八年级数学教案设计全文范文(13篇)
教案的编写需要充分考虑学生的需求和教学目标。教案应该合理安排时间,确保教学进度的紧凑性。希望大家在编写教案时能尽量充分发挥自己的创造力和想象力。
八年级数学教案设计全文篇一
1.通过生活情景与实践操作,直观认识平行四边形。
2.在观察与比较中,使学生在头脑里建成长方形与四边形间的区别与联系。
3.体会平行四边形与生活的密切联系。
教学重难点。
通过生活情景与实践操作,直观认识平行四边形。
教学准备。
教具:活动长方形框架点子图。
学具:七巧板。课时。
安排1。
教学过程。
一、利用学具逐步探究。
1.拉一拉。
发给每位学生一个长方形的学具。轻轻地动手拉一拉,看看它发生了什么变化?
生动手操作,交流自己的发现。学生会发现长方形向一边倾斜了,角的大小发生了变化等等。程度较好的学生会说出长方形变成了平行四边形。
教师将拉成的平行四边形贴在黑板上。引出课题并板书:平形四边形。
长方形和平行四边形哪些地方相同,哪些地方不同呢?利用你们的学具,在四人小组里讨论。
(1)小组观察、讨论。教师到各个小组中指导,引导他们从边和角两个方面探究。
(2)分组汇报,小组之间互相补充。得出:平行四边形和长方形一样,都有四条边,四个角,对边相等。不同的是,长方形四个角都是直角,而平行四边形一组对角是钝角,一组对角是锐角。
(设计意图:让学生亲自动手操作,经历将长方形拉成平行四边形的过程。在学生初步感知平行四边的基础上,探索平行四边形与长方形的联系和区别,帮助学生建立平行四边形的模型。)。
让学生安安静静的思考后,交流看法。平行四边形有四条边,所以三角形和五边形不能拉成。普通四边形的对边不相等,也不能拉成。正方形能拉成特殊的平行四边形:菱形。长方形可以拉成平行四边形。
请在导入时得到学具奖励的学生上台利用学具拉一拉,验证大家的'猜测)。
3.认一认:
让学生判断大屏幕上的图形是平形四边形吗?[课件出示]。
学生逐一回答。教师随即追问为什么第三、第五个图形不是平形四边形?)。
4.找一找:
课件出示画面:在小花园里,有菱形的瓷砖、伸缩们、回廊……图中蕴含着各种各样的平行四边形。学生汇报后,让他们数一数中有几个平行四边形。
师:除此之外,你还能从生活中找到它吗?
二、动手操作拓展延伸:
1.画一画:
(1)生利用尺子、铅笔在点子图上画平形四边形。画好后,在小组里互相交流。
(2)利用展台展示学生作品。如果出现错误,让学生当“小老师”互相纠正。
2.拼一拼:
用七巧板拼成一个平行四边形,同桌两人一组,比一比,哪个组拼的方法最巧妙。
(1)请三组同桌在黑板上拼,其余学生分组在下面拼。教师巡视,发现巧妙的拼法,让其展示在黑板上。
(2)选择一个你最喜欢的平行四边形,说一说它是用什么形状的七巧板拼成的。
三、课堂小结。
1.这节课你有什么收获?
2.师小结:只要注意积累,你们的知识会越来越多!
八年级数学教案设计全文篇二
知识技能:了解勾股定理的文化背景,体验勾股定理的探索过程.
数学思考:在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想.解决问题:1.通过拼图活动,体验数学思维的严谨性,发展形象思维.
2.在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果.
情感态度:1.通过对勾股定理历史的了解,感受数学文化,激发学习热情.
2.在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神.
八年级数学教案设计全文篇三
学生准备:复习,平行四边形性质;学具:课本“探究”内容.。
1.认知题后:学习了三角形全等、平行四边形定义、性质以后学习本节课内容.。
2.知识线索:
3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.。
一、回顾交流,逆向思索。
教师提问:
1.平行四边形定义是什么?如何表示?
2.平行四边形性质是什么?如何概括?
学生活动:思考后举手回答:
回答:1.两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)。
(1)对边平行,
(2)对边相等,
教师归纳:(投影显示)。
学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:
(3)将两条等长的木条平行放置,另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。
八年级数学教案设计全文篇四
一、教学设计思路:
本节课是《4.2平行四边形的判定2》,前面已经有三个判定定理的学习,本节课只是在原有基础上补充多一个判定定理。从孩子作业反映上来看,孩子们对判定定理的选择与应用做得并非太好,特别是对判定定理的选择上,经常是使用自己较熟悉的一种,结果有时使到整个证明过程呈得繁琐。
因此,本节课的教学环节我做了这样的设计:
第一环节:课前阅读:一方面是复习旧知,另一方面是使学生尽快进入课堂教学;
第二环节,课前小测:五道基础性题目检测学生之前的与上节课所学的知识;
第四环节,探索两条对边分别相等的四边形是平行四边形的判定定理;
第五环节,课本上的随堂练习巩固知识点;
第七环节,练习:三道练习题。其中有时间时最后一题进行适当的变式。
二、教学完成情况:
教学任务基本完成,就是最后一环节当中变式题目没有讲,不过那个本来就是多预备的。
三、满意与不足之处:
本节课中虽然说教学任务基本完成。但有些环节中的处理做得不是很好。课前阅读与课前小测方面是比较满意的,能做得多关注差生,尽可能地减少差生面,提高孩子的学习信心。但是,第三环节中定理的选择的练习中,出发点是好,但花费的.时间较多,导致新课讲授的时间较少。第四环节探索判定定理时,实验题安排了学生在练习本上写,老师巡视,最后评讲,其实最好是让学生板演;第六环节是找学生板演时应有所挑选,课堂中选了一个基础好与一个基础差的学生,差些的学生主要看着基础好的学生来完成,没太大意义;最后的练习讲评中时间比较不充裕,所以导致讲得比较简单,更多的是引导与提示,没有充分留有时间给孩子思考。另外,方法性的指导也略显不足。
四、改进措施:
作为一个刚毕业一年的老师,经验性的不足也有一定关系。为了更快地完善自己的教学,近期主要注意以下几个方面:
1、抓好课前的准备。从严做起,重在落实。对学生课前练习本、课本等课堂需要用到的东西都要让学生养成习惯做好准备。
2、对教学设计与时间地分配要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。
3、让课堂慢下来,争取让更多的学生消化好课堂新知,理解好知识点与例题。
4、在课堂上放心地让学生去尝试错误,多些让学生自主思考。
5、对学生的学习与做题多些方法性的指导。
八年级数学教案设计全文篇五
1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.
2.使学生理解判定定理与性质定理的区别与联系.
3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理.
(二)能力训练点。
1.通过“探索式试明法”开拓学生思路,发展学生思维能力.
2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力.
(三)德育渗透点。
通过一题多解激发学生的学习兴趣.
(四)美育渗透点。
通过学习,体会几何证明的方法美.
构造逆命题,分析探索证明,启发讲解.
1.教学重点:平行四边形的判定定理1、2、3的应用.
2.教学难点:综合应用判定定理和性质定理.
(强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理).
八年级数学教案设计全文篇六
首先通过对问题的思考与解答,回顾总结梳理本章所学的知识,将所学的知识与以前学过的知识进行紧密联结。通过思考,知识得到内化,认知结构得到进一步完善。回忆本章内容,建立知识结构图。通过练习把知识加以巩固。
1.反比例函数的图象和性质。
2.能根据所给的条件,确定反比例函数,体会函数在实际问题中的应用价值。
3.反比例函数的应用:解决实际问题,学科内部的应用。
1.反思在具体问题中探索数量关系和变化规律的过程,理解反比例函数的概念,领会反比例函数作为一种数学模型的意义。
2.能画出反比例函数的图象,并根据图象和解析式掌握反比例函数的主要性质。
3.提高观察、分析、归纳的`能力,感悟数形结合的数学思想方法。
1.面对困难,树立克服困难的勇气和战胜困难的信心。
2.养成合作交流意识和运用数学问题解决实际问题的意识,认识数学的实用性。
重点是:反比例函数的概念、图象和主要性质。
难点是:对反比例函数意义的理解。
启发引导、小组讨论
1课时
课件
(一)创设问题情境,引入新课
问题l:你能举出现实生活中有关反函数的几个例子吗?
八年级数学教案设计全文篇七
(1)感受生活中的等腰三角形。在学习等腰三角形之前,多数学生早已认识了等腰三角形。所以在课前,我收集了一些轮廓为等腰三角形的图片,通过让学生欣赏图片,引导学生感受等腰三角形在生活中的优美存在,进一步引导学生寻找“你身边的等腰三角形”。课堂上学生反应热烈,举出了如:三角板、自行车、房顶、松树等例子。就连原来数学基础不是很好的学生,也可以举出身边的等腰三角形。学生们兴趣盎然地走进了《等腰三角形》的知识世界。
(2)形象认识等腰三角形性质特点。设计“已知等腰三角形的两边长分别为5和2,求周长”,我的目的是检查学生对“三角形两边和大于第三边”知识的掌握情况及“等腰三角形有两条相等的边”的理解,课堂上学生能够直接回答,并且有一个学生的回答时指出:“等腰三角形两腰相等”。由于等腰三角形的腰、底边、顶角和底角多数学生已提前掌握,因此本环节学习学生感觉很轻松。通过图形变异,学生认清了顶角是两腰的夹角而非上面的角,底角是腰与底边的夹角而非是下面的角。课堂上学生表现出极强的参与意识,指认变异图形的腰、底边、顶角和底角时,相当一部分后进生纷纷举手,而且回答准确率极高。由于收获了成功的喜悦,同学们对于下面的等腰三角形的性质探究跃跃欲试。
(3)通过折纸探究等腰三角形的性质。课堂上,当我介绍完操作规则后,学生迫不及待地拿出他们课前准备好的三角形纸片,仔细地翻折。可以看到同桌两个同学在小声的讨论。等腰三角形“等边对等角”、“三线合一”都是由其具有轴对称性质引出的,学生得出“两个底角相等”较为容易。因为担心“三线合一”学生会感到困难,我特意介绍了三角形中的角平分线、高和中线,并为学生设计出对应表格,让学生填出“三线合一”的性质。这样做好处是降低了“三线合一”性质得出的难度,学生较易了解,但由于设定表格,学生就被牵着鼻子走,限制了他们在实践过程的发现,学生的填表仅是印证了课本上的说明,如果让学生自主发挥,时间多费些,课堂上不确定因素也多了点,但学习效果应该会好一点。
(4)运用“等边对等角”解决实际问题。
本节课从总体上看,学生基本掌握了等腰三角形“等边对等角”及“三线合一”的性质,学会了“等边对等角”的运用,较好的完成了教学目的。但我总觉得,这样上课,学习基础较好的学生不能满足,会有吃不饱的感觉。若在课堂教学过程中,尝试分组练习,整体效果可能会好些。
八年级数学教案设计全文篇八
在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神。
通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。优生不多,思想不够活跃,有少数学生不上进,思维跟不上。要在本期获得理想成绩,老师和学生都要付出努力,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、本学期教学内容分析
本学期教学内容共计六章。
第一章《三角形的证明》
本章将证明与等腰三角形和直角三角形的性质及判定有关的一些结论,证明线段垂直平分线和角平分线的有关性质,将研究直角三角形全等的判定,进一步体会证明的必要性。
第二章《一元一次不等式和一元一次不等式组》
本章通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解、解集、解集在数轴上的表示,一元一次不等式的解法及应用;通过具体实例渗透一元一次不等式、一元一次方程和一次函数的内在联系.最后研究一元一次不等式组的解集和应。
第三章《图形的平移与旋转》
本章将在小学学习的基础上进一步认识平面图形的平移与旋转,探索平移,旋转的性质,认识并欣赏平移,中心对称在自然界和现实生活中的应用。
第四章《分解因式》
本章通过具体实例分析分解因式与整式的乘法之间的关系揭示分解因式的实质,最后学习分解因式的几种基本方法。
第五章《分式与分式方程》
本章通过分数的有关性质的回顾建立了分式的概念、性质和运算法则,并在此基础上学习分式的化简求值、解分式方程及列分式方程解应用题,能解决简单的实际应用问题。
第六章《平行四边形》
本章将研究平行四边形的性质与判定,以及三角形中位线的性质,还将探索多边形的内角和,外角和的规律;经历操作,实验等几何发现之旅,享受证明之美。
四、主要措施
1、面向全体学生。
由于学生在知识、技能方面的发展和兴趣、特长等不尽相同,所以要因材施教。在组织教学时,应从大多数学生的实际出发,并兼顾学习有困难的和学有余力的学生。对学习有困难的学生,要特别予以关心,及时采取有效措施,激发他们学习数学的兴趣,指导他们改进学习方法。帮助他们解决学习中的困难,使他们经过努力,能够达到大纲中规定的基本要求,对学有余力的学生,要通过讲授选学内容和组织课外活动等多种形式,满足他们的学习愿望,发展他们的数学才能。
2、重视改进教学方法,坚持启发式,反对注入式。
教师在课前先布置学生预习,同时要指导学生预习,提出预习要求,并布置与课本内容相关、难度适中的尝试题材由学生课前完成,教学中教师应帮助学生梳理新课知识,指出重点和易错点,解答学生预习时遇到的问题,再设计提高题由学生进行尝试,使学生在学习中体会成功,调动学习积极性,同时也可激励学生自我编题。努力培养学生发现、得出、分析、解决问题的能力,包括将实际问题上升为数学模型的能力,注意激励学生的创新意识。
3、 改革作业结构减轻学生负担。将学生按学习能力分成几个层次,分别布置难、中、浅三个层次作业,使每类学生都能在原有基础上提高。
4、课后辅导实行流动分层。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的'非智力因素,弥补智力上的不足。
7、开展课题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。
8、进行个别辅导,优生提升能力,扎实打牢基础知识;对学困生,一些关键知识,辅导他们过关,为他们以后的发展铺平道路。
9、培养学生学习数学的良好习惯。
四、教学进度
第一章《三角形的证明》13课时
1.1等腰三角形 4课时
1.2直角三角形 2课时
1.3线段的垂直平分线 2课时
1.4角平分线 2课时
复习小节与检测 3课时
第二章《一元一次不等式和一元一次不等式组》 12课时
2.1 不等关系 1课时
2.2 不等式的基本性质 1课时
2.3 不等式的解集 1课时
2.4 一元一次不等式2课时
2.5 一元一次不等式与一次函数2课时
2.6 一元一次不等式组 2课时
复习小节 与检测 3课时
第三章《图形的平移与旋转》 10课时
3.1图形的平移 3课时
3.2图形的旋转 2 课时
3.3中心对称 1课时
3.4简单的图形设计 1 课时
复习小节与检测 3课时
期中考试复习2 课时
第四章《分解因式》7课时
4.1分解因式1课时
4.2提公因式法 2课时
4.3公式法 2课时
4.4重心 2课时
复习小节与检测 2课时
第五章《分式与分式方程》 11课时
5.1认识分式 2课时
5.2 分式的乘除法 1课时
5.3分式的加减法 3课时
5.4分式方程 3课时
复习小节与检测 2课时
第六章《平行四边形》 10课时
4.1平行四边形的性质 2课时
4.2特殊的平行四边形的判定 3课时
4.3三角形的中位线 1课时
4.4多边形的内角和外角和 2课时
复习小节与检测 2课时
八年级数学教案设计全文篇九
教学目标:
〔知识与技能〕。
1.在生活实例中认识轴对称图.
2.分析轴对称图形,理解轴对称的概念.轴对称图形的概念。
〔过程与方法〕。
2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。
〔情感、态度与价值观〕。
辩证唯物主义观点。
教学重点:.
理解轴对称的概念。
教学难点。
能够识别轴对称图形并找出它的对称轴.
教具准备:三角尺。
教学过程。
一.创设情境,引入新课。
1.举实例说明对称的重要性和生活充满着对称。
2.对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.
3.轴对称是对称中重要的一种,让我们一起走进轴对称世界,探索它的秘密吧!
二.导入新课。
1.观察:几幅图片(出示图片),观察它们都有些什么共同特征.
强调:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.
练习:从学生生活周围的事物中来找一些具有对称特征的例子.
3.如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.我们也说这个图形关于这条直线(成轴)•对称.
4.动手操作:取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意。
刻出一个图案,将纸打开后铺平,你得到两个成轴对称的图案了吗?
归纳小结:由此我们进一步了解了轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.
5.练习:你能找出它们的对称轴吗?分小组讨论.
思考:大家想一想,你发现了什么?
小结得出:.像这样,•把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,•这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.
三.随堂练习。
1、课本60练习1、2。
四.课时小结。
分了轴对称图形和两个图形成轴对称.
五.课后作业。
习题13.1.1、2、6题.
六.教后记。
八年级数学教案设计全文篇十
1、了解方差的定义和计算公式。
2、理解方差概念产生和形成过程。
3、会用方差计算公式比较两组数据波动大小。
重点:掌握方差产生的必要性和应用方差公式解决实际问题。
难点:理解方差公式。
(一)知识详解:
方差:设有n个数据,各数据与它们的平均数的差的平方分别为。
用它们的平均数表示这组数据的方差,即。
给力小贴士:方差越小说明这组数据越稳定,波动性越低。
(二)自主检测小练习:
1、已知一组数据为2.0、-1.3、-4,则这组数据的方差为。
2、甲、乙两组数据如下:
甲组:1091181213107;
乙组:7891011121112。
分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小。
引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下(单位:cm):
甲:9.10.10.13.7.13.10.8.11.8;
乙:8.13.12.11.10.12.7.7.10.10;
问:(1)哪种农作物的苗长较高(可以计算它们的平均数:=)?
(2)哪种农作物的苗长较整齐?(可以计算它们的极差,你可以发现)。
归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别为。
用它们的平均数表示这组数据的方差,即用来表示。
(一)例题讲解:
金志强1013161412。
提示:先求平均数,然后使用公式计算方差。
(二)小试身手。
1、甲、乙两名学生在相同条件下各射击靶10次,命中的环数如下:
甲:7.8.6.8.6.5.9.10.7.4。
乙:9.5.7.8.7.6.8.6.7.7。
经过计算,两人射击环数的平均数是,但s=,s=,则ss,所以确定去参加比赛。
1、求下列数据的众数:
(1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2。
方差公式:
提示:方差越小,说明这组数据越集中。波动性越小。
每课一首诗:求方差,有公式;先平均,再求差;求平方,再平均;所得数,是方差。
1、小爽和小兵在10次百米跑步练习中的成绩如下表所示:(单位:秒)。
如果根据这些成绩选拔一人参加比赛,你会选谁呢?
必做题:教材141页练习1.2;选做题:练习册对应部分习题。
写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!
八年级数学教案设计全文篇十一
种子发芽实验(一)。
【教学目标】。
科学概念:种子发芽需要一定的条件。
过程与方法:经历设计种子发芽实验的过程,用对比实验的方法观察、记录影响种子发芽的条件。
情感、态度、价值观:养成对实验观察的兴趣。
【教学重点】学习运用对比实验中控制某个条件的方法,研究影响种子发芽的条件。
【教学难点】能根据要求设计出自己的实验计划。
【教学准备】绿豆种子若干,实验计划单(参考书3面),实验记录表(参考书4面)。
【教学过程】。
一、讨论种子发芽的条件:
1、谈话导入:植物的一生是从种子发芽开始的。那么,你觉得种子发芽需要哪些条件呢?
2、学生自由讨论,教师摘要板书。(预设:要种到土里获得养料,需要浇水,需要合适的温度,需要阳光,需要空气等。这时候教师不要给予取舍,保留学生的各种观点)。
3、进一步引导(拿起一颗绿豆种子):这是一颗完好的绿豆种子,如果要让它发芽,刚才大家说的这些条件是不是都需要呢?哪些是绿豆种子发芽的必须条件呢?(说明:从种子发芽过渡到具体的绿豆种子发芽,这样的讨论更有针对性,而且更合理,因为不同种子需要的条件是有些区别的。)。
4、师:大家的意见不一样,看来我们必须通过实验来判别了。
二、设计种子发芽实验:
1、师:该怎样用实验来证明呢?大家说说要注意什么?(预设:制订周密的实验计划,只能改变一个条件等。)。
2、师点拨:为了把实验做好,建议大家选择自己最想研究的一个条件进行研究,而且在研究之前要设计好实验方案。
3、学生自由选择研究内容,及时进行统计。(预设:水组,光组,温度组,土壤组等,可在此适当排除不适合课堂研究的内容。)。
4、以其中一个组为范例,集体讨论如何设计实验计划。
(1)你们想研究什么问题,你们计划怎样做?
(2)你们预测结果会是怎样的?
(3)你们的研究中,改变了什么条件?
(4)哪些条件是没有改变的?
(5)怎样知道改变的条件是不是对种子发芽产生了影响?
(6)在实验研究过程中还应该注意什么?
5、分发实验计划单,学生完成自己的实验方案设计,教师巡回指导,鼓励选择相同条件的同学互相交流。
三、阅读书4面种子发芽实验内容:
1、进一步阅读教材上的举例,教师引导关注其中的注意点,比如绿豆的大小应该差不多,为什么要在每个盒子分别放入2-3颗绿豆,为什么要垫纸巾等。
2、教师提供表格,共同讨论如何进行记录。
四、布置实践作业和下节课内容提示:
1、鼓励学生回家认真完成实验,并做好观察记录。
2、下节课将对我们的实验结果进行分析,请大家准备好实验计划单和实验记录表,将对认真完成实验的同学加星评价。
3、有能力、有条件的同学还拍摄绿豆种子发芽各个变化的照片,尝试撰写研究报告。
八年级数学教案设计全文篇十二
目的:巩固平方根的概念。其中在处理第5小题时,应先把带分数化为假分数。
不足:可以让学生求小数的平方根,如:求0.0004的平方根,可能学生会出现两种不同的方法:其一,直接求;其二,化为分数求,不管怎样都要引导学生去发现,最终归纳问题的症结在于当被开方数是小数时,其平方根小数点的位数应如何确定。于是再次引导学生通过观察得到结论:被开方数与其平方根小数点位数是2:1的关系。这样就能更深层次地提升学生的分析能力,教师在教学时有必要这样做。
练习2、求下列各数的平方根:(抢答)。
64,0.01,121,0.09,0,,,-0.36。
目的:熟练求平方根的方法并能提高解题的速度,从而活跃课堂气氛。把整节课的教学推向了高潮,也是本节课的亮点。
4、注意课堂教学的完整性。
目的:通过本节课的学习,使学生掌握平方根的概念,一方面使新授知识得到充分的应用,另一方面起到前呼后应的教学效果。
不足:由于时间较紧,所以讲解速度较快,可能使部分同学未能真正理解。
八年级数学教案设计全文篇十三
1.经历分式方程的概念,能将实际问题中的等量关系用分式方程 表示,体会分式方程的模型作用.
2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。
3.在活动中培养学生乐于探究、合作学习的习惯,培养学 生努力寻找 解决问题的进取心,体会数学的应用价值.
将实际问题中的等量 关系用分式方程表示
找实际问题中的等量关系
有两块面积相同的小麦试验田,第一块使用原品种,第二 块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每 公顷 的产量。你能找出这一问题中的所有等量关系吗?(分组交流)
如果设第一块试验田 每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。
根据题意,可得方程___________________
从甲地到乙地有两条公路:一条是全长600 km的普通 公路,另一条是全长480 km的高速公路。某客 车在 高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速 公路从甲地到乙地所需的时间 是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从 甲地到乙地所需的时间。
这 一问题中有哪些等量关系?
如果设客车由高速公路从甲地到乙地 所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。
根据题意,可得方程_ _____________________。
学生分组探讨、交流,列出方程.
上面所得到的方程有什么共同特点?
分母中含有未知数的方程叫做分式方程
分式方程与整式方程有什么区别?
(3)根据分式方程 编一道应用题,然后同组交流,看谁编得好
本节课你学到了哪些知识?有什么感想?