素和逻辑关系”〔12〕。可见,人工智能与逻辑学特别是分析哲学紧密相关,逻辑学与分析哲学是人工智能的一个重要思想来源。
古希腊先哲用简单的物质元素探索世界的本原。例如,泰勒斯把世界的本原归结为水,赫拉克利特把世界的本原归结为火,德谟克利特把世界的本原归结为原子,认为世界由不可分的原子构成。他认为,万事万物都可以还原为不可分最小微粒——原子,世界是由原子构成的。复杂的事物由简单的事物构成,万事万物都由不可分的基本粒子构成。世界由最基本的粒子构成,复杂对象由基本粒子构成,基本粒子决定了宇宙的性质。
简单性哲学原则不但用简单元素追溯世界的本原,还致力于用力学解释自然现象。不管是物理规律、化学规律、生物规律,甚至是社会规律都可以用力学解释。哥白尼的日心说体系之所以取得科学界的支持也不是因为其解释力强,而是因为其遵循了简单性原则,从而取代了托勒密繁琐的本轮-均轮模型。牛顿的力学三定律就立足于简单性原则,用力来解释所有运动。按照简单性哲学原则,人与动物都是由简单的粒子构成,人与动物没有根本区别,人与机器也没有本质区别,甚至可以说“人就是机器”。1747年,拉·梅特里发表了《人是机器》这一哲学巨著,提出“人是动物,因而也是机器,不过是更复杂的机器罢了”〔14〕69。笛卡尔把人体看作是与机械相类似,用机械的旋涡来解释天体运动问题,他认为宇宙是一架机器,机械运动是唯一的运动规律。牛顿、开普勒、伽利略等都力图建立严密的力学体系来正确描述宏观物理运动,甚至是天体运动。爱因斯坦试图用公理化方法把自然界描绘成物质在时空中运动的统一体,德国物理学家海森堡也认为简单性原则可以作为科学假说可接受性的标准。
不仅自然界的规律可以用力学表示,而且社会关系也可以用力学表示。孔德提出社会动力学和社会静力学概念,社会动力学又称为社会物理学,立足于运用力学规律分析社会关系。1950年,斯宾塞出版《社会静力学》,把事物的基本规律看作“力的恒久性规律”(thelawofpersistenceofforce)。“人是机器”的观点启发人工智能先驱开始了构造具有人类智能机器的探索。
主体与客体的关系在哲学史上占居重要地位,是哲学研究中的核心問题,也是哲学史上诸多学派的思想源头。古希腊米利都学派的泰勒斯探索万物本源的时候就开始关注主体如何认识客体,关注主体与客体的关系,普罗泰戈拉提出的命题“人是万物的尺度”包括了主客二分思维的萌芽,笛卡尔的精神和物质相互独立的二元论思想暗含着主体和客体截然二分的思想。人们一般认为,只有人类才能成为主体,人之外的世界是客体。那主客二分的标准是什么呢?人之所以为主体的标准又是什么呢?有的学者认为只有主体才具有意向性,客体不具有意向性,客体只是主体认识的对象。主体一般具有独立意识或者个体经验。哲学意义的认识论指的是个体对知识和知识获得所持有的信念,主要包括知识结构、知识本质、知识来源和知识判断的信念等内容,主体与客体的关系问题是哲学的核心问题。认识论中的可知论与不可知论是研究主体之外的客体是否可知,唯心主义与唯物主义的区分以及各种不同的哲学流派的分野都基于主体与客体截然二分的哲学基础,哲学史上,各大流派都曾经把主客关系作为研究的切入点。
人工智能是赋予机器智能,让机器可以模拟或者代替人类的某种智能。人工智能基于不同的哲学理念有不同的研究进路,人工智能发展史上不同思想的对立也是基于对于主体与客体关系的哲学思考。一般来讲,人工智能可分为三种进路,即符号主义进路、联结主义进路以及行为主义进路。人工智能符号主义进路把人类的认知过程看成符号计算过程,人类认知是物理符号系统,人工智能先驱德雷福斯(s)认为,人工智能研究者其实与炼金术师一样,也是对一些符号进行不同的处理。因此,在人工智能的符号主义看来,人与机器没有本质区别,人类的心智同样可以还原成符号计算。德雷福斯在《计算机不能做什么:人工智能的极限》中提出,人工智能机器是基于生物学假设、心理学假设、认识论假设以及本体论假设基础之上的。“生物学假设:在某一运算水平上,大脑与计算机一样,以离散的运算方式加工信息;心理学假设:大脑被看作一种按照形式规则加工信息单位的装置;认识论假设:一切知识都可被形式化,可以被编码成数字形式;本体论假设:存在是一组在逻辑上相互独立的事实,知识可以被编入计算机程序”〔17〕156。从德雷福斯关于人工智能的四个假设中我们可以看出,人工智能与人类一样都是对信息加工和处理的工具,从这个意义上讲,主体与客体之间没有本质的区别。主体与客体不能截然二分,之所以对主体和客体进行区分,表明人类对于自身的认知规律和智能结构没有真正揭示。
人工智能的联结主义进路,又称为仿生学派或生理学派,认为人工智能源于仿生学,特别是对人脑模型的研究,其主要原理为神经网络及神经网络间的连接机制与学习算法。联结主义起初是用软件模拟神经网络,后来发展到用硬件模拟神经网络。其理论假设是人与机器如果具有同样的结构应该具有同样的功能,可以通过研究人脑的物理结构从而制造出类似人脑的机器。在联结主义看来,人与机器结构相同,人脑与计算机程序运行模式相同,则功能相同。纽维尔(allennewell)认为,智能的计算机程序可以被用来模拟人类的思维过程。联结主义失败的原因是人脑的结构并不像人工智能研究者们在电脑上模拟一样,人类的大脑是将物理事实与知觉过程所连接的客观事实,而不只是对信息进行加工的一台机器。人与机器不同,机器不具有人类的精神状态和意识。人类的精神状态和意识是否由人脑结构决定呢?人类精神状态和意识是先验存在还是后天习得仍然是认知科学研究的难题。因此,通过神经网络让机器模拟人类智能行不通。通过对人工智能的符号主义和联结主义的分析我们发现,主体与客体区别的必要性得以彰显,人的主体性地位不能动摇。
人工智能的行为主义进路,又称为人工智能的进化主义或控制论学派,其原理为维纳和麦克洛克等学者的控制论思想及感知-动作型控制系统。研究重点是模拟人在控制过程中的智能行为和作用,如对自适应、自组织和自学习等的研究。人工智能行为主义学派的代表布鲁克斯(rodneybrooks)研制的“六足机器人”实质上是一个基于感知-动作模式模拟昆虫行为的控制系统,能够适应外界的环境,但这样的机器人也不具有人类的感知与认知能力,主体与客体之间还是可以严格区分。人工智能的目标从技术层面来讲是制造出对人类有益的智能机器,从哲学层面来讲,就是利用人工智能概念和模型,通过机器模拟人类智能来推动哲学核心思想主客二分问题的研究,借此解决哲学上的身心问题、意识难题等问题。哲学的核心问题与人工智能的研究是相互促进的。
综上所述,人工智能技术的发展有其哲学根源,根源于数是万物本源思想、万物皆数思想以及数的简单、和谐思想,还根源于亚里士多德的逻辑思想以及分析哲学的逻辑分析研究方法。在众多哲学思想中,简单性原则是人工智能的哲学思想源泉。人工智能就是计算机用逻辑方法把思维还原为简单数字来模拟人脑的过程。人工智能发展是思维的革命,人工智能涉及信息与计算的本体地位和方法论问题,人工智能的发展迫使哲学家们对思维的存在形式进行深入研究,从而把形而上的论证变成可操作的过程。人工智能的目标是通过计算机实现机器模仿人类智能,人工智能的发展直接指向哲学的中心问题。例如,意向性问题、形式化问题、身心问题等。对于人工智能的哲学基础溯源有利于推动哲学的进步与发展,也可以拓展对于传统哲学问题的研究。只有对人工智能的哲学思想基础进行追溯与探源,才能为人工智能工作者提供思想源泉,从而更好地理解与把握人工智能的理论基础、发现人工智能的发展规律以及预测人工智能的发展趋势、把握人工智能的发展方向。
参考文献:
〔1〕玛格丽特·博登.人工智能哲学〔m〕.刘西瑞,王汉琦,译.上海:上海译文出版社,2001.
〔2〕汪子嵩,等.希腊哲学史〔m〕.北京:人民出版社,2004.
〔3〕亚里士多德.形而上学〔m〕.李真,译.上海:上海人民出版社,1995.〔4〕安东尼·梅耶斯.爱思唯尔科学哲学手册〔m〕.张培富,等译.北京:北京師范大学出版社,2015.
〔5〕〔m〕.northholland,amsterdam:macmillanmagazinesltd,1992.
〔6〕davis,soflogic:mathematiciansandtheoriginofthecomputer〔m〕.newyork:&,2001.
人工智能论文篇十
是的,正如霍金预言:“全面化人工智能可能意味着人类的终结。”随着人工智能日益渗透我们的生活,人类社会面临着生存竞争、伦理逆境等方方面面的严峻挑战,然而,冷静想一想,ai其实本质上与互联网、智能手机等科技相差无几,其终极目标都是为了让我们的生活更快捷便利,我们为何要对ai的到来感到恐慌?私以为,面对人工智能全面化的大势之趋,我们理应勇立潮头,迎战ai洪流。
毋庸置疑,人工智能无可比较的学习速度,不知疲乏的高能运作,面面俱到的'系统分析,以及浩大繁杂的数据体系,势必会占据了人类相当比重的生存空间,机器人种种优势人类也难以企及,但是,ai的诞生不是为了毁灭、战胜人类,而是要让人类不断突破自我,查找新的可能。在几十年前,我们谁能想到如今的互联网科技能彻底转变我们的生活?同样地,我们也无法否认将来在ai时代我们的生活会再次被*。拒绝ai更是对更美妙将来的拒绝,唯有与ai同行,让简单的世界更简洁,我们才能迎来更好的时代。
是的,无论是哪个时代,“被替代”的隐患始终存在,但也恰恰是这些隐患与挑战,筛选着、鞭策着人们。成也挑战,败也挑战,关键在于当洪流袭来,你是否有勇立潮头,发觉机遇的士气。正如王鼎钧所言,“时代像筛子,筛得多数人流离失所,筛得少数人出类拔萃。”我信任,那些自甘堕落,向人工智能俯首称臣的人只会在社会中渐渐淡去,唯有那勇立潮头的少数人才能提升自我,在ai洪流中暗藏的机遇中大放异彩。
人工智能之大势已成定局,然人类将来之命运犹未可知。面对ai洪流,是消沉,还是迎战?由君定夺。
人工智能论文篇十一
摘要:崔政博士的新著《科学技术知识的政治经济学研究》以马克思的“劳动”概念为中心,提供了一个划定人工智能替代人类劳动的边界框架。该书区分了重复性劳动与创造性劳动,提出创造性劳动是人类劳动的本质也是人工智能不可替代的。但需要进一步指出的是,机器学习已经在认识实践中表现出对人类认知劳动的极大辅助作用,包括:人工智能能够提升科学知识生产效率;人工智能擅于提取和传递默会知识;人工智能可以产生某种机器知识。以上原因使得我们在创造性劳动中很难将人工智能排除在外,未来可能的创造性劳动方式应当是某种人机协作或人机融合。
关键词:人工智能;创造性劳动;科学知识;默会知识;机器知识
产业科学出现以来,科技创新对经济增长的驱动作用已经成为全球性的共识。崔政博士的新著——《科学技术知识的政治经济学研究》,试图以“劳动”概念的历史分析为切入点,讨论科学技术在当代资本主义经济中所扮演的角色,进而以一种动态的劳动价值论表明当代社会经济运行的内在动因[1]2。该书以马克思的“劳动”概念为核心构建了一个哲学空间,将科学知识、技术创新、资本运行纳入其中,完整地阐述了科学技术对经济社会的塑造作用。该书的叙事方式表达了两个理论取向:第一,对科技创新的分析不同于传统技术创新理论仅关注经济“增长”,而是从更为基础的社会分工出发关注经济“发展”;第二,将科学知识的生产还原到马克思的“科学劳动”概念,实际上已经使用了一种扩展了的“科学”概念,蕴含着当代科学知识生产所具有的实践性、情境化、多主体等特征。
该书更为重要的贡献在于讨论了人工智能技术对于社会生产方式的挑战和变革作用。书中提出:“人工智能的替代效应是建立在对人类劳动数据化和逻辑化的基础上的,探索自在自然的创造性劳动是不可数据化和逻辑化的。因此,人工智能只能围绕既有的对象进行重复性生产,替代重复性劳动;而人类则能够探索自在自然,从而摸索新技术、建构新对象,进行创造性劳动。也就是说,机器所不能替代的人类劳动的‘硬核’是探索自在自然的劳动,是创造对象和掌握技术的‘创造性劳动’。”[1]25作者将马克思的“劳动”概念区分为“重复性劳动”和“创造性劳动”,进而指出人工智能是对机器大工业的否定,它将替代人类劳动中可以重复、可以数据化的部分,但创造性劳动是人类劳动的本质,是人工智能所不能替代的。
作者提出:“人工智能可以在将重复性劳动数据化的基础上,对人类劳动进行模仿,从而取代任何形式的重复性劳动。但人工智能却不能取代人类的创造性劳动,创造性劳动是通过探索自在自然,经过反复的摸索与实验、征服反常和偶然、掌握技术、创造对象、实现对象从无到有的过程的劳动,这是一种原生性的劳动。”[1]27作者认为,创造性劳动是对马克思的“自在自然”的探索,“自在自然”是在人类的现有认知能力之外,却以反常和失败等形式向人类显现其自身。然而,在认知实践当中,机器学习已经可以帮助人类探索认知能力之外的“自然”,当然这种“自然”并不以反常或失败的形式存在。作者也指出:“尤其是在大数据和云计算的背景之下,机器学习的速度远超人类的认知极限,甚至可能在数据中找到人尚未发现的方法和规则。”[1]35因此,在认知劳动方面,我们可以在作者的概念框架下进一步区分出人工智能对人类“创造性劳动”的辅助作用,具体表现为三个方面:人工智能提高科学知识生产效率;人工智能擅于提取和传递默会知识;人工智能可以产生某种机器知识。
机器学习的广泛使用可以提升科学知识生产的效率,主要表现在文献研究和实验室研究两个方面。人工智能系统可以通过自然语言理解获取、阅读和总结所有相关文献。例如,一个叫做iris的人工智能系统的运行方式是:从某个研究主题的演讲切入,先使用自然语言处理算法分析演講的脚本,挖掘从开放渠道获取的研究文献,然后将相关研究文献分组并进行可视化,再通过人工标注文献使机器匹配精度增加,当机器能够理解文献的内容和结构时,可以帮助科研人员总结出该研究主题下的所有研究问题、假设、实验结果等,从而将前人工作完整呈现。此外,机器学习的使用还能够加快实验研究的进程。例如,2016年5月,澳大利亚国立大学的研究团队使用机器学习重复了物质的玻色—爱因斯坦凝聚态的实验室发现过程,从反复设置调整实验设备的各种参数到产生凝聚态物质,机器学习只用了一个小时,而凭借这一发现获得诺贝尔奖的三位科学家是在直觉的基础上经过多年实验才制造出了物质的凝聚态。由此可见,作为技术的人工智能的进步已经开始反向促进作为基础研究的科学知识的生产。
在当前人类社会所有已经产生的信息中,文字只占极少的比例,大量的信息以图片和视频方式呈现,其中蕴含了大量需要通过亲身体验才能获取的默会知识。如果有办法将事物状态用图片或视频记录下来,就有可能使用机器学习从中萃取出知识。很多电影公司已经使用人工智能系统观看大量人类历史上的影视作品,从而归纳提取出经典桥段,创作出新的配乐、台词和预告片以供人类借鉴。更为重要的是,由人工智能系统获取的默会知识是以神经网络参数集的形式存在的,这对人类而言仍然不可描述,也难以在人类之间传递,但却非常易于在人工智能系统间传播。例如,一台掌握驾驶技能的自动驾驶汽车只要将参数集分享出来就可以快速让所有汽车学会这项技能,而且可以实现机器间的协同行动。
机器知识与科学知识或默会知识的核心差别在于:机器知识依赖数据,科学知识或默会知识依赖信息。信息是事物可观察的表征,或者说信息是事物的外在表现。任何一个物体的信息量都非常大,要精确描述一个物体,就需要将其中所有基本粒子的形态以及它们之间的关系都描述出来,同时还要将该物体与周围环境的关系都描述出来。而数据是已经描述出来的部分信息,关于一个物体的数据通常要比信息少得多,例如只包含它的形状、重量、颜色和种属关系等。只有当信息经过适当的处理,当它被用来进行比较、得出结论和建立联系时,它才會转化为知识。而知识可以理解为伴随着经验、判断、直觉和价值的信息,作为认知主体的人在其中扮演了关键角色。
相较之下,机器知识可以被刻画为数据在时空中的关系,这些关系表现为某种模式,对模式的识别就是认知,识别出来的模式就是知识,用模式去预测就是知识的应用。这些数据在时空中的关系只在少数情况下才能用数学工具进行表达,而多数情况下知识表现为数据间的相关性的集合,这些相关性只有一小部分可以被人类感知和理解。这源于人类感受能力的局限性:人类只能感受部分外界信息,人类的感官经验局限在三维的物理空间和一维的时间。因此,当数据无法被感知,它们之间的关系又无法用数学工具表达时,这些数据间的关系就超出了人类的理解能力之外而属于机器知识。当前机器学习的主流形式——人工神经网络的最大特点就是发现并记忆数据中的相关性,例如在看了很多汽车图片后会发现汽车都有四个轮胎,人类对图片这类直观的数据间的相关性也能发现并记忆一部分,这就是默会知识。但当数据量很大且不直观时,例如股票市场的数据或者核电站的内部数据,人类就无法应对了。而随着人工神经网络层级和数量的增加,人工智能系统能够处理大规模的复杂数据,这就是机器知识。机器知识当前的主要表现形式类似于alphagozero中的神经网络的全部参数。
概言之,科学知识和默会知识多是基于信息的因果性知识,而机器知识多是基于数据的相关性知识。此外,科学知识是易于记录、易于陈述、易于传递的;默会知识是难以记录、难以陈述、可传递的;机器知识则是可记录、不可陈述、易于在机器间传递的。
当然,基于人工神经网络的机器学习仍有两个核心的局限性导致人工智能系统还不足以承担创造性劳动。第一个局限是,人工神经网络需要依赖特定领域的先验知识,也就是需要特定场景下的训练,这是因为人工神经网络的学习本质上是对相关性的记忆,人工神经网络将训练数据中相关性最高的因素作为判断标准。这个问题在自动驾驶汽车中表现的非常突出,鉴于道路交通情境的复杂性和交通标示的多样性,自动驾驶系统难以避免很多交通事故。第二个局限是,人工神经网络无法解释产生某个结果的原因,这种不可解释性在许多涉及安全和公共政策的领域显现的比较突出,例如在智能医疗中,人工神经网络在影像识别和辅助诊断中都对其结果缺乏医学上的解释性,都需要专业医生的复核。
基于人工神经网络的人工智能系统在记忆和识别这两个基础智能方面超越了人类,但在推理、想象等高级智能方面还相差较远。与人类相比,人工智能无法承担创造性劳动的原因还不止于以上的局限性,还包括:人工智能没有常识和物理世界的模型;人工智能没有自主和自发的通用语言能力;人工智能没有想象力,需要大量常识、反事实假设和推理能力;最重要的是人工智能没有自我意识。自我意识的缺乏导致能够产生机器知识的人工智能系统仍然无法被视为认知主体,其知识的“创造性劳动”是一种无意识认识活动。
人工智能系统在提升科学知识生产效率、处理默会知识以及产生机器知识方面的优势,使得我们在创造性劳动中很难将其排除在外,未来可能的创造性劳动方式应当是某种人机协作或人机融合。脑机接口(brain-computerinterface)是当前一个重要的人机协作研究方向,而其中最激进的方式是马斯克提出的neuralink,即通过柔性电极对接在人脑的神经网络上,neuralink要解决的是人类的信号输入与输出,但其问题在于人类的高级思维(如逻辑推理或描述场景)必须依赖语言,而目前基于人工神经网络的机器学习能力主要是对环境的识别能力,还远没有达到语言和逻辑推理,但人类智能通过语言进行沟通。这背后就隐含了人类的科学知识与人工智能系统的机器知识之间的不可通约,以上例子也表明基于人机协作的创造性劳动还有很大的技术障碍需要克服。
参考文献:
[1]崔政.科学技术知识的政治经济学研究[m].石家庄:河北人民出版社,2019.
[2]郁振华.当代英美认识论的困境及出路——基于默会知识维度[j].中国社会科学,2018(7).
[3]eepistemologyandbigdata[a].inmcintyre,lee,andalexrosenberg,tledgecompaniontophilosophyofsocialscience[c].taylor&francis,2016.
[4]董春雨,薛永红.机器认识论何以可能?[j].自然辩证法研究,2019(8).
人工智能论文篇十二
【摘要】目的:通过调查研究超声医学在临床急诊中的检查价值。方法:采用随机数字表法将对我院门诊收治的100例急诊患者,分成50例的观察组和50例的对照组。且给予两组正常病症检查方法,观察组在常规检查的基础上使用超声医学,并对检查的结果进行回顾性的分析与比较。结果:超声诊断与常规诊断的符合率和未诊断率为96%,4%和68%,32%。两者之间的对比具有显著的差异性(p0.05)。结论:超声医学在急诊的检查中具有比较高的正确率,不仅帮助医生减少了确诊时间,还为患者赢得了就诊时间,提高了患者的抢救成功率。
【关键词】超声医学;急诊;价值
随着超声诊断技术在临床中广泛应用以及不断的发展和日益完善中,超声学对患者的病情及时快速的检测方面做出了重大的作用。使得很多腹部疾病以及意外创伤的患者得到了迅速、及时且有效的治疗方案,减轻了患者的痛苦,给患者提供了医治空间,提高了患者的致残率以及死亡率。本文主要将我院20xx年6月至20xx年10月收治的50例急诊患者分别采用常规诊断和超声医学进行诊断,且分析比较,现将调查结果报告如下:
1资料与方法
1.1一般资料
采用随机数字表法将我院在20xx年6月至20xx年10月收治的50例急诊患者,均分为超声医学诊断的观察组和常规诊断的对照组,且都符合急诊诊断的标准[1]。其中治疗组男性患者14例,女性患者11例,年龄31-64岁,平均年龄为(43±21),黄体破裂出血5例,急性阑尾炎15例,胃十二指肠穿孔2例,急性胆囊炎3例;对照组男性患者18例,女性患者7例,年龄28-66岁,平均年龄为(38±25),病程1-8年,黄体破裂出血8例,急性阑尾炎12例,胃十二指肠穿孔3例,急性胆囊炎2例;两组患者性别、年龄、原发疾病等一般资料组间比较,差异无统计学意义(p0.05)。
1.2治疗方法
主要采用多种超声诊断仪器,如logiq400、logiq5、迈瑞ma77―0786等诊断仪器,探头的频率使用3.5―8.0mhz.在诊断过程中要求患者不能空腹,对于盆腔检查的患者需要憋尿或或者使用生理盐水对膀胱进行充盈,患者检测时采取仰卧或者侧卧的姿势,对进行全腹部多切面检查的患者,需要采取坐位进行胸膜腔的探查。
1.3疗效评价标准
当超声诊断的结果和临床诊断一致时,便为符合标准;当超声诊断的结果仅仅显示了患者腹腔的积血、积液或者病灶区的血供量逐渐减少,便为基本符合标准;当超声诊断的结果和临床诊断不一致时,则为误诊或漏诊,称为未诊断。
1.4统计学方法
采用spssl5.0软件进行统计分析,计量数据将采用采用x2检验;当p0.05,差异是具有统计学的意义。
2结果
2.1两组数据比较
通过对比分析两组分别使用超声医学进行诊断以及常规诊断的结果,见表1
3讨论
急诊患者一般病情都比较的紧急,且症状比较的严重。有时病人会处在休克期或者休克的前期,病情相对比较的复杂,婴幼儿的患者一般不能完全的表达病情。是否能够对患者及时明确的进行诊断,可以有效的减少并发症以及死亡率,成为临床抢救措施的关键因素。临床的医生可以根据患者病情的症状、体征以及其他检查作出一些鉴别性的诊断,但在大多数的情况下还是难以进行确诊。然而具有操作方便、使用快捷的超声检查,发挥其特点,用独特的声像图片为临床提供有利的证据。超声医学的检查可以有效的缩短医生的确诊时间,减轻了急诊患者的病痛,给患者提供了足够的治疗空间。超声诊断在妇产科疾病、肠胃疾病以及胆囊等各类疾病中的表现具有差异性,以下将对各种病情做出分析[3]。妇产科疾病:超声医学在妇科的作用是无法代替的,异位妊娠的声图像是子宫内膜中出现不同程度增厚现象的表示,在患者的子宫一侧会出现混合型的团块,但在声像图中并没有非常明显特征的表示。盆腔炎患者病情严重时,超声图像则会变现为子宫增大和输卵管的逐渐变粗。患者出现黄体破裂出血时在超声图中的显示和异位妊娠表现形式具有细微的变化,在检查过程中需要仔细。当随着患者的发病时间以及血块的多少变化时,胎膜下积血声像学则会表现胎盘和子宫壁间的边缘部分具有粗糙且规则不一的液体状的暗区,有许多斑点状呈现高回声、杂乱的回声或者不均质的低回声。胃肠道系统疾病超声检查:当患者的胃十二指肠穿孔时一般会出现误诊或者漏诊的情况,此时在检查过程中还要结合其他的手段进行辅助性的检查,如x光线等。当患者出现急性阑尾炎时,超声图像一般表现为阑尾体型会有显著性的增大,呈现出模糊的周围结构且具有高、低、高的回声。急性阑尾炎的图像特点为:一般的阑尾炎,阑尾肿大,其直径一般9mm,具有比较清晰的阑尾管的壁层,且从外到内逐渐呈现出高回声、低回声、高回声;急性化脓性的阑尾炎,阑尾具有明显的粗大状态,可以通过肉眼辨别出来,具有较厚的阑尾壁,腔内具有较多的积液,且有代表性的少量的斑片状的高强回声。阑尾的横切面呈现出强弱相间的环形回声以及靶环征;急性阑尾炎合并周围脓肿,其患者的阑尾状态是无法进行辨认的,但在右下腹可以看到类似于圆形团状的回声,且在内部会呈现出不均匀的杂乱的低回声。胆管系统疾病:当患者出现胆总管结石时,进行超声检查,管内具有强回声且伴随位于后方的图像影射[3]。当患者胆管内具有胆汁淤积时,胆管就会出现不同程度的扩张现象。患者胆囊发炎时,超声图像中的胆囊具有显著性的扩充,具有较厚的胆囊壁,较强的张力,强回声光团会出现在胆囊颈部。
综上所述,超声医学的诊断具有操作简单、经济适用、准确诊断的特征,且还可以在定位的同时,了解患者是否存在并发症,因此在临床中的应用越加广泛,为临床的医生提供了具有重要价值的参考以及治疗方案。特别是在胸腹部创伤以及急性腹部的疾病急诊体系中起到了重要的作用,且不同程度上促进了医疗急救体系的发展。
参考文献:
人工智能论文篇十三
你听说过或者看到过智能垃圾桶吗?如果你们没看到,那就请跟我一起坐时光穿梭机到未来世界去参观吧!
未来的大街上,干净无比,没有落叶、没有垃圾、没有到处飞舞的苍蝇、蚊虫、更没有刺鼻的汽油味......
哟!多可爱的米奇老鼠啊!我们一起跑上前,正想抚摸它,嘿!原来是一个垃圾桶。这可不是一般的垃圾桶哟!你们瞧:米奇两眼还发着光呢,原来它正在发电来处理自已肚里的东西。米奇嘴巴紧闭着,头上有二根天线,这天线可不是好玩的,它左边一根天线是吸收路旁汽车的尾气的,右边一根天线是吸收太阳能的,以用来发电处理垃圾的;米奇胖乎乎的身体上还有三颗颜色不同的大纽扣。一个小朋友好奇的触摸了一下第一颗红色的扣子,垃圾桶的门自动翻开了,又按了一下第二颗绿色扣子,门又自动的关上了,那第三颗是干什么的呢?小朋友忍不住又按了一下第三颗的扣子,哈!真神奇,扣子眼里弹出一个微型。这时,一位阿姨走过来,见我们围着米奇,知道我们想知道这只神奇的米奇的功能,于是,便给我们介绍起来:这只米奇的脑袋里装有电脑芯片,它只要看到有人不小心掉了垃圾,它就会走过去,用手将垃圾捡起来,张开紧闭的嘴,把它扔进去。如果看到有人不爱清洁,它的另一只手那么会出示”保护环境荣耀,破坏环境羞耻”的小牌。它还有许多的内在功能:它会垃圾分类,把有毒和无毒的分装在肚子的两边,它肚子里还有一种溶化器,它把无毒的垃圾处理成肥料,把有毒的垃圾通过自身的.排毒器将它转换成一种无毒的清新气体,释放出来。它还有一种非常有趣的趣事,一但它肚子的垃圾装满了,它就会自动处理垃圾,并会走到一棵树下,从紧闭的嘴里弹出一根管了,然后插入土里,把垃圾养份注入树里,然后又回到它原来的位置。
到了秋天,秋风扫落叶时,米奇头上便会张开一个巨大的吸盘,把黄叶都吸进去,然后又做成肥料。米奇的脚下还有一种粘了水的毛刷式吸尘器,它可以一边唱”小曲”,一边走一边清洁道路。如果我们现实中有这种垃圾桶,那该多方便啊!我想,这个愿望不会是梦,我们的愿望一定会实现。