高中物理行星的运动教案(实用21篇)
教案是教学准备的重要环节,能够让教师对教学内容和教学方法进行充分思考。教案应当注重课后作业的设计,巩固和拓展学生的学习效果。下面是一份详细的教案示例,可以帮助教师们更好地理解教案的写作过程。
高中物理行星的运动教案篇一
课题§6.1行星的运动课型新授课(1课时)。
教学目标知识与技能。
1.知道地心说和日心说的基本内容.
2.知道所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.
3.知道所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,且这个比值与行星的质量无关,但与太阳的质量有关.
4.理解人们对行星运动的认识过程是漫长复杂的,真理是来之不易的.
过程与方法。
通过托勒密、哥白尼、第谷·布拉赫、开普勒等几位科学家对行星运动的不同认识,了解人类认识事物本质的曲折性并加深对行星运动的理解.
情感、态度与价值观。
1.澄清对天体运动裨秘、模糊的认识,掌握人类认识自然规律的科学方法.
2.感悟科学是人类进步不竭的动力.
教学重点、难点教学重点。
理解和掌握开普勒行星运动定律,认识行星的运动.学好本节有利于对宇宙中行星的运动规律的认识,掌握人类认识自然规律的科学方法,并有利于对人造卫星的学习.
教学难点。
对开普勒行星运动定律的理解和应用,通过本节的学习可以澄清人们对天体运动神秘、模糊的认识.
教学方法探究、讲授、讨论、练习教学手段教具准备。
挂图、多媒体课件。
教学活动。
[新课导入]。
【多媒体演示】天体运动的图片浏览。
教师:在浩瀚的宇宙中有无数大小不一、形态各异的天体,如月亮、地球、太阳、夜空中的星星……由这些天体组成的广袤无限的宇宙始终是我们渴望了解、不断探索的领域。关于天体的运动,历史上有过不同的看法.
(课件投影)中国古代天文学观。
我国古代先民看到北极星常年不动,以及北斗七星等拱极星的回转,便以为星空是圆的,就像是一只倒扣着的半球大锅,覆整在大地上,而北极则是这盖天的顶,又认为地是方的,就像一张围棋盘,此即“天圆地方”说.东汉时的天文学家张衡提出“浑天”说,认为天就像一个大鸡蛋,地球就是其中的蛋黄.
中国古代通常将历法和天文联系在一起.历法注重天体运行的长时间段的重复周期,而不注重天体在三维空间中的运行情况.与古希腊人和中世纪的欧洲人不同,中国历法家很少关心宇宙结构方面的讨论.在汉朝的大部分时期,人们满足于这样的假设:有人居住的世界是一小块中心区域.靠近平面大地中央,这个平面大地是一个绕着倾斜的轴旋转的天球的直径面.天体在该天球的内面移动,但它们靠何种机制来进行这种运动则没有讨论.
中国古代有丰富的天文记录.公元前第二个千年的后期,甲骨文中已记载了新星现象.从约公元苗2开始,在官方文件中已有关于新星的连年记载,还有流星雨、彗星、日食、太阳黑子以及异乎寻常的云、板光之类的记载,或对蕾星的跟踪观测的记录.这些现象的观测者都使用了制作精良的大型浑天仪和其他刻度仪器,所观测的天体位置,其精确程度毫不逊色于欧洲在第谷之前的观测.
学生阅读后对探索宇宙产生兴趣.
师:在广袤无垠的宇宙中有着无数大小不一、形态各异的天体.如太阳、月亮、夜空中闪烁的星星……吸引了人们的注意,智麓的头脑开始探索天体运动的奥秘.它们的运动是靠神的支配,还是物理规律的约束?经过不懈的努力,科学家们对它已有初步的了解,这一节让我们循着前人的足迹学习行星运动的情况.
[新课教学]。
一.“地心说”和“日心说”之争。
[讨论与交流]。
展示问题:
请阅读教材第一段。
1.古人对天体运动存在哪些看法?
生:“地心说”和“日心说”.
师:2.什么是“地心说”?什么是“日心说”’?
生:”地心说”认为地球是宇宙的中心,是静止不动的,大阳、月亮以及其他行星都绕地球运动,“日心说”则认为太阳是静止不动的,地球和其他行星都绕太阳运动.
“地心说’的代表人物:托勒密(古希腊).“地心说’符合人们的直接经验,同时也符合势力强大的宗教神学关于地球是宇宙中心的认识,故地心说一度占据了统治地位.生:“日心说”战胜了“地心说”,最终被接受.
[讨论与交流]。
展示问题:
师:“日心说”战胜了“地心说”,最终真理战胜了谬误.请同学们阅读第64页《人类对行星运动规律的认识,中托勒密:地心宇宙,哥白尼:拦住了太阳,推动了地球.交流讨论,找出“地心说”遭遇的尴尬和“日心说’的成功之处.
生:地心说所描述的天体的运动不仅复杂而且问题很多,如果把地球从天体运动的中心位置移到一个普通的、绕太阳运动的位置,换一个角度来考虑天体的运动,许多问题都可以解决,行星运动的描述也变得筒单了.
“日心说”代表人物:哥白尼,“日心说”能更完美地解释天体的运动.
二、开普勒行量运动定律。
[做一做]。
用图钉和细绳画椭圆。
可以用一条细绳和两图钉来画椭圆.如图7.1—l所示,把白纸镐在木板上,然后按上图钉.把细绳的两端系在图钉上,用一枝铅笔紧贴着细绳滑动,使绳始终保持张紧状态.铅笔在纸上画出的轨迹就是椭圆,图钉在纸上留下的痕迹叫做椭圆的焦点.
[课堂训练]。
(分四小组进行)。
师;阅读教材第二段到最后,并阅读第64页《人类对行星运动规律的认识)中第谷:天才观察家,开普勒:真理超出期望,投影展示以下问题:
师:1.古人认为天体做什么运动?
生:古人把天体的运动看得十分神圣,他们认为天体的运动不同于地面物体的运动,天体做的是最完美、最和谐的匀逮圆周运动.
师:2.开普勒认为行星做什么样的运动?他是怎样得出这一结论的?
生:开普勒认为行星做椭圆运动.他发现假设行星傲匀逮圆周运动,计算所得的数据与观测数据不符,只有认为行星做椭圆运动,才能解释这一差别.
师:3.开普勒行星运动定律哪几个方面描述了行星绕太阳运动的规律?具体表述是什么?
生:开普勒行星运动定律从行星运动轨道,行墨运动的线速度变化,轨道与周期的关系三个方面揭示了行星运动的规律.具体表述为:
高中物理行星的运动教案篇二
2.知道曲线运动的条件,会确定轨迹弯曲方向与受力方向的关系过程与方法。
1.体验曲线运动与直线运动的区别。
2.体验曲线运动是变速运动及它的速度方向的变化情感态度与价值观。
2.物体做曲线运动方向的判定3.物体做曲线运动的条件【教学难点】。
物体做曲线运动的条件【教学课时】1课时【探究学习】。
1、曲线运动:__________________________________________________________2、曲线运动速度的方向:
质点在某一点的速度,沿曲线在这一点的方向。3、曲线运动的条件:
(3)运动速度方向与加速度的方向不共线,且合力为定值,运动为_________运动。(4)运动速度方向与加速度的方向不共线,且合力不为定值,运动为___________运动。4、曲线运动的性质:
(1)曲线运动中运动的方向时刻_______(变、不变),质点在某一时刻(某一点)的速度方向是沿__________________________________________,并指向运动轨迹凹下的一侧。(2)曲线运动一定是________运动,一定具有_________。
【课堂实录】引入新课。
再看两个演示。
第一,
自由释放一只较小的粉笔头第二,平行抛出一只相同大小的粉笔头两只粉笔头的运动情况有什么不同?学生交流讨论。
结论:前者是直线运动,后者是曲线运动。
1.定义:运动的轨迹是曲线的运动叫做曲线运动。2.举出曲线运动在生活中的实例。
引出下一问题。二、曲线运动速度的方向。
看图片:撑开带有水滴的雨伞绕柄旋转。
问题:水滴沿什么方向飞出?学生思考。
结论:雨滴沿飞出时在那点的切线方向飞出。
如果球直线上的某处a点的瞬时速度,可在离a点不远处取一b点,求ab点的平均速度来近似表示a点的瞬时速度,时间取得越短,这种近似越精确,如时间趋近于零,那么ab见的平均速度即为a点的瞬时速度。
结论:质点在某一点的速度方向,沿曲线在这一点的切线方向。三、物体做曲线运动的条件。
结论:做匀速直线运动。
铁,小球将如何运动?学生实验。
结论:小球讲做加速直线运动或者减速直线运动。
何运动?学生实验。
结论:小球将改变轨迹而做曲线运动。
总结论:曲线运动的条件是,当物体所受合力的方向跟物体运动的方向不在同一条直线时,
问题:曲线运动是匀速运动还是变速运动学生思考讨论问题引导:
速度是(矢量、标量),所以只要速度方向变化,速度矢量就发生了,也就具有,因此曲线运动是。结论:曲线运动是变速运动。
【课堂训练】。
a
b
解析:。
突然增大到f1+f。
则此质点以后做_______________________解析:
请做图。
c
d
分析:。
m
m
【课堂小结】。
高中物理行星的运动教案篇三
引入新课:
自人类诞生之日起,我们就对这茫茫宇宙充满了好奇,希望探索宇宙的奥秘。我国古代产生了很多与此有关的美丽神话传说,比如关于宇宙的来源——盘古开天地。科学技术发展到今天,科学家对宇宙万物有了一定的认识。现在,我们知道,宇宙是这样产生的——宇宙大爆炸。本节我们就共同来学习前人所探索到的行星的运动情况。
进行新课:
一、古人对天体运动的看法及发展过程在古代,人们对于天体的运动存在着两种对立的看法,被称为“地心说”和“日心说”(教师介绍相关物理学史)。
2、“日心说”:太阳是宇宙的中心,地球、月亮以及其他行星都在绕太阳运动。
【提问】“日心说”和“地心说”哪种观点更正确?日心说的观点是否绝对正确?
若地球不运动,昼夜交替是太阳绕地球运动形成的,那么每天的情况就应是相同,事实上,每天白天的长短不同,冷暖不同,而“日心说”则能说明这种情况;白昼是地球自转形成的,而四季是地球绕太阳公转形成的。“日心说”也并不是绝对正确的,太阳只是太阳系的中心天体,而太阳系只是宇宙中众多星系之一,因此太阳并不是宇宙的中心,也不是静止不动的。迄今为止,人类还没有发现宇宙的中心。
二、开普勒行星运动定律:。
古人把天体的运动看得十分神圣,他们认为天体的运动不同于地面物体的运动,天体做的是最完美、最和谐的匀速圆周运动。开普勒研究了第谷的行星观测记录,发现假设行星作匀速圆周运动,计算所得的数据与观测数据不符,只有认为行星作椭圆运动,才能解释这一差别。
出示表一:节气表。
由节气表分析可知,一年中四季的时间为:春季92天,夏季94天,秋季91天,冬季90天。如果地球运动轨道是圆,四季的时间应该是相等的,四季时间不等,说明地球绕太阳运动的轨道不是圆,而是椭圆。
1、开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。(轨道定律)。
【认识椭圆】椭圆有2个焦点,半长轴用表示,半短轴用表示。
2、开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。(面积定律)。
由图易知,相等时间内在远日点附近运动的弧长小于在近日点附近的弧长,因此可知,远日点速度小于近日点速度,即。
3、开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。(周期定律)即:(k为常量)。
提问:比值k与行星无关,它可能跟谁有关呢?来分析下面一组数据。
出示表二:太阳系行星与地球卫星半长轴、周期一览表。
由表中数据分析可知,围绕太阳运动的八大行星的k值相等,围绕地球运动的2颗卫星的k值也相等。由此得出结论:k值只与中心天体有关。中心天体相同,k值相等;中心天体不同,k值一般不同。
【注意】开普勒第三定律也适用于绕行星运动的卫星。实际上,多数行星的椭圆轨道与圆十分接近(课本33页图6.1-3),在中学阶段的研究中我们按圆轨道处理,那么行星运动过程中就没有近日点和远日点。这样我们就可以把开普勒三大定律表述为:行星绕太阳做圆周运动,太阳处在圆心位置;行星绕太阳运动时线速度(或角速度)不变,即行星做匀速圆周运动。所有行星轨道半径的三次方跟它公转周期的二次方的比值相等,即。
高中物理行星的运动教案篇四
教学目的:
1.了解地心说和日心说两种不同的观点。
2.知道开普勒对行星运动的描述。
教学过程:
引入:在前面我们学习了力和运动,并且讲述了力和运动的关系:动力学。介绍了几种常见的物体运动,本章将介绍一种新的力-------万有引力和一种新的运动实例--------行星的运动。
一地心说与日心说。
1.让同学自己阅读,找出地心说和日心说的观点:
地心说:认为地球是宇宙的中心。地球的静止不动的,太阳、月亮以及其它行星都绕地球运动。
日心说:认为太阳是静止不动的,地球和其它行星都绕太阳动动。
2.为什么地心说会统治人们很久时间。
3.古人是如何看待天体的运动:
古人认为天体的运动是最完美、和谐的匀速圆周运动。
4.谁首先对天体的匀速圆周运动的观点提出怀疑:开普勒。
二开普勒三定律。
开普勒通过四年多的刻苦计算,先后否定了十九种设想,最后了发现星运行的轨道不是圆,而是椭圆。并得出了开普勒两条定律:
开普勒第一定律:所有行星分别在大小不同的椭圆轨道上围绕太阳运动,太阳是在这些椭圆的一个焦点上。
开普勒第二定律:太阳和行星的联线在相等的时间内扫过相等的面积。
如图:如果时间间隔相等,即t2-t1=t4-t3那么面积a=面积b。
开普勒第三定律:所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值都相等。
r3/t2=k(k是一个与行星或卫星无关的常量,但不同星球的行星或卫星k值不一定相等)。
高中物理行星的运动教案篇五
能力目标。
1、培养学生在客观事实的基础上通过分析、推理,提出科学假设,再经过实验检验的正确认识事物本质的思维方法。
2、通过学习,培养学生善于观察、善于思考、善于动手的能力。
德育目标。
1、通过开普勒运动定律的建立过程,渗透科学发现的方法论教育、建立科学的宇宙观。
2、激发学生热爱科学、探索真理的求知热情。
教学重点。
“日心说”的建立过程和行星运动的规律。
教学难点。
学生对天体的运动缺乏感性认识,和开普勒如何确定行星的运动规律的。
教学方法。
1、“日心说”的建立的教学――采用对比、反证及讲授法。
2、行星的运动规律的建立――采用挂图、放录像资料或用cai课件模拟行星的运动情况。
教学用具。
行星运动的挂图、资料片、投影仪和投影片。
课时安排。
1课时。
教学步骤。
导入新课。
在浩瀚的宇宙中有着无数大小不一,形态各异的天体,如太阳、地球、月亮、星星等等。这些天体是如何运动的呢?人类最初是通过直接的感性认识以及受宗教的影响,建立了“地心说”,但后来,第谷等科学家通过长期观测,记录了大量的观测数据,对地心说进行挑战,哥白尼在些基础上提出了“日心说”,“日心说”认为太阳是宇宙的中心,其他天体(包括地球)都绕太阳作匀速圆周运动。“日心说”虽在“地心说”的基础上前进了一大步,但“日心说”解释行星运动时与实际观测的结果仍有一定的误差,最终开普勒通过计算,确立了行星运动的正确图景:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上,所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。开普勒对行星运动的描述,为牛顿发现万有引力定律奠定了重要的基础。
新课教学。
(一)用投影片出示本节课的学习目标:
了解“地心说”和“日心说”两种不同学说的建立和发展过程;
知道开普勒对行星运动的描述;
(二)学习目标完成过程:
1、“地心说”和“日心说”的发展过程:
我们生活在地球上,地球是浩瀚宇宙中无数星球中的一个,这些星球是如何运动的呢?
在古代,人们认为地球是静止不动的,太阳、月亮及其它行星都围绕着地球运动,这就是“地心说”。“地心说”符合人们的日常经验,也符合宗教神学关于地球是宇宙中心的说法。但随着世界航海事业的发展,人们希望借助星星的位置为船队导航,因而对行星的运动观测越来越精确,由大量的观测数据表明,用托勒密的“地心说”模型很难得出完满的解答,当时,哥伦布和麦哲伦的探险航行已经使不少人相信地球并不是一个平台,而是一个球体,哥白尼就开始推测是不是地球每天都围绕自己的轴线旋转一周呢?他假想地球并不是宇宙的中心,它与其他行星都是围绕着太阳在作匀速圆周运动的。这个模型称为“日心说”,用“日心说”能够较好地和观测数据相符合,但是哥白尼思想很晚才为人们所接受,他的著作发表后,几乎在一个世纪中完全被人们所忽视,主要原因是:(1)在他们的著作中,“日心说”只是一个“假设”,若用这个“假设”,行星运动的计算比“地心说”容易得多。(2)当时的欧洲正处于基督教改革与反改革的骚乱中,一个人的科学见解可能会成为判断其是否忠诚的试金石。(3)在哥白尼的著作中有一些很不精确的数据,根据这些数据得出的计算结果不能很好地与行星位置的观测结果相符合,(4)最后,甚至于连哥白尼本人也认为必须把托勒密的“本轮”的思想引进他的模型中。
丹麦物理学家开普勒继承和总结了他的导师第谷的全部观测资料,他花了几年时间一遍一遍地进行数学计算,通过计算,他感到哥白尼的“日心说”是正确的,并且把行星运动的轨迹修改为椭圆,他的发现可以归结为行星运动三大定律,这些经验定律精确地与观测数据相符,因而被人们接受。
开普勒关于行星运动的描述可以表述为三大定律,我们主要是介绍第一定律和第三定律。
开普勒第一定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
由于行星的运动轨迹不是正圆,因而它与太阳的距离一直都在改变,有时它向太阳*拢,而有时则向远离太阳的方向漫游。在整个运动过程中,它的速度大小和方向是不断改变的。
开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
虽然每个行星的椭圆轨道各有一个,但它们运动的轨道的斗半长轴的三次方跟公转周期平方的比值都是相同的,我们用r代表椭圆轨道的半长轴,t代表公转周期,经验公式表述为:
比值k是一个与行星本身无关的物理量,由这个定律我们知道,离太阳最近的行星――水星的运动周期最水(为88天),我们生活的地球的运转周期约为365天。
巩固训练。
如果我们用天文望远镜观察一年中不同时期火星的位置,并且将这些位置连线,请你想像将会是怎样的一条线呢?火星的周期为787天。
小结。
本节课我们学习了行星的运动,了解了人类对行星运动的探索和认识的过程,知道了所有行星都是沿椭圆轨道绕太阳运动的,并且符合公式:
应该说明的是:
如对地球和木星比较,就有:
但月球人造卫星以及其它行星的卫星并不是主要绕太阳运动的,它们和行星的运动比较,就有:
(2)对于同一个行星的不同卫星,它们也符合运动规律:
如月球和各人造卫星同步,就符合这一规律,但k’是与k不同的量,这一点我们在学完这一章后将能够证明。
作业。
1、阅读课本p111阅读材料“行星、恒星、星系和宇宙”
2、太阳系中有九大行星,请你将它们绕太阳运动的周期由小到大依次排序。
3、阅读有关同步通讯卫星的材料,估算出它和月亮距地心的距离比值。
板书设计。
1、“地心说”与“日心说”的发展过程。
(1)内容。
高中物理行星的运动教案篇六
知识与技能1.知道地心说和日心说的基本内容。
2.知道开普勒三定律的内容。
3.理解人们对行星运动的认识过程是漫长复杂的,真理是来。
之不易的。过程与。
多媒体演示:《仰望星空》诗朗诵。
新课讲解。
一、古代对行星运动规律的认识。
问1:.古人对天体运动存在哪些看法?“地心说”和“日心说”.
问2.什么是“地心说”?什么是“日心说”’?
“地心说”认为地球是宇宙的中心,是静止不动的,大阳、月亮以及其他行星都绕地球运动.
“日心说”则认为太阳是静止不动的,地球和其他行星都绕太阳运动.
“地心说’的代表人物:托勒密(古希腊).“地心说’符合人们的直接经验,同时也符合势力强大的宗教神学关于地球是宇宙中心的认识,故地心说一度占据了统治地位达1300多年.
从中世纪以来,教会的反动统治形成了一道无形的枷锁,凡是不符合教会思想而另有主张的人,都会遭到迫害。哥白尼毕生致力的著作《天体运行论》,临终前才在这本书上签上了自己的姓名。日心说与地心说的斗争是一场真正的科学革命,使人们的世界观发生了重大变革,宇宙中心的转变暗示了宇宙可能根本没有中心,这在哥白尼那里还是隐含的,意大利学者布鲁诺将它公开说出,结果被捕入狱,在被囚禁的八年中,布鲁诺始终坚持自己的学说,最后被宗教裁判所判为“异端”,烧死在罗马鲜花广场。
生精力投入到行星位置的测量中,他所做的天文仪器观测精度之高,是他同时代的人望尘莫及的.
德国天文学家开普勒(1571-1630),在最初研究他的导师第谷所记录的数据时,也是以行星绕太阳做匀速圆周运动的模型来思考问题的,但是所得结果却与第谷的观测数据至少有8分的角度误差。当时公认的第谷的观测误差不超过2分,开普勒想,这不容忽视的8分也许是因为人们认为行星绕太阳做匀速圆周运动所造成的。至此,人们长期以来视为真理的观念——天体做匀速圆周运动,第一次受到了怀疑。后来开普勒又仔细研究了第谷的观测资料,经过四年多的刻苦计算先后否定了19种设想,最后终于发现了天体运行的规律-------开普勒三大定律。
二、开普勒行星运动定律。
问1:开普勒认为行星做什么样的运动?他是怎样得出这一结论的?
开普勒认为行星做椭圆运动.他发现假设行星傲匀逮圆周运动,计算所得的数据与观测数据不符,只有认为行星做椭圆运动,才能解释这一差别.
问2:开普勒行星运动定律哪几个方面描述了行星绕太阳运动的规律?具体表述是什么?
开普勒行星运动定律从行星运动轨道,行星运动的线速度变化,轨道与周期的关系三个方面揭示了行星运动的规律.
开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.
问3:这一定律说明了行星运动轨迹的形状,不同的行星绕大阳运行时椭圆轨道相同吗?不同.
开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积.
因为相等时间内面积相等,所以近日点速率大。
开普勒第三定律:所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值都相等.embed3mergeformat(k值只与中心天体质量有关)。
1、多数大行星绕太阳运动轨道半径十分接近圆,太阳处在圆心上。
2、对某一行星来说,它绕太阳做圆周运动的角速度(或线速度大小)不变。
3、所有行星的轨道半径的三次方跟它的公转周期的平方的比值都相等.若用r代表轨道半径,t代表公转周期,开普勒第三定律可以用下面的公式表示:
一名学生。
朗诵(激发学生探索宇宙奥秘的激情)学生交流、讨论各自的课前预习结果,并且总结、发言。
(通过课前查阅资料的过程,体会主动学习的乐趣;感知大师们的思路、方法以及他们一丝不苟的科学精神,激发他们热爱科学、探索真理的求知热情。)。
通过对行星运动定律的建立过程的了解,感受观察手段及数学归纳法在科学研究中的重要作用。
两名学生上黑板画椭圆。
学生上黑板推导远日点速率与在近日点速率大小关系。
引导学生分析表格数据,讨论k值与什么因素有关?
学生用自己的话表述行星运动的理想化处理。四、【小试牛刀】。
a.行星轨道的半长轴越长,自转周期越大。
高中物理行星的运动教案篇七
知识目标。
能力目标。
通过学生的阅读使学生知道开普勒对行星运动的描述;
情感目标。
说明:
1、日心、地心学说及两者之间的争论有许多内容可向学生介绍,教材为了简单明了地简述开普勒关于行星运动的规律,没有过多地叙述这些内容.教学中可根据学生的实际情况加以补充.
2、这一节的教学除向学生介绍日心、地心学说之争外,还要注意向学生说明古时候人们总是认为天体做匀速圆周运动是由于它遵循的运动规律与地面上物体运动的规律不同.
3.学习这一节的主要目的是为了下一节推导万有引力定律做铺垫,因此教材中没有过重地讲述开普勒的三大定律,而是将三大定律的内容综合在一起加以说明,节后也没有安排练习.希望老师能合理地安排这一节的教学.
教学建议。
教材分析。
教法建议。
典型例题。
关于开普勒的三大定律。
解:设人造地球卫星运行半径为r,周期为t,根据开普勒第三定律有:
同理设月球轨道半径为,周期为,也有:
由以上两式可得:
在赤道平面内离地面高度:
km。
点评:随地球一起转动,就好像停留在天空中的卫星,通常称之为定点卫星.它们离地面的高度是一个确定的值,不能随意变动。
利用月相求解月球公转周期。
解:月球公转(2π+)用了29.5天.。
故转过2π只用天.。
由地球公转知.。
所以=27.3天.。
例3如图所示,a、b、c是在地球大气层外的圆形轨道上运行的三颗人造地球卫星,下列说法中正确的是哪个?()。
a.b、c的线速度相等,且大于a的线速度。
b.b、c的周期相等,且大于a的周期。
c.b、c的向心加速度相等,且大于a的向心加速度。
d.若c的速率增大可追上同一轨道上的b。
分析:由卫星线速度公式可以判断出,因而选项a是错误的.。
由卫星运行周期公式,可以判断出,故选项b是正确的.。
卫星的向心加速度是万有引力作用于卫星上产生的,由,可知,因而选项c是错误的.。
解:本题正确选项为b。
点评:由于人造地球卫星在轨道上运行时,所需要的向心力是由万有引力提供的,若由于某种原因,使卫星的速度增大。则所需要的向心力也必然会增加,而万有引力在轨道不变的时候,是不可能增加的,这样卫星由于所需要的向心力大于外界所提供的向心力而会作离心运动。
探究活动。
1、观察月亮的运动现象.
2、观察日出现象.
高中物理行星的运动教案篇八
1.知识与技能:
(1)研究并认识平抛运动的条件和特点。
(2)理解平抛运动可以看作水平方向的匀速直线运动和自由落体运动的合运动,并进一步理解运动合成和分解的等时性和独立性。
(3)掌握平抛运动分解方法,推导平抛运动规律并会运用平抛运动规律解答相关问题。
2.过程与方法:
(1)通过观察演示实验,概括出平抛运动的特点。培养学生观察,分析能力。
(2)利用已知的直线运动规律来研究复杂的曲线运动,渗透物理学中“化繁为简”的思想。
3.情感态度价值观:
(1)培养学生仔细观察、认真思考、积极参与、勇于探索的精神。
(2)培养学生严谨的科学态度和实事求是的科学作风。
重点、难点。
重点:研究平抛物体的特点和运动规律。
两张相同的纸,粉笔头。
教学过程。
一、新课引入:
演示1:沿多个角度将粉笔头,纸片揉成团抛出。
问题1:粉笔头和纸团做什么运动?
生答:抛体运动。
演示2:将纸团展开抛出。
问题2:纸片做的是抛体运动吗?什么是抛体运动?
师生共同总结:
抛体运动:以一定的初速度抛出,如果物体只受重力作用,这时的运动就叫抛体运动。
平抛运动:初速度水平的抛体运动。
今天,我们用运动分解的观点来分析抛体运动。
二、新课研究:
1.平抛条件:
(1)物体初速度沿水平方向(2)物体只受重力。
2.平抛特点:
(1)受力:只受重力。(2)运动:是a=g的匀变速曲线运动。
再引导学生分解平抛运动:
水平方向的分运动:不受力,初速度为vo,匀速直线运动,
竖直方向分运动:受重力,初速度为0,自由落体运动。
强调:分运动与合运动,分运动之间具有等时性。
由x=v0t,y=12gt联立得:2。
y=g2=1。
2xv0g2x22v0。
二次函数,即抛物线。
结论:平抛运动轨迹是一条抛物线。
二、一般的抛体运动。
一般抛体运动可以根据上面求曲线运动速度的方法,将初速度沿两坐标轴方向分解,从而求得该方向上的初速度,再结合受力情况和牛顿第二定律即可以求解。
三、典例分析。
例:如图2甲所示,以9.8m/s。
的初速度水平抛出的.物体,飞行一段时间后,垂直地撞在倾角为。
a.
的斜面上。可知物体完成这段飞行的时间是()。
b.
c.
d.
图2。
就可以求出时间了。则。
分解可知物体在竖直方向做自由落体运动,那么我们根据所以。
根据平抛运动竖直方向是自由落体运动可以写出。
所以。
所以答案为c。
课堂小结。
平抛运动的概念,条件,特点,即速度位移的相关公式。
板书设计。
高中物理行星的运动教案篇九
一、知识目标。
1.了解“地心说”和“日心说”两种不同的.观点及发展过程.?
2.知道开普勒对行星运动的描述.?
二、教学重点。
1.“日心说”的建立过程.?
三、教学难点。
1.学生对天体运动缺乏感性认识.?
2.开普勒如何确定行星运动规律的.?
四、教学方法。
1.“日心说”的建立的教学――采用对比、反证及讲授法.?
五、教学步骤。
文件大小:44k文件格式:doc下载地址:击本地免费下载地址
高中物理行星的运动教案篇十
《曲线运动》这一章主要是以平抛运动和圆周运动为载体讲述如何研究做曲线运动物体的规律,而《曲线运动》这一节又是这一章的一个基础,故其在必修1、2两册教材中属于承上启下的一节内容,所涉及的两大部分内容——曲线运动的特点以及物体做曲线运动的条件,对学生以后的学习以至对动力学的理解都有很大的帮助。基于上面的分析,教学中要充分应用已有的观察和感知,已有的概念和知识,利用多种形式的教学手段,使学生对这部分知识有较深的认识。
在这节课的讲授过程中,由于考虑到了普通班学生的认知水平,我对教学内容做了调整,先讲曲线运动的特点,即曲线运动的位移和速度,在学生对曲线运动有了初步了解之后,设置问题:那么物体在什么样的条件下才做曲线运动呢?这时候学生回答要有力的作用,我把一个小钢球举起来问他们,小钢球在放手之后有没有力的作用,学生异口同声说有,我放手之后,问钢球做什么运动?学生回答自由落体运动,我追问,轨迹是直线还是曲线?又有学生喊要有初速度,我给他们分别做了竖直上抛和竖直下抛,这时候学生陷入思考,我总结:看来没有速度或力的方向和速度方向在同一直线上是不会做曲线运动的。
我就把强力磁铁贴着黑板,让小钢珠在次自由落下,到磁铁旁边发生明显的弯曲,很自然的引入到了力与速度方向有夹角时,才会做曲线运动。进一步分析抛出的铅球做曲线运动的原因,我发现学生参与的积极性比较高,课堂气氛比较好。
讲解“小船过河模型”时,总感觉学生反应不是很好,课堂气氛有点压抑,虽然在之前分析了雨滴的下落,跑步机这些运动的合成,但到后面内容上,表现不好,学生还是喜欢定性分析,不愿意定量计算。
高中物理行星的运动教案篇十一
能力目标。
训练逻辑推理能力,分析综合能力,以及培养学生解决实际问题的能力.。
情感目标:
采用多媒体,培养学生学习的兴趣;通过课堂讨论,培养学生的团结精神.。
教学建议。
教材分析。
教法建议以及教学重点难点。
教法建议。
教学重点,难点:
教学设计方案。
引入:粉笔头从桌面边缘水平飞出,观察粉笔头在空中的运动。
学生举例;可看作平抛运动的生活事例.。
(三)利用课件1:引导分析水平方向:不受力,初速度,做匀速直线运动。
学生导出。
1、平抛物体在时刻的瞬时速度:
水平方向:
竖直方向:
平抛物体在时刻的的速度大小:
平抛物体在时刻的速度方向:与水平方向的夹角为,则:
2、平抛物体在时刻的位移:
水平方向:
竖直方向:
平抛物体的位移大小:
平抛物体的位移方向:与水平方向的夹角为,则:
3、消去时间,轨迹:是抛物线。
(六)讨论:
l)平抛运动物体的飞行时间由什么量决定?
2)平抛运动物体的水平飞行距离由什么量决定?
3)平抛运动物体的落地速度由什么量决定?
探究活动。
如何测得平抛运动物体的初速度。
课外小实验:让橡皮从桌子上水平抛出,如何得出其初速度?
【思考】根据平抛运动的知识,若想求出初速度,还有什么方法?需要已知什么条件?
高中物理行星的运动教案篇十二
1.物体仅在中立的作用下,从静止开始下落的运动,叫做自由落体运动(理想化模型)。在空气中影响物体下落快慢的因素是下落过程中空气阻力的影响,与物体重量无关。
2.重力加速度g的.方向总是竖直向下的。其大小随着纬度的增加而增加,随着高度的增加而减少。
3.vt2;=2gs。
竖直上抛运动:
处理方法:分段法(上升过程a=-g,下降过程为自由落体),整体法(a=-g,注意矢量性)。
1.速度公式:vt=v0—gt。
位移公式:h=v0t—gt?2;/2。
2.上升到最高点时间t=v0/g,上升到最高点所用时间与回落到抛出点所用时间相等。
3.上升的最大高度:s=v02;/2g。
高中物理行星的运动教案篇十三
1.本节课是学生在学完宏观物体的有关知识后,对微观世界的知识进一步探究学习,为后面研究物体内能及其有关知识做好铺垫。但由于分子的运动无法直接观察,所以本节课主要采用实验演示扩散现象,学生借助显微镜动手观察布朗运动,用电子目镜展示显微镜中的景象,以计算机模拟的方法为辅组织教学。
2.为加深学生对扩散这个常见现象的探究兴趣,设计了学生熟悉的香水扩散、二氧化氮气体和空气的扩散、红墨水在水中扩散以及比较红墨水在冷、热水中扩散快慢的演示实验。同时为实现物理源于生活,服务于生活,了解和分子热运动有关的现代科技,让学生列举扩散现象在生活中的有关实例,进一步体会分子的运动。
4.本节课为了使学生在学习过程中,对于布朗运动及扩散现象有更具体、清晰的了解,在相关部分设计了一些视频展示,帮助学生理解。
教学目标。
1.知识与技能:
(1)观察扩散现象,理解推断扩散现象是由于分子运动造成的;。
(2)观察布朗运动,能够叙述布朗运动的特点;。
(4)认识到科学观察要细致,推断要有充分依据。体会分子运动的“无规则性”。
2.过程与方法:
(2)培养学生的分析综合能力,理解推理能力,实验能力。
3.情感、态度与价值观:
(1)在体会宏观物质的性质由微观结构决定的同时认识客观事物之间的普遍联系;。
(2)体验自主学习过程,养成仔细观察、勤于思考和合作交流的能力和学习习惯;。
(3)注重学生人文精神的培养。
重点难点。
重点:布朗运动。
难点:布朗运动产生的原因,布朗运动与分子无规则运动的关系。
教学方法。
实验法、自学探究法、问题引领法。
教具准备。
3.观察布朗运动的分组实验:显微镜、制备好的水粉颜料悬浊液、带凹坑的载玻片、显微镜的电子目镜。
教学过程。
新课引入。
自我介绍——引入“布朗运动”。布朗运动是什么运动呢?这就是我们这节课所要研究的主要内容之一,本节课我们一起来学习课本的第二节分子的热运动。(打开香水瓶)。
新课讲解。
(一)扩散现象。
请问前排的学生有没有闻到什么特殊的气味。(学生闻到香水味,香水发生了扩散现象,香水分子运动了。)。
1、我们把不同物质相互接触时彼此进入对方的现象叫做扩散.
气体与气体之间可以发生扩散现象,液体和液体之间呢?
【演示实验】向装有水的烧杯中滴入几滴红墨水,观察水的颜色变化。
水慢慢全变红了,红墨水已扩散到整个水中,液体也同样发生了扩散现象。说明了液体分子在运动。
你们猜猜看,固体间能发生扩散现象吗?(能)。
由于固体间的扩散速度相对较慢一些,想观察到他们间的扩散过程要花很长的时间,有的甚至几年,今天无法在课堂上演示,前几天我请我们学校电视台的工作人员,一起去锅炉房堆积煤炭的地方拍了一段视频,我们一起来看一下。
【视频】学校锅炉房堆放煤炭的地方,去除煤炭后,把墙壁表层铲去后,墙的内部仍然是黑色的。
这说明了什么?(说明碳分子进入了墙壁,固体间也发生了扩散现象。固体分子在运动。)。
2、扩散现象在气体、液体、固体中都能发生。只不过固体间扩散发生慢,气体、液体相对扩散发生快。
扩散的快慢除了和物体的状态有关,还和什么因素有关呢?(温度)。
【演示实验】分别向相同质量的冷水和热水中同时滴入几滴红墨水。(注意比较扩散的快慢。)。
3、特点:温度越高,扩散现象越明显。
扩散现象在我们的生活中是比较常见的,请举出你生活中的与扩散有关的一些现象。(如酒好不怕巷子深、腌制食品、炒菜等。)。
介绍扩散现象在生活、科学研究和生产技术中的应用。
回头再看一下气体和液体的扩散现象,说明扩散总的趋势是浓度趋于一致,浓度一致后此时分子仍在运动。
4、扩散现象是物质分子永不停息地做无规则运动的证明。
分子的永不停息运动是建立在实验事实的基础上的,但我们能直接看到分子在运动吗?(不能)我们肉眼只能区分10-4m的物体,大家想不想看到小于10-4m物体的运动呢?(想)怎么办呢?接下来我们就一起来研究一种我们仅凭肉眼看不到的也与分子运动有关的现象,也是刚开始我所介绍的——布朗运动。
高中物理行星的运动教案篇十四
《匀速圆周运动》为高中物理必修2第五章第5节.它是学生在充分掌握了曲线运动的规律和曲线运动问题的处理方法后,接触到的又一个美丽的曲线运动,本节内容作为该章节的重要部分,主要要向学生介绍描述圆周运动的几个基本概念,为后继的学习打下一个良好的基础。
人教版教材有一个的特点就是以实验事实为基础,让学生得出感性认识,再通过理论分析总结出规律,从而形成理性认识。
教科书在列举了生活中了一些圆周运动情景后,通过观察自行车大齿轮、小齿轮、后轮的关联转动,提出了描述圆周运动的物体运动快慢的问题。
高中物理行星的运动教案篇十五
学习目标1、知道什么是曲线运动,知道曲线运动中速度的方向。
3、理解物体做曲线运动的条件是所受合外力的方向与它的速度方向不在一条直线上。
至今为止,我们只研究了物体沿着一条直线的运动。实际上,在自然界和技术中,曲线运动随处可见。水平抛出的物体,在落到地面的过程中沿曲线运动;地球绕太阳公转,轨迹接近圆,也是曲线。抛出的物体,公转中的地球,他们的运动都是曲线运动。那么从这一节课开始,我们就要开始研究曲线运动到底具有哪些规律。
目标引领。
1、知道什么是曲线运动,知道曲线运动中速度的方向。
3、理解物体做曲线运动的条件是所受合外力的方向与它的速度方向不在一条直线上。
三、独立自学。
学生自学课本第五章第一节的内容。
引导探究。
1.坐标系的选择:研究物体在同一平面内做曲线运动时,应该选择坐标系?
2.位移描述:物体运动到某点时,其位移可尽量用它在方向的分矢量来表示,而分矢量可用该点的表示。
1.速度的方向:质点在某一点的速度沿曲线在这一点的方向。
2.运动性质:做曲线运动的质点的速度发生变化,即速度时刻发生变化,因此曲线运动一定是运动。
3速度的描述:可以用互相垂直的两个方向的分矢量叫做分速度,其中vx=vy=。
三、运动描述的实例:
1.蜡块的位置:蜡块沿玻璃管匀速上升的速度为vy,玻璃管向右匀速运动的速度设为vy,从蜡块开始运动的时刻计时,于是,在时刻t,蜡块的位置p可用它的x、y两个坐标表示x=y=。
2.蜡块的速度:速度的大小v=,速度的方向满足tan=。
3.蜡块运动的轨迹:y=,是一条。
1、从动力学看:当物体所受合理的方向与它的速度方向时,物体做曲线运动。
2、从运动学角度看:物体的加速度方向与它的速度方向时,物体做曲线运动。
五、目标升华。
3、五种类型的运动。
高中物理行星的运动教案篇十六
一、选择题。
a.重的石块落得快,先着地。
b.轻的石块落得快,先着地。
c.在着地前的任一时刻,两块石块具有相同的速度,相同的位移和相同的加速度。
d.两块石块在下落段时间内的平均速度相等。
3、甲乙两球从同一高度相隔1秒先后自由落下,在下落过程中()。
a.两球的距离始终不变。
b.两球的距离越来越大。
c.两球的速度差始终不变。
d.两球的速度差越来越在。
4、自由下落的物体,在任何相邻的'单位时间内下落的距离之差和平均速度之差在数值上分别等于()。
a.g/22g。
b.g/2g/4。
c.gg。
d.g2g。
5、有一直升机停在200m高的空中静止不动,有一乘客从窗口由静止每隔1秒释放一个钢球,则钢球在空中的排列情况说法正确的是()。
a.相邻钢球间距离相等。
b.越靠近地面,相邻钢球的距离越大。
c.在落地前,早释放的钢球速度总是比晚释放的钢球的速度大。
d.早释放的钢球落地时的速度大。
二、解答题。
6、一个自由落体落至地面前最后一秒钟内通过的路程是全程的一半,求它落到地面所需的时间。
参考答案。
2、c自由落体运动是初速度为零的匀加速直线运动。a表示物体做初速度不为零的加减速运动,a错;b表示物体做匀速直线运动,b错;c表示物体做初速度为零的匀加速直线运动,只不过是先向上为正方向,c正确;d做的是初速度不为零的匀加速直线运动,d错。
3、bc既然两球做的都是自由落体运动。因为甲球比乙球早出发1秒,从乙开始下落时计时,任一时刻有:;;有g是一定值,所以c正确d错;位移上有:
4、c连续相等时间的位移之差是;根据平均速度公式。
7、31m偏大,如果考虑声音传播时间,则说明真实的时间比这个时间要小,我们计算时代入的2.5偏大了,所以算得的高度也偏大。
高中物理行星的运动教案篇十七
(1)知道曲线运动是一种变速运动,它在某点的瞬时速度方向在曲线这一点的切线上;。
(2)理解物体做曲线运动的条件是所受合外力与初速度不在同一直线上.
2.方法与过程。
(1)类比直线运动认识曲线运动、瞬时速度方向的判断和曲线运动的条件;。
(2)通过实验观察培养学生的实验能力和分析归纳的能力.
3.情感态度与价值观。
激发学生学习兴趣,培养学生探究物理问题的习惯.
二、教学重难点。
三、教学过程。
1.新课导入,引入曲线运动。
教师:在必修一里我们学习了直线运动,我们知道物体做直线运动时他的运动轨迹是直线,需要满足的条件是物体所受的合力与速度的方向在同一条直线上。但在现实生活中,很多物体做的并非是直线运动,比如玩过山车的游客的运动、火车在其轨道上的运动、风中摇曳着的枝条的运动、人造地球围绕地球的运动(图片)。
问题1:在这几幅图片中,物体的运动轨迹有什么特点?
(运动的轨迹是一条曲线)。
教师:我们把像这样运动轨迹是曲线的运动叫做曲线运动。
设计意图:通过复习直线运动引入生活中更为常见的曲线运动,并借助实例归纳出曲线运动的概念,帮助学生认识曲线运动。
(方向时刻在改变)。
问题3:那么,我们该如何确定物体做曲线运动时每时每刻所对应速度的方向呢?
学生:猜想。
教师:现在咱们从理论上分析一下,钢珠从弯曲玻璃管中滚落出来的运动方向。
当b点无限接近a点时,这条割线变成了曲线在a点的切线,这一过程中ab段的平均速度变成了a点的瞬时速度,瞬时速度的方向沿切线方向。所以钢珠从弯曲玻璃管中滚落出来的运动方向也应该沿试管出口处的切线方向。
下面咱们通过“钢珠滚落”的实验视频验证咱们的猜想及理论推导是否正确。
学生:观看视频。
总结:曲线运动速度方向沿曲线某一点的切线方向。
教师:所以在日常生活中我们可以看到这样的画。
学生:砂轮打磨过程中砂轮边缘的火星是沿砂轮边沿的切线方向飞出;下雨天我们撑着伞将伞快速转动时,我们发现雨滴不再沿着伞的边沿竖直下落,而是沿着伞边沿的切线方向飞出去。
学生:变速运动,速度是矢量,曲线运动中速度的方向是不断在变化的。
画一画:画一条物体做曲线运动的轨迹,在轨迹上任意取四个点,作出在这四个点时,物体运动的方向。
设计意图:类比直线运动中速度,从实验猜想、理论推导再到实验验证以及生活中的实际应用四个角度出发组织学生对曲线运动速度方向的探讨,强化学生对曲线运动时速度方向的认识,突出本节的重难点。
思考:物体做曲线运动需要满足什么条件呢?
教师我们来看一个实验的视频,看看钢球在不同条件下是如何运动的。
学生:(描述实验现象)钢珠在没有受到侧面磁铁的作用时做直线运动,受到侧面磁铁作用时,偏离原来直线的的运动轨迹,做曲线运动。
教师:咱们一起分析一下物体的运动情况。
学生:画出钢球曲线运动轨迹上任意四点出的速度方向和大致的受力方向。
教师:大家观察每一点处钢珠的受力方向和速度方向有什么特点?
学生:受力方向和速度方向都不在同一条直线上。
教师:由此我们可以得出结论,物体做曲线运动时需要满足的条件是物体所受合力与速度的方向不在同一条直线上。
教师:大家再观察各点的受力方向与钢珠运动轨迹之间有什么关系?
学生:力都指向轨迹弯曲的一侧。
设计意图:通过指导学生通过视屏观察实验现象,并对对曲线运动轨迹上任意几点速度方向及受力方向的分析得出曲线运动的条件,同时激发学生的兴趣,提高学生的实验能力和分析归纳的能力.
4.拓展。
为什么砂轮?
设计意图:通过动手实践强化学生对本节重点内容的理解掌握。
3.孕妇专用护肤品排行榜前十名。
4.2017自强自立美德少年先进事迹材料。
5.小学生运动会入场词。
高中物理行星的运动教案篇十八
(一)地位与作用。
本节课是在学习了《运动的合成与分解》后而设置的,是学生第一次用运动的合成与分解来研究曲线运动,为今后学习斜抛及带电粒子在电场中的运动等知识打下基础,具有承上启下的作用。平抛运动经常出现在生产和生活中,学习它在以后的生活中会有广泛的现实意义。
a.知道什么是平抛运动以及平抛运动的运动特点。
b.理解平抛运动的水平分运动是匀速直线运动,竖直分运动是自由落体运动。
a.通过视频和小实验让学生观察现象,结合之前的曲线运动知识,得出平抛运动的定义,培养学生“观察——思考——分析——得出结论”的思维方法。b.知道平抛运动的处理方法是利用矢量的合成与分解的方法,把复杂问题转化为简单问题的方法,使学生学会“化曲为直,化繁为简”的物理学研究问题的重要方法。
教学内容教学方法手段教师活动学生活动设计说明。
学生活动:用玩具枪射出子弹,怎样能击中目标?教师引入:因为子弹的运动是一种复杂的曲线运动,我们所看到的子弹的运动是我们将要学习的“平抛运动”。
积极参与体验。
实例引入:直接调动学生学习兴趣。
探究新课启发引导一.平抛运动的定义及特点。
给有这样特点的运动起了个名叫做?
问题2:它们的初速度方向有什么相同点?小结:初速度为水平的抛体运动:平抛运动。
生:水平方向观看图片,感受生活中的平抛运动现象,提高兴趣。
观察实验积极思考2.水平抛出粉笔头,演示平抛运动,并与斜着抛出粉笔头形成对比,引导学生根据观察。
总结。
出平抛运动的第一个特点:都具有水平方向的初速度。第二个特点较为抽象,采用“取一张纸片水平抛出”,与粉笔头的运动形成对比,引导学生自己总结出结论:不计空气阻力,只在重力作用下。
观察实验,分析总结出平抛运动的特点通过课堂演示粉笔的运动,对比演示,来引导学生顺利得出结论。
启发引导大胆猜想二.水平和竖直方向方向的运动规律。
2、理论分析。
两个小球下滑到斜槽末端时的速度是相等的,其中一个小球在光滑轨道上做匀速直线运动,另一个小球从斜槽末端抛出后做平抛运动,两小球发生碰撞说明两小球的运动时间是相等的,且两小球在水平方向的位置始终在同一竖直线上,说明两小球在水平方向上的速度是相等的,即平抛运动在水平方向上的分运动是匀速直线运动。回顾思考,讨论分析:水平方向没有力的作用,但具有水平初速度;故得到“平抛运动水平分运动为匀速直线运动”的猜想。
回顾旧知识,加深学生对知识的理解及应用,培养学生分析猜想的学习方法。
实验法。
3、实验探究。
总结归纳培养学生实验探究知识的能力和兴趣。
师生互动,引导总结三.平抛运动的规律。
我们要求出物体在t秒末的速度,怎么求呢?师生共同总结平抛运动规律:1)速度:水平方向:竖直方向:=gt合速度大小合速度方向2)位移:
水平方向:x=t竖直方向:y=合位移大小:s=合位移方向:将x和y联立消去时间t有:y=由此可见,平抛运动的运动轨迹就是一条过原点的抛物线。学生根据提示,总结归纳充分发挥教师的主导作用和学生的主体地位,加深对知识的理解和掌握,培养学生的分析归纳能力。
巩固练习讲解法练习1、一架飞机水平地匀速飞行,从飞机上每隔1秒钟释放一个铁球,先后一共释放四个,若不计空气阻力,则()a、在空中任何时刻总是排成抛物线,它们落地点是等间距的b、在空中任何时刻总是排成抛物线,它们落地点是不等间距的c、在空中任何时刻总是在飞机正下方排成竖直的线,它们的落地点是等间距的d、在空中任何时刻总是在飞机正下方排成竖直的线,它们的落地点是不等间距的例2:被洪水围困在孤岛上的人们正等待着救援物资,飞行员驾驶直升飞机在离地面0.8km的高度,以2.5×102km/h的速度水平飞来,飞机应在水平方向距离空投点多远的地方实施空投?不计空气阻力。
认真思考独立完成巩固本节内容,对知识的运用加深理解。
展示板书设计平抛运动一.平抛运动的定义及特点。
1.定义:将物体以一定的水平初速度抛出,不考虑空气阻力,物体只在重力作用下的运动叫平抛运动。
2.特点:初速度水平,只受到力。
3、平抛运动是一种匀变速曲线运动(a=g,竖直向下)二.竖直方向的运动规律:
水平方向:匀速直线运动竖起方向:自由落体运动。
1、抛出后t秒末的速度水平分速度:竖直分速度:合速度:
2、抛出后t秒内的位移。
水平位移:竖直位移:y=h=合位移:3.飞行时间由高度决定。
4.水平距离由高度和水平初速度决定:5.平抛运动的轨迹是抛物线:y=。
高中物理行星的运动教案篇十九
本节是人教版《物理》必修模块物理二第一章第三节。平抛运动是本章的重点内容,是对运动的合成与分解知识具体问题的应用,对后面斜抛等曲线运动的学习及现实生活中实际问题的解决都有影响。前面学生通过运动的合成与分解学习已有初步的理论基础,教材通过简单的实验演示,引导学生认识平抛运动的初步特征。运用实验探究与理论相结合的方法,通过学生自主学习,掌握平抛运动的特点及规律。所以在本节教学中,要注意突出学生活动,给学生充分的时间探究,讨论。
二、学情分析。
(1)高一学生已经具备较好的物理实验能力、分析问题能力、归纳实验现象的能力。
(2)学生刚学习过直线运动规律,对直线运动的分析方法记忆犹新;并在上一节中刚学过运动合成与分解的知识,对这一分析曲线运动的方法并不陌生,这为本节课在方法上铺平了道路。
三、设计思想。
教材直接提出平抛运动可分解为水平方向的匀速直线运动,竖直方向的自由落体运动,并用平抛竖落仪演示加以证实,再用频闪照片分析后给出平抛运动的规律,并解例题,教材直接把结论给学生,学生的思维只能跟着老师的引导进行,不利于他们思维能力的培养。为了突出学生的中心地位,设计了三个创思点:平抛运动可以分解为什么方向的运动,由学生自己提出猜想,并设计实验证实,并让学生亲自动手。
四、教学目标。
1、知识与技能。
(1)理解平抛运动的特点:初速度方向水平,只有竖直方向受到重力作用,运动轨迹是抛物线,匀变速曲线运动,加速度为g,注意轨迹是曲线的原因是受力方向与速度方向不在同一条直线上。
(2)理解平抛运动可以看成水平的匀速直线运动与竖直方向上的自由落体运动的合成,并且这两个分运动互相独立。
(4)会运用平抛运动的规律解答实际问题。
(5)知道分析复杂运动时分解或合成运动的物理思维方法,培养逻辑思维能力,使问题简单化。
2、过程与方法。
利用生活中实际问题引入,创设矛盾所在,提出问题。结合平抛仪实验,动画,平抛与自由落体运动对比的频闪照片,逐步加深对平抛运动的认识。并根据实验结果在教师引导下分析平抛运动的处理方法——运动的分解,根据已有的知识找出平抛运动的规律。
3、情感、态度和价值观。
(1)通过观察、实验及探究、交流与讨论等学习活动,培养学生尊重客观事实、实事求是的科学态度。
(2)经历不同层次的观察与分析,培养学生的观察能力,综合分析能力。
五、教学重点难点及重难点的突破。
1、教学重点:
(2)学习和借鉴本节课的研究方法。
2、教学难点:
(1)平抛运动的整个过程较快,学生无法从视觉上直观看清其运动的轨迹。
(2)如何进行运动分解,如何引导学生做这样的分解。
六、教学方法和教学资源:
为了发挥教师的主导作用和学生的主体地位,突出重点、突破难点,我主要采取以下的教学方法和学法。
教法:探究式教学法和情景创设教学法。
学法:以学生合作学习和探究性学习为主,培养学生的逻辑思维能力。
七、教学过程:
(一)情境创设、引入新课。
创设情景:从水平飞行的飞机上空投物资;(视频)。
引问:请同学描述上述物体运动的轨迹和运动性质。
(演示i)用力弹一下放在桌面上的小球,使它以一定的水平初速度离开桌面,让同学观察小球离开桌面后的运动轨迹。如图所示,重复两次让同学们能够清楚地观察。
提出问题:请同学们分析一下小球为什么会做曲线运动呢?
(二)交流、讨论及猜想。
猜想:平抛运动水平方向是不是匀速直线运动,竖直方向是不是匀加速直线运动?
如何验证我们的猜想?
让学生思考如何解决问题。
(三)实验与探究1:
(演示2)在如同2所示的装置中,两个相同的弧形轨道m、n分别用于发射小铁球p、q;两轨道上端分别装有电磁铁c、d调节电磁铁c、d的高度,使ac=bd,从而保证小球p,q在轨道出口处的水平初速度vo相等,将小铁球p、q分别放在电磁铁c、d上,然后切断电源,使两小球能以相同的初速度vo同时分别从轨道m、n的下端射出,实验结果是两球发生碰撞,增加或者减小轨道m的高度实验结果都是一样。
高中物理行星的运动教案篇二十
自由落体运动是匀变速直线运动的一种具体情形。此前,学生已经学习了匀变速直线运动的规律,也学习了研究匀变速直线运动的基本方法,对本课的学习,实际上是引导学生利用已有知识解决生活实际中的问题。组织学生进行探究活动,既有利于巩固所学的知识,培养学生解决实际问题、探求规律的能力,还能对学生进行科学方法和科学思想的教育。
本节课的教学重点在于说明不同物体自由下落的加速度都是重力加速度g。由于学生受日常经验的影响,对重的物体下落快,轻的物体下落慢的印象很深,所以本节课做好实验十分重要。教学时可以引导学生从日常生活经验出发,通过实验逐步提出问题(设疑),让学生自己探究(解疑),得出结论。充分体现了物理是以实验为基础的学科,让学生体会科学推理和科学实验是揭示自然规律的重要方法和手段。
本节课的教学难点是掌握并灵活运用自由落体运动规律解决实际问题。
二、教学目标。
1、知识与能力。
(3)培养学生分析和综合、推理和判断等思维能力。
2、过程与方法。
通过观察轻重不同物体在真空中的下落过程,实际测量重物自由下落的加速度等探究活动,让学生体会科学推理和科学实验是揭示自然规律的重要方法和手段。
3、情感态度和世界观。
感受前人(亚里士多德)崇尚科学、勇于探索的人格魅力,培养学生严谨务实的科学态度。促进学生形成科学思想和正确的世界观。
先通过观察生活中的一些现象和提出亚里士多德的理论和设疑“重物体比轻物体下落快吗?”,让学生通过分组实验及演示实验(牛顿管)解疑,理解什么是自由落体运动,明确物体做自由落体运动的条件。并得出做自由落体运动的不同物体,在同一地点从同一高度下落的快慢相同的结论。接着引导学生探究“自由落体运动是一种怎样的运动呢?”,通过分组实验对自由落体运动进行研究,得出自由落体运动是初速度为零的匀加速直线运动。再提出“你能求出自由落体运动的加速度吗?”,引导学生去研究,从而圆满解决问题。
三、教学准备。
(1)牛顿管、抽气机;
(2)10套:纸片、铁架台、铁螺丝、铁夹、铁横杆、纸带夹、打点计时器(带复写纸片)、纸带、重锤、海绵垫、接线板;长刻度尺。
五.教学过程。
回顾学过的知识:复习匀加速直线运动的规律和判定,掌握其有关的一些公式。
引入新课:
(演示:硬币和纸片)。
观察结果:硬币先落地。
提问:是不是重的物体一定比轻的物体下落得快呢?(课后有伽利略的推论)。
我们可以通过实验研究这个问题,桌上有两张纸片(同种材料,质量不同)观察掉落在桌面的情况:
1.两张纸平摊,同一高度,同时静止释放。
2.把质量小的纸捏成纸团,同一高度,同时静止释放。
(让学生自己试一试)。
我们通过观察这个现象说明了什么?
可见,重的物体不一定下落得快,轻的物体下落不一定慢。那么是什么原因造成的呢?
(学生:受空气阻力的影响)。
我们的神州六号飞船返回时,为了安全的降落,一定的高度要打开降落伞来减速,利用的空气的阻力。
(演示牛顿管)。
看,这是一根玻璃管,管中的空气已经用抽气机抽掉了,里边有一个金属片和羽毛,观察牛顿管里的羽毛和金属片下落的快慢。
(观察实验)。
定义:物体在只受重力作用下从静止开始下落的运动,叫做自由落体运动。
要注意理解“自由”这两个字:只受重力、初速度为零。
结合上面的实验我们一起总结下,小结:如果没有了空气阻力,不同物体从同一高度做自由落体运动,它们的运动情况是相同的。
这种运动只在没有空气的空间里才能发生。不过,在存在空气的空间里,如果空气阻力的影响很小,物体的下落也可以近似看作自由落体运动。
亚里士多德是古希腊的圣人,恩格斯称他是最博学的人。限于当时科技发展的水平,他在物理方面的论述,今天看来很多是不恰当的'。但是,在两千年前他能够通过观察、归纳,形成自己的一套理论体系,已经很不简单了。我们应该正确评价他在科学发展史上的地位。
我们知道了什么是自由落体运动,下面我们继续深入的分析这种运动。
(演示实验:将点火花计时器呈竖直方向固定在铁架台上,让纸带穿过计时器,纸带下方固定在重锤上,先用夹子夹住纸带上方,使重物静止在靠近计时器的下方,然后接通电源,待打点稳定后再松开纸带,让重物自由下落,计时器就在纸带上打出一系列小点,那么这些点记录了重物的运动情况。)。
下面大家结合学案来分析下纸带。
提问:轨迹为直线还是曲线?
答:轨迹为一条直线,物体作直线运动。
提问:是匀速直线运动吗?
答:在连续相等的时间内通过的位移不相等,逐渐的增大,所以是加速直线运动。
提问:是匀加速吗?是如何判断出来的?
(提示:回忆前面学过的匀变速直线运动规律:连续相等的时间内,物体通过的位移之差为定值。这是一个判断公式,,已知的=0.02秒。
答:可以测出连续相等的时间内,物体通过的位移之差为定值(在误差允许的范围内)。则物体做匀变速直线运动。
我们一起总结一下:自由落体运动是初速度为零的匀加速直线运动。
同样根据上面的公式,我们对自由落体运动的加速度进行计算一下,大家选取不同的时间间隔来读取数据。
通过多次测量计算:
(1)我们通常用g来表示自由落体加速度,也叫重力加速度,数值近似为9.8,重力加速度的方向总是竖直向下的。在实验中,如果要获得更精确的数据,还可以用频闪照相来测量。
自由落体运动是初速为零的匀加速直线运动,那么其运动规律与一般规律类似:
不同的物体在同一地点,从相同高度同时自由下落的物体,同时到达地面,根据,则它们的加速度是相同的。
应用:
1:大家看到课后的测定反应时间小实验。
2:测量物体从一定高度的楼房掉下,已知落地时的速度,求高度和下落时间。
我们可以通过测量在连续相等的时间间隔内,物体通过的位移之差是否为一个定值。若为定值,则是匀变速直线运动。
将本文的word文档下载到电脑,方便收藏和打印。
高中物理行星的运动教案篇二十一
三维目标:
知识目标:
(2)知道什么是布朗运动,理解布朗运动产生的原因。
(3)知道什么是热运动及决定热运动激烈程度的因素。
(4)注重理论联系实际,勤观察、多思考,养成良好的学习习惯。
能力目标:
分析综合能力,理解推理能力,实验能力。
情感态度价值观:
唯物主义世界观,尊重事实。
教学重点、难点。
扩散现象布朗运动。
教具:显微镜(大于500倍),火柴,电源接线,布朗运动演示仪(气体)。
新课教学。
一、新课引入。
根据分子动理论,构成物体的分子永不停息地做无规则运动,这个结论也是实验事实的基础上得到的,本节课我们就从实验说明分子的无规则运动。
二、扩散现象。
学生观察两个实验:
1.将盛有二氧化氮的集气瓶与另一集气瓶竖直方向对口接触,看到二氧化氮气体从下面的瓶子慢慢扩展到上面瓶内。
2.在一烧杯的水中,滴入几滴红墨水后,红墨水在水中逐渐扩展。
【问】:这两个实验属于什么物理现象?它说明了什么?
学生回答问题,教师总结:上述实验是气体,液体的扩散现象,说明分子在做永不停息的热运动。
【问】举例说明在固体之间也会存在扩散现象。(堆在地面上的煤)。
固体的扩散现象比较缓慢,不特别观察很难直接观察到。
【问】扩散的快慢与什么因素有关?
演示实验:同时将红墨水分别滴入冷水和热水中,学生观察扩散的快慢。
结论:扩散的快慢与温度有关,温度高,扩散现象加快,说明分子运动更加激烈。
【问】分子究竟做什么样的运动?能否直接用肉眼观察到分子的无规则运动?
回忆分子直经、体积,得出不可能的。
看到的颜色变化是分子的群体迁移(类似云、水珠)。
【问】借助于仪器(如显微镜)能否观察到?
可以更明显的观察证实分子的无规则运动的现象是布朗运动。
1.介绍布朗运动。
1827年英国植物学家布朗用显微镜观察悬浮在水中的花粉,发现花粉颗粒在水中不停地在做无规则运动,后来就把悬浮颗粒的无规则运动叫做布朗运动。
阅读实验,思考:
“小碳粒”是不是分子?
“位置连线”是路程还是位移?(位移)。
时间间隔延长,折线更复杂还是更简单?(复杂)。