初三数学二次函数教案(汇总15篇)
教案是教师为指导教学而编写的一种教学计划和实施方案。编写教案时要注意选择合适的教学方法和教学资源。教案的互相借鉴和分享可以促进教师之间的合作与交流。
初三数学二次函数教案篇一
数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。
你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。
做到教师入题海,学生出题海。教师应多做题、多研究近几年的中考试题,并根据本班学生的实际情况,从众多复习资料中,选择适合本班学生的最佳练习,也可通过对题目的重组。
让每一节课都给学生留有时间,让他们有独立思考、合作探究交流的过程,最大限度的调动学生的参与度,激发他们的学习兴趣,达到最佳的复习效果。
兴趣是学习最好的动力,在上复习课时尤为重要。因此,我们在授课的过程中,在关注知识复习的同时,也要关注学生的学习欲望和学习效果,要让学生在学习的过程中体验成功的快感。这样他们才会更有兴趣的学习下去。
1、质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。
2、二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的数学模型。
3、生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。
4、初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。
1、教学案例、教学设计、教学实录、教学叙事的区别:是事先设想的教育教学思路,是对准备实施的教育措施的简要说明,反映的是教学预期;而教学案例则是对已发生的教育教学过程的描述,反映的是教学结果。
2、教学案例与教学实录:它们同样是对教育教学情境的描述,但教学实录是有闻必录(事实判断),而教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断)。
4、教学案例必须从教学任务分析的目标出发,有意识地选择有关信息,必须事先进行实地作业,因此日常教育叙事日志可以作为写作教学案例的素材积累。
初三数学二次函数教案篇二
二、立足课堂,提高效率:做到教师入题海,学生出题海.教师应多做题、多研究近几年的中考试题,并根据本班学生的实际情况,从众多复习资料中,选择适合本班学生的最佳练习,也可通过对题目的重组。
三、教师在设计教学目标时,要做到胸中有书,目中有人,让每一节课都给学生留有时间,让他们有独立思考、合作探究交流的过程,最大限度的调动学生的参与度,激发他们的学习兴趣,达到最佳的复习效果.
四、激发兴趣,提高质量:兴趣是学习最好的动力,在上复习课时尤为重要.因此,我们在授课的过程中,在关注知识复习的同时,也要关注学生的学习欲望和学习效果,要让学生在学习的过程中体验成功的快感.这样他们才会更有兴趣的学习下去.
初三数学二次函数教案篇三
老师讲课认真听讲,不会的问题及时标记。在课堂上,做一个好学生,认真听讲,对于老师讲的问题及时记录,进行相应的标记,在下课的时候,及时询问老师,早日解决问题。
一定要课前预习一下知识点。在上课前或平时闲暇时间,一定要注意课下多多预习,预习比复习更加重要,真的很重要,关乎到课堂的思维能力的转变,多多看看,对自己的理解有帮助。
课上要学会学习,记笔记,也要记住老师讲的知识点。课堂上,自己要活跃一点,带给老师感觉,让老师对你有印象,便于日后学习高中数学,与老师探讨学习方法,记笔记,记住讲的重点。
多做一些比较普通而又常出的问题,来熟悉自己学的知识。在课下的时候,自己找出适合自己做的题,在做题中找出适合自己的题目,来进行做和学,总有一份题目适合自己做,便会更熟悉自己学的知识。
学会总结本节课的知识点,重点,做一个学会学习的人。及时总结所学的知识点,做一个学好习的人,让自己的心中有着大致的思路,能够解答出老师的,这便是可以了。
建立一个记错本,错误的题记录到本子上。将自己以前做过的错题,及时的整理出来,并且能够及时的回顾,便于日后在本子上学习到知识,能够复习到自己以前错过的题。
与老师经常交流学习方法,总有一个适合你。多多的与老师交流,给老师留下一个好印象,便于自己和老师更深入的交流学习,及时的询问一下高中数学的学习方法,总有一个适合自己。
初三数学二次函数教案篇四
二次函数的最大值,最小值及增减性的理解和求法·。
三、解答题。
7·(1)请在坐标系中画出二次函数y=x2—2x的大致图象;
(3)观察图象,直接写出方程x2—2x=1的根(精确到0·1)·。
(1)当t=3时,求足球距离地面的高度;
(2)当足球距离地面的高度为10米时,求t;
初三数学二次函数教案篇五
通过学生的讨论,使学生更清楚以下事实:
(1)分解因式与整式的乘法是一种互逆关系;。
(2)分解因式的结果要以积的形式表示;。
(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;。
(4)必须分解到每个多项式不能再分解为止。
活动5:应用新知。
例题学习:
p166例1、例2(略)。
在教师的引导下,学生应用提公因式法共同完成例题。
让学生进一步理解提公因式法进行因式分解。
活动6:课堂练习。
1.p167练习;。
2.看谁连得准。
x2-y2(x+1)2。
9-25x2y(x-y)。
x2+2x+1(3-5x)(3+5x)。
xy-y2(x+y)(x-y)。
3.下列哪些变形是因式分解,为什么?
(1)(a+3)(a-3)=a2-9。
(2)a2-4=(a+2)(a-2)。
(3)a2-b2+1=(a+b)(a-b)+1。
(4)2πr+2πr=2π(r+r)。
学生自主完成练习。
通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。
活动7:课堂小结。
从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?
学生发言。
通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。
活动8:课后作业。
课本p170习题的第1、4大题。
学生自主完成。
通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。
板书设计(需要一直留在黑板上主板书)。
15.4.1提公因式法例题。
1.因式分解的定义。
2.提公因式法。
初三数学二次函数教案篇六
1.从具体函数的图象中认识二次函数的基本性质,了解二次函数与二次方程的相互关系.
2.探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念.能够利用二次函数的图象求一元二次方程的近似根.
3.通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来源于生活,服务于生活的辩证观点.
教学重点。
二次函数的最大值,最小值及增减性的理解和求法.
教学难点。
二次函数的性质的应用.
初三数学二次函数教案篇七
(1)其图象叫抛物线;(2)抛物线y=x2的对称轴是y轴,开口向上,顶点是原点。
补充例题。
下列函数中,哪些是二次函数?哪些不是二次函数?若是二次函数,指出a,b,c?
(1)y=2-3x2;(2)y=x(x-4);
(3)y=1/2x2-3x-1;(4)y=1/4x2+3x-8;
(5)y=7x(1-x)+4x2;(6)y=(x-6)(6+x)。
作业:p122中a组1,2,3。
四、教学注意问题。
1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。
2.注意培养学生观察分析问题的能力。比如,结合所画二次函数y=x2的图象,要求学生思考:
(1)y=x2的图象的图象有什么特点。(答:具有对称性。)。
(2)如何判断y=x2的图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。)。
初三数学二次函数教案篇八
学习目标:
1、能够分析和表示变量间的二次函数关系,并解决用二次函数所表示的问题。
2、用三种方式表示变量间二次函数关系,从不同侧面对函数性质进行研究。
3、通过解决用二次函数所表示的问题,培养学生的运用能力。
学习重点:
能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题。
能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究。
学习难点:
能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题。
学习过程:
一、学前准备。
函数的三种表示方式,即表格、表达式、图象法,我们都不陌生,比如在商店的广告牌上这样写着:一种豆子的售价与购买数量之间的关系如下:
x(千克)00。511。522。53。
y(元)0123456。
二、探究活动。
(一)合作探究:
交流完成:
(1)一边长为xcm,则另一边长为cm,所以面积为:用函数表达式表示:=________________________________。
(2)表格表示:
123456789。
10—。
(3)画出图象。
(二)议一议。
(1)在上述问题中,自变量x的取值范围是什么?
(2)当x取何值时,长方形的面积最大?它的最大面积是多少?你是怎样得到的?请你描述一下y随x的变化而变化的情况。
点拨:自变量x的取值范围即是使函数有意义的自变量的取值范围。请大家互相交流。
(1)因为x是边长,所以x应取数,即x0,又另一边长(10—x)也应大于,即10—x0,所以x10,这两个条件应该同时满足,所以x的取值范围是。
(2)当x取何值时,长方形的面积最大,就是求自变量取何值时,函数有最大值,所以要把二次函数y=—x2+10x化成顶点式。当x=—时,函数y有最大值y最大=。当x=时,长方形的面积最大,最大面积是25cm2。
可以通过观察图象得知。也可以代入顶点坐标公式中求得。。
(三)做一做:学生独立思考完成p62,p63的函数表达式,表格,图象问题。
(1)用函数表达式表示:y=________。
(2)用表格表示:
(3)用图象表示:
三、学习体会。
本节课你有哪些收获?你还有哪些疑问?
四、自我测试。
1、把长1。6米的铁丝围成长方形abcd,设宽为x(m),面积为y(m2)。则当最大时,所取的值是()。
a0。5b0。4c0。3d0。6。
2、两个数的和为6,这两个数的积最大可能达到多少?利用图象描述乘积与因数之间的关系。
初三数学二次函数教案篇九
1、教材所处的地位:
2、教学目的要求:
(2)让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;
(3)知道实际问题中存在的二次函数关系中,多自变量的取值范围的要求。
(4)把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用。
3、教学重点和难点。
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点:
重点:
(2)能够表示简单变量之间的二次函数关系.。
难点:
具体的分析、确定实际问题中函数关系式。
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
1、教法研究。
教学中教师应当暴露概念的再创造过程,鼓励学生不但要动口、动脑,而且要动手,学生经过自己亲身的实践活动,形成自己的经验、猜想,产生对结论的感知,这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会主动学习,学会研究问题的方法,培养学生的能力。本节课的设计坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、学法研究。
初中学生的思维方式往往还是比较具象的,要让他们在问题的探究过程中充分体验问题的发现、解决及最终表述的方式方法,遇到困难可以和同伴、老师进行交流甚至争论,这样既可以加深学生对问题的理解又可以让学生体验获得学习的快乐。
3、教学方式。
(1)由于本节课的内容是学生在学习了《一次函数》和《正比例函数》的基础上的加深,所以可以利用学生已有的知识在问题一、二中放手让学生先去探究探究两个问题中的变量之间的关系,在得到具体的关系式后,再引导学生观察关系式都有着什么样的特点,可以和多项式中的二次三项式或一元二次方程比较认识,并最终得出二次函数的一般式及二次项系数的取值为什么不为零的道理。
(2)要特别提醒学生注意:二次函数是解决实际生活生产的一个很有效的模板,因而对二次函数解析式中自变量的取值范围一定要从理论上和实际中加以综合讨论和认定。
(3)可以多让学生解决实际生活中的一些具有二次函数关系的实例来加深和提高学生对这一关系模型的理解。
这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
1、温故知新—揭示课题。
由回顾所学过的正比例函数,一次函数入手,引入函数大家庭中还会认识那一种函数呢?再由例子打篮球投篮时篮球运动的轨迹如何?何时达到最高点?引入二次函数。
2、自我尝试、合作探究—探求新知。
通过学生自己独立解决运用函数知识表述变量间关系,即自我探讨环节;合作探究环节,学生间互动,集群体力量,共破难关,来自主探究新知,从而通过观察,归纳得到二次函数的解析式,获取新知。
3、小试身手—循序渐进。
本组题目是对新学的直接应用,目的在于使学生能辨认二次函数,准确指出a、b、c,并应用其定义求字母系数的值,能应用二次函数准确表示具体问题中的变量间关系。本组题目的解决以学生快速解答为主,重点对第2题分析解决方法。这一环节主要由学生处理解决,以检查学生的掌握程度。
4、课堂回眸—归纳提高。
本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。
5、课堂检测—测评反馈。
共有6个题目,由学生独自处理第1、2、3、4、5小题,再发表自己的看法,第6小题可由学生或独自或同组交流均可。教师多以巡视为主,注意掌握学生对本节的掌握情况。
6、作业布置。
作业我选择“同步作业”里的题目,其中基础训练为必做题,全员均做;综合应用为选做题,可供学有余力的学生能力提升用。
通过引入实例,丰富学生认识,理解新知识的意义,进而摆脱其原型,从而进行更深层次的研究,这种“数学化”的方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对于学生的终身发展也有一定的作用。
初三数学二次函数教案篇十
3.能够利用二次函数的图象求一元二次方程的近似根。
1.体会方程与函数之间的联系。
2.能够利用二次函数的图象求一元二次方程的近似根。
1.探索方程与函数之间关系的过程。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
启发引导 合作交流
课件
计算机、实物投影。
检查预习 引出课题
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2. 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.
教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。
学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。
这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。
初三数学二次函数教案篇十一
教学目标:
知识与技能。
1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。
2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。
3、会对一个具体实例进行概括抽象成为数学问题。
过程与方法。
1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。
2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。
情感与价值观。
1、经历函数概念的抽象概括过程,体会函数的模型思想。
2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。
教学重点:
1、掌握函数概念。
2、判断两个变量之间的关系是否可看作函数。
3、能把实际问题抽象概括为函数问题。
教学难点:
1、理解函数的概念。
2、能把实际问题抽象概括为函数问题。
教学过程设计:
一、创设问题情境,导入新课。
『师』:同学们,你们看下图上面那个像车轮状的物体是什么?
初三数学二次函数教案篇十二
摘要:水彩画在中学美术教育中占据着重要的地位,它不仅可以提升中学生的造型能力、色彩能力,同时也可以强化他们的审美素养。这里,笔者将结合自己的教学经验,来谈一谈水彩画技法教学的一点心得,以期大方之家给予批评指正。
关键词:中学美术课;水彩画;技法教学。
一、水彩画技法指导。
学生在画水彩画之前需要有这样的理念:从整体着眼,从局部入手。在脑海中必须有画面的整体构思与布局,在这个大前提下,再将画面有效地分成若干个小部分,逐一完成。具体过程下面将分条阐述。
(一)画面勾勒轮廓阶段。
第一步就是教师指导学生先勾勒出素描稿,整体与局部的分配情况需要合理、恰切。为了提升上色的准确性、恰切性,整个过程需要运用铅笔来完成,并且在素描的过程中,需要有效地表现反光、高光、投影以及明暗交界线等。其中投影、暗部需要淡淡地用铅笔进行标记。这个素描过程至关重要,成为关键的开端。
(二)画面着色阶段。
接下来就需要用刷子蘸上清水,在画纸上刷一遍,让水完全浸湿画纸。吃水饱和的画纸,在短时间内,就不会立刻干燥,在这种情况下,才有助于具体干湿画法的实践、运用。
水彩的透明特点需要被全面地观照、审视,主要着色程序是由浅至深,特定物体的受光面需要先画出来,紧接着再对其背光面进行绘画。只有这样才能够有效地表现水彩画的明调与暗调。最后,将特定物体颜色最深的细部完成。可以说水彩的表现方法,通常来说,主要分为干画法、湿画法以及干湿并用法。在中学美术教学中,我们提倡采用干湿并用法,即有的地方使用干画法,而有的地方则采用湿画法。这种方法易于被中学生接受,并且表现力相对较强。再者,我们可以有效利用湿画法来绘画每一个客观物象。
最后就是画面的整理、完善环节。局部独立物象的逐一绘画,这种罗列可能会导致整个画面的融合程度不足,进而容易产生层次方面的误差感,给观赏者一种拼凑的印象。鉴于此,教师必须指导学生进行画面的整体处理,旨在让每一个局部都被统摄到整个画面中去,成为一个部分分割的成分。例如前景特定物象应该是实的,需要在这个物象的主要部位,将轮廓线凸显。而后面的特定物象应该是虚的。较之前者,后者需要淡化其色彩和形体方面的处理,只有这样才能够创设出层次分明、立体感较强的画面效果。如果整个画面色彩显得有些乱,就应该在基调的范围内进行有效整理。如果整个画面较为单调的话,就应该将环境色恰当地融入其中,进而色彩的丰富感就可以被提升。
二、重要注意事项强调。
在学生对范画的欣赏、感悟过程中,教师需要对每一张画,它的具体画法、运用色彩等方面进行全面而细致地解读,这样才能使得学生对水彩画的特点、画法有一个整体的了解和体认。同时,需要提醒学生:如果调色过多,就可能丧失水彩画明快、透明的风格特征。而且涂色需要争取一次性完成,至多不可以超过三次,涂色越多,整个画面就会变得更为脏乱。鉴于此,在涂色之前,教师必须讲清楚调色与控制画笔中水分的具体措施,并且让学生全面把握绘画所要使用的工具,只有充分熟悉工具的使用方法,才能谈及具体涂色过程的开展。
需要强化实践教学,即可以将学生带到大自然中去绘画。教师可以一边绘画,一边讲解,在此过程中,将特定物象的具体画法,普遍存在的问题以及解决问题的办法,一一告诉学生。教师的这种示范教学,不仅可以给予学生直观的感受,同时也让学生了解了具体的绘画方法,如何规避不该出现的失误。另外,对于学生的作品不足之处,教师需要给予亲自改正,这种教学方法会让学生的绘画技巧迅速提升的。
另外,教师也可以将水彩画的绘画技巧编成一系列的口诀,这样,学生记忆与掌握水彩画相关技法将会变得事半而功倍。
三、水彩画技法教学示例。
这里以水彩风景写生为示例对象。在写生的起初,需要力求一次性完成天空的绘画,当整体基调确定之后,余下的景物色彩需要与之协调搭配。当天空的绘画尚未“风干”之前,需要立刻将远山,抑或者是远树勾画出来。这样就会使得它与天空叠加的部分自然融合,避免了分离之感的产生。这样就契合了远虚近实的绘画要求。
画每一个特定物象之时,需要从左到右刷一遍清水,因为室外的空气是比较干燥的,这样的环境下,如果不刷水,湿画法则难以为继。倒映在水中的树木和房屋需要在画纸湿条件下,立刻涂色,进而产生朦朦胧胧的倒影效果。待画面干了之后,在使用干画法,小心翼翼地在水面上画出几道波纹来,这样房屋和树木的倒影就显得愈加真实生动了。同时,水岸上的物象,需要使用干画法进行绘画,这样就会使得这些物象更为实在、凸显。进而与水中倒影构成鲜明的对比。
画面的主体部分需要着力进行刻画,进而让整个画面具有凝聚力。在让学生充分领悟水彩画技法的同时,还需要让学生懂得艺术地处理画面的空间。最后,也就是对整个画面进行整理,湿画法的缺陷在于使得画面显得很“碎”,因此需要在画面的色彩和层次方面进行整体的调整,这样,整个画面就会变得和谐统一了。
参考文献。
初三数学二次函数教案篇十三
在整个中学数学知识体系中,二次函数占据极其关键且重要的地位,二次函数不仅是中高考数学的重要考点,也是线性数学知识的基础。那老师应该怎么教呢?今天,小编给大家带来初三数学二次函数教案教学方法。
一、重视每一堂复习课数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。
四、要多了解学生。你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。
二、立足课堂,提高效率:做到教师入题海,学生出题海.教师应多做题、多研究近几年的中考试题,并根据本班学生的实际情况,从众多复习资料中,选择适合本班学生的最佳练习,也可通过对题目的重组。
三、教师在设计教学目标时,要做到胸中有书,目中有人,让每一节课都给学生留有时间,让他们有独立思考、合作探究交流的过程,最大限度的调动学生的参与度,激发他们的学习兴趣,达到最佳的复习效果.
四、激发兴趣,提高质量:兴趣是学习最好的动力,在上复习课时尤为重要.因此,我们在授课的过程中,在关注知识复习的同时,也要关注学生的学习欲望和学习效果,要让学生在学习的过程中体验成功的快感.这样他们才会更有兴趣的学习下去.
1.质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。
2.二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的数学模型。
3.学生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。
4.初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。
1.教学案例、教学设计、教学实录、教学叙事的区别:教学案例与教案:教案(教学设计)是事先设想的教育教学思路,是对准备实施的教育措施的简要说明,反映的是教学预期;而教学案例则是对已发生的教育教学过程的描述,反映的是教学结果。
2.教学案例与教学实录:它们同样是对教育教学情境的描述,但教学实录是有闻必录(事实判断),而教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断)。
4.教学案例必须从教学任务分析的目标出发,有意识地选择有关信息,必须事先进行实地作业,因此日常教育叙事日志可以作为写作教学案例的素材积累。
初三数学二次函数教案篇十四
根据我们学校人人皆知的船模特色项目设计了这样一个情境:
让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。
让学生在练习中体会二次函数的图象与性质在解题中的作用。
初三数学二次函数教案篇十五
分组复习旧知。
探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?
可引导学生从几个方面进行讨论:
(1)如何画图。
(2)顶点、图象与坐标轴的交点。
(3)所形成的三角形以及四边形的面积。
(4)对称轴。
从上面的问题导入今天的课题二次函数中的图象与性质。