初一数学教案(优秀13篇)
教案是教师进行授课和教学管理的重要依据,也是学生学习的重要参考。教案的编写需要有明确的教学目标和评价标准。接下来是一些优秀教案的分享,给大家提供一些启发。
初一数学教案篇一
2.掌握列方程解决实际问题的一般步骤;。
3.通过列方程解决实际问题的过程,体会建模思想.
教学重点建立模型解决实际问题的一般方法.
教学难点建立模型解决实际问题的一般方法.
学情分析1、在前面已学过一元一次方程的解法,能够简单的运用一元一次方程解决实际问题。
2、培养学生分析、解决问题的能力及逻辑思维能力。
学法指导自学互帮导学法。
教学过程。
教学内容教师活动学生活动效果预测(可能出现的问题)补救措施修改意见。
问题1:之前我们通过列方程解应用问题的过程中,大致包含哪些步骤?
1.审:审题,分析题目中的数量关系;。
2.设:设适当的未知数,并表示未知量;。
3.列:根据题目中的数量关系列方程;。
4.解:解这个方程;。
5.答:检验并答话.
二、应用与探究。
问题2:应用回顾的步骤解决以下问题.
三、课堂练习。
四、小结与归纳。
问题4:用一元一次方程解决实际问题的基本过程有几个步骤?分别是什么?
五、课后作业。
教科书第106页习题3.4第2、3、7题;1、教师利用复习提问的方式导入,帮助学生掌握列方程解应用题的步骤。
2、教师展示例题,并巡视学生独立完成情况,引导学生分析问题并解决问题。
3、教师展示练习题,引导学生分析问题并解决问题,并巡视。
4、教师通过提问,让学生进行归纳小结。1、学生回忆并独立回答。
2、学生先观看课件,先独立思考,再合作交流解决问题。
3、学生先观看课件并解决问题。
4、学生自主归纳本节课所学内容。
不能解决问题。
教师展示解答过程。
初一数学教案篇二
【教学目标】。
1、能运用公式解决比较简单的实际问题,并对简单公式的导出方法有一个初步的认识;
2、会解简单的方程及会利用简易方程解实际问题;
3、初步了解抽象概括的思维方法及特殊与一般的辩证关系。
【知识讲解】。
下面讲述这几点的主要内容:
1、公式。
用字母表示数的一类重要应用就是公式,在小学,我们已经学过许多公式。
如:(1)s=vt(路程公式),(速度公式),(时间公式)。
(2)梯形面积公式:
(3)圆的面积公式:
(4)s圆环=。
2、方程中的.有关概念。
(1)含有未知数的等式叫方程。
(2)使方程左右两边相等的未知数的值,叫方程的解。
(3)求方程的解的过程叫解方程。
3、解方程的依据。
(1)方程两边都加上(或减去)同一个适当的数。
(2)方程两边都乘以(或除以)同一个适当的数。
例1、图示是一个扇环,外圆半径是r,内圆半径是r,扇环的圆心角为n,写出扇环的面积公式,并计算当r=8cm,r=4cm,n=60°时的扇环面积(取3.14,结果取一位小数)。
分析:扇环面积可以看作是环形面积的一部分,因为环形的圆心角是360°,所以圆心角是n的扇环面积是环形面积的。
解:当r=8cmr=4cmn=60°时,
答:扇环的面积约是25.1cm2。
说明:(1)公式计算时单位要一致,计算过程中一般不写单位,最后结果才写出单位,并用括号将单位括起来。
(2)上面所用的求扇环面积的方法体现了数学上的转化思想。一般在计算比较复杂的图形的面积时,都有采用此法,即将复杂的图形转化为几个简单图形的面积的和或差。
例2、一根钢管它的截面是一个圆环,圆环的外圆半径是r=10cm,内圆半径r=8cm,钢管长l=100cm。
初一数学教案篇三
2.会用计算器求数的平方根;。
重点:用计算器进行数的.加、减、乘、除、乘方和开方的计算;。
难点:乘方和开方运算;。
1.计算器的使用介绍(科学计算器)。
2.用计算器进行加、减、乘、除、乘方、开方运算。
例1用计算器求下列各式的值.
(1)(-3.75)+(-22.5)(2)51.7(-7.2)。
解(1)。
(-3.75)+(-22.5)=-26.25。
(2)。
51.7(-7.2)=-372.24。
说明输入数据时,按键顺序与写这个数据的顺序完全相同,但输入负数时,符号转换键要放在数据之后键入.
用计算器求值。
1.9.23+10.22.(-2.35)×(-0.46)。
答案1.37.82.1.081。
初一数学教案篇四
一、知识结构。
二、重点、难点分析。
本节教学的重点是利用公式(x+a)(x+b)=x2+(a+b)x+ab熟练地计算.难点是理解并掌握公式.本节内容是进一步学习乘法公式及后续知识的基础.
然后再次运用单项式与多项式相乘的法则,得到:
3.在进行两个多项式相乘、直接写出结果时,注意不要“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多基同甘共苦的积.如积的项数应是,即六项:
当然,如有同类项则应合并,得出最简结果.
4.运用多项式乘法法则时,必须做到不重不漏,为此,相乘时,要按一定的顺序进行.例如,,可先用第一个多项式中的第一项“”分别与第二个多项式的每一项相乘,再用第一个多项式中的第二项“”分别与第二个多项式的每一项相乘,然后把所得的积相加,即.
5.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.
6.注意确定积中每一项的符号,多项式中每一项都包含它前面的符号,“同号得正,异号得负”.
教学时,应注意以下几点:
积的项数应是,即四项当然,如有同类项,则应合并同类项,得出最简结果.
(2)要不失时机地指出:多项式是单项式的和,每一项都包括前面的符号,在计算时一定要注意确定积中各项的符号.
(3)例2的第(1)小题是乘法的平方差公式,例2的第(2)小题是两数和的完全平方公式.实际上任何乘法公式都是直接用多项式乘法计算出来的.然后,我们把这种特殊形式的乘法连同它的结果作为公式.这里只是为后面学习乘法公式作准备,不必提它们是乘法公式,分散学生的注意力.当然,在讲解这个1题时,要讲清它们在合并同类项前的项数.
(4)例3是另一种形式的多项式的乘法,要讲清楚两个因式的特点,积与两个因式的关系.总之,要讲清楚这种特殊形式的两个多项式相乘的规律,使学生在计算这种类型的题目时,能够迅速地求得结果.如对于练习第1题中的等等,能够直接写出结果.
初一数学教案篇五
1.进一步熟练掌握有理数加法的法则。
2.掌握有理数加法的运算律,并能运用加法运算律简化运算。
启发引导式教学,能够由特殊到一般、由一般到特殊,体会研究数学的一些基本方法。
1.培养学生的分类与归纳能力。
2.强化学生的数形结合思想。
3.提高学生的自学以及理解能力,激发学生学习数学的兴趣。
加法运算律的灵活运用,解决实际问题。
能运用加法运算律简化运算,加法在实际中的应用。
采取启发式教学法及情感教学,引导学生主动思考,主动探索。用大量的实例让学生得出规律。
1.复习有理数的加法法则:
(1)同号两数相加,取相同的`符号,并把绝对值相加。
(2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
(3)一个数同0相加,仍得这个数。
2.口算:7+(-5)(-5)+(-4)(-10)+0(-8)+8。
(一)情境引入,提出问题:
鼓励学生通过自己的探索,交流、归纳,自主得出有理数加法的运算律。
1.叙述有理数的加法法则.
2.小学学过的加法的运算律是不是也可以扩充到有理数范围?
3.计算下列各组数的值,并观察寻找规律。
(1)(-7)+(-5)(-5)+(-7)。
(2)[8+(-5)]+(-4)8+[(-5)+(-4)]。
(3)[(-7)+(-10)]+(-11);(-7)+[(-10)+(-11)]。
结论:在有理数运算中,加法交换律、结合律仍然成立。
(二)活动探究,猜想结论:
交换律——两个有理数相加,交换加数的位置,和不变.
用代数式表示:a+b=b+a。
运算律式子中的字母a、b表示任意的一个有理数,可以是正数,也可以是负数或者零.
在同一个式子中,同一个字母表示同一个数.
结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.
用代数式表示:(a+b)+c=a+(b+c)。
这里a、b、c表示任意三个有理数.
(三)验证结论:
例1计算16+(-25)+24+(-32)。
(引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算就比较简便)。
解:16+(-25)+24+(-32)。
=[16+24]+[(-25)+(-32)](加法结合律)。
=40+(-57)(同号相加法则)。
=-17(异号相加法则)。
例2计算:31+(-28)+28+69。
(引导学生发现,在本例中,把互为相反数的两个数相加得0,计算比较简便)。
解:31+(-28)+28+69。
=31+69+[(-28)+28]。
=100+0。
=100。
3.若两个有理数的和为负数,那么这两个有理数()。
a.一定都是负数b.一正一负,且负数的绝对值大。
c.一个为零,另一个为负数d.至少有一个是负数。
4.两个有理数的和()。
a.一定大于其中的一个加数。
b.一定小于其中的一个加数。
c.和的大小由两个加数的符号而定。
d.和的大小由两个加数的符号与绝对值而定。
5.如果a,b是有理数,那么下列各式中成立的是()。
a.如果a0,b0,那么a+b0。
b.如果a0,b0,那么a+b0。
c.如果a0,b0,那么a+b0。
d.如果a0,b0,且|a||b|,那么a+b0。
7.张大伯共有7块麦田,今年的收成与去年相比(增产为正,减产为负)情况如下(单位:kg):+320,-170,-320,+130,+150,+40,-150.则今年小麦的总产量与去年相比()。
a.增产20kgb.减产20kgc.增长120kgd.持平。
初一数学教案篇六
2.通过结合生活实际的活动,在学习新知的同时培养学生的数学兴趣。
教学过程:
一、导入新课。
出示图,生活中含有角的物体。
师:“你看到了什么?谁能说一说?”
师:“如果请你们再从数学的角度去观察这些物体,你又能发现什么?”
师:“是吗?让我们来看一看。”
师:“果然如此!你观察得真仔细。”
“生活中存在着许许多多的角。通过以往的学习,你已经知道了哪些关角的知识?同桌互相说一说。”
贴上课题“角”,学生交流后回答:略。
师:“仅仅知道这些,你们就满足了吗?”
“那你们还想知道哪些有关角的知识呢?“。
师:“看到同学们这么虚心好学,老师真的是非常高兴。好吧,那今天我们就继续学习有关角的知识。”
二、新课教学。
师:“请大家拿出四张卡片,用水彩笔和尺出画四个不同大小的角。每张卡片画一个。比一比谁画的又好又快!”
学生在卡片上画角。
师:“请组长将大家画的角收集起来,平铺在桌面上。比一比哪一组动作最快!”
师:“下面我们要给这些角分分类。在分类之前,老师要说几点要求:1.每人先要认真的观察这些角。2.为了提高我们小组合作学习的效度,分类前组长一定要带领大家展开充分的讨论,确定分法后再分。3.分好后,每组选一名发言人,准备向大家汇报分类的情况。”
小组合作学习,给角分类。教师巡视,做好记录。
师:“哪一组愿意汇报?”
小组汇报,汇报时请其用三角尺验证。贴出直角。
师:“你们认为他们分的怎么样?”
师:“你能给比直角小的角起一个名字吗?”
学生起名。
师:“在数学上,我们把比直角小的角叫做锐角。”
贴上“锐角”。(钝角同上。)。
师:“对于这些,你们还有什么想问的问题吗?”
学生提问。
师:“通过对角的'分类,我们知道了角可以分成直角、锐角和钝角等几种。”
贴上“的分类”。
三、巩固练习。
师:“请组长将这些角分还给大家。同学们可以在角的旁边写上角的名称。”
学生写角的名称。
师:“写好的人互相说一说你刚才都画了哪些角。”
学生互说,教师指名说。
师:“如果老师给你一些角,你能分辨出是哪种角吗?请大家拿出练习纸,按要求填空。”
请一名学生在实物投影上写。集体订正。
师:“让我们回到生活中的物体。”
点击,回到生活中的物体。
师:“你能用刚才所学的知识,说一说这些角都是什么角吗?”
师:“生活中还有哪些地方有这些角?”
师:“第五个任务需要大家合作完成,大家把三角尺凑在一起试着拼一拼。”
学生合作拼。
师:“能拼成什么角?你愿意上来拼一拼吗?”
学生在黑板上用学具拼。
师:“这个角是由几个什么角拼成的?还有其他的拼法吗?”
四、小结。
师:“通过今天的学习,你又知道哪些有关角的知识?”
初一数学教案篇七
2.学习如何找出实际问题中的已知数和未知数,并分析它们之间的数量关系,列出方程;。
3.通过具体的例子感受一些常用的相等关系式.
【对话探索设计】。
〖探索1〗。
(1)某校前年购买计算机x台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍,去年购买的计算机的数量是________;今年购买的计算机的数量是________;三年总共购买的数量是_________.
解:设前年购买计算机x台,那么,。
设计(1)是让学生感受列代数式是列方程的基础.
去年购买的计算机的数量是________;。
今年购买的计算机的数量是________;。
根据关系:三年共购买计算机140台(关系式:前年购买量+去年购买量+今年购买量=140台),列得方程:。
____________________________.
合并得________________.
系数化为1得______________.
答:______________________.
归纳:总量等于各部分量的和是一个基本的相等关系.
〖探索2〗。
(1)把一些书分给某班学生阅读,如果每人分3本,则剩余20本,若这个班级有x名学生,则这些书有_______本.
(2)把一些书分给某班学生阅读,如果每人分4本,则还缺20本,若这个班级有x名学生,则这些书有_______本.
解:设这个班级有x名学生,。
根据第一关系,这批书共_________________本;。
根据第二关系,这批书共_________________本;。
这批书的总数是个定值,表示它的两个不同的式子应该相等.
熟悉这些关系有助于列方程.
根据这一相等关系列得方程:。
________________________.
想一想,怎样解这个方程?
归纳:表示同一个量的两个不同的式子相等,这也是我们列方程经常用到的相等关系.
〖练习〗。
1.(1)同样大的实验田,喷灌的用水量是漫灌的25%,若漫灌要用水x吨,则改用喷灌只需_________吨.
解:设第二块地(漫灌)用水x吨,。
第一块地(喷灌)用水________吨.
根据关系:两块地共用水300吨,可列方程:。
__________________________________.
解得___________.
答:___________________________.
〖作业〗。
p79.练习,p84.1,6。
〖补充作业〗。
1.按要求列出方程:。
(1)x的1.2倍等于36;(2)y的四分之一比y的2倍大24.
2.某厂去年的产量是前年的2倍还多150吨,若去年的产量是950吨,求前年的产量.
根据去年的产量是950吨列方程:__________________.
解得___________.答_________________________.
初一数学教案篇八
一、学习与导学目标:
情感态度:通过师生、生生合作学习,促进交流,激发兴趣。
二、学程与导程活动:
a、准备活动:
1、师生游戏“唱反调”:我们知道在小学学过的0以外的数前面加上负号“-”的数就是负数。现在我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的正数。+3、+1、-1/2、-18.4、0.75,学生很快说出-3、-1、1/2、18.4、-0.175。
2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可建议生择两组在数轴上表示以后作答(在原点两侧到原点的`距离相等,真可谓从原点背道而驰“唱反调”)。
提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少?
归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。
b、学习概念:
1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同的两个数给它一个什么样的关系名称合适呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。
一般地,a和-a互为相反数。“-a”可读成“a的相反数”。
2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称)。
3、从上述意义上看,你看如何规定0的相反数更为合理?
商讨得:0的相反数仍是0,即0的相反数等于它本身。
c、应用举例:
1、两人一组,一人任说一个有理数,请同伴说出它的相反数。
2、如果a=-a,那么表示数a的点在数轴上的什么位置?a=?(a=0)。
3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。
4、化简下列各数p124练习,你愿意继续尝试化简下列各式吗?
+(-2/3),-(-2/3),-(+2/3),+(+2/3)。
你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。
5、若a=-5,则-a=;若-x=7,则x=。
三、笔记与板书提纲:
课题应用举例中的2。
活动引例应用举例中的4(学生练习)。
概念。
四、练习与拓展选题:
1、教科书p18/3;。
2、如图是正方形纸盒的侧面展示图,请你在正方形内分别填上6个不同的数,使折成正方体后相对的面上的两个数互为相反数(写出满足条件的一种情形即可)。
初一数学教案篇九
借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。
重点、难点。
1.重点:列一元一次方程解决有关行程问题。
2.难点:间接设未知数。
1.列一元一次方程解应用题的一般步骤和方法是什么?
2.行程问题中的基本数量关系是什么?
路程=速度×时间速度=路程/时间。
画“线段图”分析,若直接设元,设小张家到火车站的路程为x千米。
1.坐公共汽车行了多少路程?乘的士行了多少路程?
2.乘公共汽车用了多少时间,乘出租车用了多少时间?
3.如果都乘公共汽车到火车站要多少时间?
4,等量关系是什么?
如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。
可设公共汽车从小张家到火车站要x小时。
设未知数的方法不同,所列方程的.复杂程度一般也不同,因此在设未知数时要有所选择。
教科书第17页练习1、2。
有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。
教科书习题6.3.2,第1至5题。
初一数学教案篇十
掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的过程和自觉检验方程的解是否正确的良好习惯。
重点、难点。
1、重点:掌握去分母解方程的方法。
2、难点:求各分母的最小公倍数,去分母时,有时要添括号。
教学过程。
一、复习提问。
1.去括号和添括号法则。
2.求几个数的最小公倍数的方法。
二、新授。
例1:解方程(见课本)。
解一元一次方程有哪些步骤?
一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。
补充例:解方程(x+15)=-(x-7)。
三、巩固练习。
教科书第10页,练习1、2。
四、小结。
1.解一元一次方程有哪些步骤?
2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。
五、作业。
教科书第13页习题6.2,2第2题。
初一数学教案篇十一
掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的'过程和自觉检验方程的解是否正确的良好习惯。
1、重点:掌握去分母解方程的方法。
2、难点:求各分母的最小公倍数,去分母时,有时要添括号。
一、复习提问。
1.去括号和添括号法则。
2.求几个数的最小公倍数的方法。
二、新授。
例1:解方程(见课本)。
解一元一次方程有哪些步骤?
一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。
补充例:解方程(x+15)=-(x-7)。
三、巩固练习。
教科书第10页,练习1、2。
四、小结。
1.解一元一次方程有哪些步骤?
2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。
五、作业。
教科书第13页习题6.2,2第2题。
初一数学教案篇十二
难点:正确理解有理数与数轴上点的对应关系.
1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2.用“射线”能不能表示有理数?为什么?
3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容――数轴.
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)
在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.
通过上述提问,向学生指出:数轴的三要素――原点、正方向和单位长度,缺一不可.
例1画一个数轴,并在数轴上画出表示下列各数的点:
例2指出数轴上a,b,c,d,e各点分别表示什么数.
课堂练习
示出来.
2.说出下面数轴上a,b,c,d,o,m各点表示什么数?
1.在下面数轴上:
(1)分别指出表示-2,3,-4,0,1各数的点.
(2)a,h,d,e,o各点分别表示什么数?
2.在下面数轴上,a,b,c,d各点分别表示什么数?
3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
初一数学教案篇十三
1.重点:
(1)了解多边形及其有关概念,理解正多边形及其有关概念.
(2)区别凸多边形和凹多边形.
2.难点:
多边形定义的准确理解.
一、新课讲授
投影:图形见课本p84图7.3一l.
你能从投影里找出几个由一些线段围成的图形吗?
上面三图中让同学边看、边议.
在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?
(1)它们在同一平面内.
(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.
这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?
提问:三角形的定义.
你能仿照三角形的定义给多边形定义吗?
1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.
如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)
2.多边形的边、顶点、内角和外角.
3.多边形的对角线
连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.
让学生画出五边形的所有对角线.
4.凸多边形与凹多边形
看投影:图形见课本p85.7.3―6.
5.正多边形
由正方形的特征出发,得出正多边形的概念.
各个角都相等,各条边都相等的多边形叫做正多边形.
二、课堂练习
课本p86练习1.2.
三、课堂小结
引导学生总结本节课的相关概念.
四、课后作业
课本p90第1题.
备用题:
一、判断题.
1.由四条线段首尾顺次相接组成的图形叫四边形.()
2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.()
3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.()
4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()
二、填空题.
1.连接多边形的线段,叫做多边形的对角线.
2.多边形的任何整个多边形都在这条直线的,这样的多边形叫凸多边形.
3.各个角,各条边的多边形,叫正多边形.
三、解答题.
1.画出图(1)中的六边形abcdef的所有对角线.