人教版分数除法应用二教学设计(实用17篇)
5.创新是指通过独特的思考和富有创造性的行动来创造新的想法、方法和解决方案。总结的内容应该简洁明了,让读者能迅速了解到主要信息。以下是宗教领袖对于信仰和和平的呼吁,希望人们能够和谐共处。
人教版分数除法应用二教学设计篇一
教学目标:。
使学生进一步理解分数与除法的关系,学会根据分数与除法的关系,把低级单位的名数改写成高级单位的名数以及解答“求一个数是另一个数的几分之几”的应用题.
教学重点:名数之间的互化.
教学难点:名数之间的互化的实质理解.
教学课型:新授课。
教具准备:课件。
教学过程:。
一,铺垫复习,导入新知。
1,用分数表示下面各式的商.[课件1]。
5÷614÷2512÷1218÷35。
2,在括号里填上适当的数或字母.[课件2]。
12÷35=()/()()÷()=4/7。
()÷()=a/b8÷()=()/9。
()÷17=7/()1÷()=()/d。
3,把5个饼分给9孩子吃,每个孩子分得多少个[课件3]。
4,小新家养鸡30只,养鸭10只.养的鸡是鸭的几倍。
5,填空.[课件4]。
30分米=()米180分=()小时。
二,变式类推,深化理解。
1,教学p91.例4:(1)3分米是几分之几米。
(2)17分是几分之几时。
思考:a,这两题与复习题有什么区别有什么相同。
b,第(1)题要把分米数改写成米数应该怎么办怎样计算。
板书:3÷10=3/10(米)。
c,第(2)小题是要将什么改写成什么怎样求得。
板书:17÷60=17/60(时)。
※p91.做一做。
2,教学p92.例5:小新家养鹅7只,养鸭10只.养的鹅是鸭的几分之几。
(1)提问:a,用谁作标准该怎样计算。
b,与复习题对比,有哪些不同点和相同点。
(2)归纳.
求一个数是另一个数的几倍与求一个数是另一个数的几分之几,都用除法计算,除数都作标准数,得到的商都表示两个数之间的关系,都不能写单位名称.
※p92.做一做。
习前提问:说说用什么作标准数。
三,加强练习,深化概念。
1,p93.4。
§要求说说题目的思路和单位之间的进率.
2,p93.6。
提问:这两个问题中的标准量相同吗请说说标准量分别是什么。
3,p93.7。
四,全课小结,抽象概括。
1,本节课所学的两个内容分别是什么。
2,你还有问题要问吗。
五,家作.
p93.5,8。
人教版分数除法应用二教学设计篇二
教学目标:
1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。
2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。
3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重难点:
难点:理解可以用分数表示两个数相除的商。
教学过程:
一、导入揭题。
1、复习:76是()数,它表示()。10/7的分数单位是(),它有()个这样的分数单位。
2、观察:5÷8=4÷9=这两道题能得到整数商吗?
3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。
二、探索新知。
1、教学例1。
(1)课件出示例1。
把一个蛋糕平均分给3人,每人分得多少个?
(2)同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。
(3)汇报讨论结果。
(4)观察这两种解法有什么联系?
2、教学例2、
把3个饼平均分给4个孩子,每个孩子分得多少个?
(1)平均分同样可以列式为:3÷4。
(2)小组合作探究:3÷4的商能不能用分数表示呢?
(3)通过进一步探究,你发现分数与除法有什么关系了吗?
三、拓展应用。
一个正方形的周长是64cm,它的边长是周长的几分之几?
四、总结。
通过这节课的学习,你有什么收获?
五、作业布置。
完成教材第50页”做一做"。
人教版分数除法应用二教学设计篇三
1.在涂一涂、算一算等活动中,探索理解分数除法的意义:把一个分数平均分成几份,求其中的一份就是求这个数的几分之一是多少。。
2.探索并掌握分数除以整数的计算方法,并能正确计算。
3.能够运用分数除以整数的方法解决简单的实际问题,培养学生的动手能力和发散思维能力,体会数形结合的重要方法。
2学情分析。
分数除以整数是学生继续学习的重要基础,在教材中占有重要的地位,在此之前,学生已经熟练掌握了分数乘法的意义,以及倒数的认识。所以本课旨在以活动为载体,利用数形结合的方法帮助学生理解分数除以整数的算理。
3重点难点。
教学重点:通过活动操作,掌握分数除以整数的计算方法。教学难点:理解分数除法的意义。
4教学过程。
4.1第一学时。
4.1.1教学活动。
活动1【导入】以旧引新,做好铺垫1.分数的意义,操作。2.除法的意义,列式。
这样的除法算式和以前的有什么不同?今天我们一起来学习分数除法。活动2【活动】动手操作,探究新知(一)、出示幻灯片涂一涂、算一算(1)把一张纸的4/5平均分成2份,每份是这张纸的几分之几?出示问题1。请大家拿出一张操作纸,涂色表示出这张纸的4/5。
师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?
4/5÷2请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。
方法一:把4/5平均分成2份就是把分子里的4份平均分成2份,每份是2个1/5,也就是2/5。
1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。
生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15能再讲讲这样做的道理吗?师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。
请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?展示学生的分法师(指着涂色部分):你所表示的这一部分是4/5的多少?通过直观图理解4/5的1/3是4/15(3)比较归纳,发现规律。
活动4【讲授】数学故事,情感教育。
分数除法,最早的文字记载见于我国古代数学名著《九章算术》。公元263年,我国数学家刘徽注释《九章算术》时说:分数除法就是将除数的分子、分母颠倒与被除数相乘。这是世界上最早的分数运算法则,而欧洲直到1489年,才由维特曼提出相似的法则,已比刘徽晚了1200多年!
人教版分数除法应用二教学设计篇四
分数除以整数的计算方法:除以一个整数(零除外),等于乘这个整数的倒数。
(1)4/7÷2(2)4/7÷3。
=4/7×1/2。
=2/7。
教学反思:
《分数除法(一)》是学生初次接触分数除法,本节课是学生今后学习分数除法的基础,让学生理解分数除法的意义以及对算法的探索就显得格外重要。本节课我力求体现以下几点:
一、充分利用学生最佳的学习状态。
课堂上省去了旧知的复习,设计简单的知识情景,以最快的速度抓住学生有效学习时间,提高课堂有效性。
二、让学生在不同的活动中探索数学。
数学课不应只让学生单纯地模仿和记忆,应让学生在具体地操作、观察、实践中得出结论。因此,课堂上我让学生通过操作、观察,引导学生探索出分数除以整数的计算方法,让学生经历了知识形成的全过程。在这样的过程中,充分地发挥了教师的引导作用,注重的是学生能力的培养,注重的是教给学生学习的方法,而不是把知识单纯的传授给学生,做到既重结果,又重过程。
三、让学生在不同层次的练习中应用数学。
学数学的目的就是用数学。在新课结束后,我让学生在不同层次的练习中应用了所学知识,让学生充分感受到了数学源于生活,又寓于生活。
将本文的word文档下载到电脑,方便收藏和打印。
人教版分数除法应用二教学设计篇五
教学目标:
1.体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。
2..培养学生动手动脑能力,以及判断、推理能力。
3.培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。
教学重点:体验分数除以整数的计算方法,并能正确的计算。
教学难点:分数除以整数计算法则的推导过程。
教学准备:长方形纸片、彩笔。
教学过程:
一、创设情景,教学分数除法的意义。
1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!
(1)每人吃1/2块饼,4个人共吃多少块饼?
(2)把2块饼平均分给4个人,每人吃了多少块饼?
(3)有2块饼,分给每人1/2块,可分给几个人?
2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。
总结:分数除法的`意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
(1)引导参与,探究新知。
师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。
出示问题1。
请大家拿出一张操作纸,涂色表示出这张纸的4/7。
师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2。
请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。
师:对这种做法大家有什么疑问吗?
生:这儿是除法怎么变成了乘法?
师:老师也有这个疑问,你能讲讲吗?
师:谁能结合图来讲一讲呢?
师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……。
(2)质疑问难,理解新知。
接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。
通过计算你们有什么发现?
生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。
生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21。
能再讲讲这样做的道理吗?
师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。
请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?
展示学生的分法。
师(指着涂色部分):你所表示的这一部分是4/7的多少?
通过直观图理解4/7的1/3是4/21。
(3)比较归纳,发现规律。
师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!
小组活动,说算法。
师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。
出示:分数除以整数,等于分数乘这个整数的倒数。
还有需要注意的地方吗?
生:有,除数不能为0。
师:谁能把分数除以整数的计算法则用自己的话来说一说?
完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。
那象这样的分数除以整数的题目在计算时要注意些什么?
生:要约分!结果最简。除号要变成乘号!
三、巩固练习。
学生独立完成。
四、课堂小结。
1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)。
人教版分数除法应用二教学设计篇六
一、从生活入手学数学。
国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始教师就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,用介绍该班的情况引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。
二、关注过程,让学生获得亲身体验。
教学中,为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。
在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨地逻辑推理,虽分析得头头是道,但容易走两个极端,或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。教学中我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的`能力,省去了许多烦琐的分析和讲解。在教学中准确把握自己的地位。我想真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显学生的主体地位,体现了生本主义教育思想。
三、多角度分析问题,提高能力。
在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如“是、占、比、相当于后面就是单位1”;“知1求几用乘法,知几求1用除法”等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。
四、有破度有层次地设计练习,提高学生的思维能力。
教案还精心设计了练习题,通过看图,找等量关系,巩固了学生的分析思路;通过三类题的对比练习,使学生掌握了三类题的异同点,增强了学生的辨析能力,对于学生分析和解题起到了很好的推动作用,使学生无论遇到什么题,都会做到:抓住特点,学而不乱。
人教版分数除法应用二教学设计篇七
学情分析:
五年级的学生已具有一定的操作、观察、归纳概括能力,有了以前学习分数乘法、倒数的基础,让学生通过涂一涂、算一算、想一想、填一填的活动来总结分数除以整数的计算方法,对于学生来说,难度不大。
教学内容分析:
《分数除法(一)》是第三单元第二课时的内容,是在学生学习了分数乘法、认识了倒数的基础上进行教学的,教材中呈现了两个问题,就是把4/7分别平均分成2份、3份,目的是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。
教学目标:
1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。
2、引导学生探索并掌握分数除以整数的计算方法,并能正确计算。
3、能够运用分数除以整数的方法解决简单的实际问题。
教学重点:
引导学生探索并掌握分数除以整数的计算方法,并能正确计算。
教学难点:
2、能够运用分数除以整数的方法解决简单的实际问题。
教学方法:
导学教学法。
创新理念:
“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。“学生是数学学习的主人,教师是数学学习的'组织者、引导者、合作者”。基于以上理念,在教学过程中,我采用“导学教学法”,充分发挥了教师的引导作用,让学生在动手实践的过程中去探索新知,亲身经历知识形成的全过程。
教具准备:
长方形纸、课件。
教学流程:
一、创设情境提出问题。
(1)把一张纸的4/7平均分成2份,每份是这张纸的几分之几?
(2)把一张纸的4/7平均分成3份,每份是这张纸的几分之几?
二、自主探究小组交流。
(教师指导学生自主探究,尝试解决以上两个问题,同桌之间交流想法)。
自主学习提示。
1.利用手中的的学习纸,涂一涂,算一算,尝试解决这两个问题。
2.同桌之间说一说彼此的想法。
3.有困难的同学,可以借助课本第25页的提示,完成这两个问题。
三交流释疑。
把一张纸的4/7平均分成2份,每份是这张纸的几分之几?
请同学们拿出图(一)来涂一涂。
交流:为什么要这样涂,每份是这张纸的几分之几呢?
还有不同的涂法吗?
能根据这个过程列出一个除法算式吗?
这个除法算式和以前学的除法有什么不同?
这就是这节课我们要学习的分数除法。(板书)。
2、初探算法。
把一张纸的4/7平均分成3份,每份是这张纸的几分之几?
请大家在图(二)的上面涂一涂。
交流:(展示学生不同的涂法)。
同学们是把长方形纸的七分之四平均分成了三份,再把其中一份涂上颜色。谁能根据这一过程列出一个算式。
怎样才能算出得数呢?
(师提问:计算时为什么要用×1/3?)。
观察3和1/3有什么关系,由除以3变成乘3的倒数,是不是除以一个整数就可以乘它的倒数呢?我们来验证一下。
(教师出示三组算式)。
1/3÷54/5÷31/3÷5。
指生口算。
让学生观察每一组算式,说一说发现了什么?
根据这三组算式再结合上一道题,你认为分数除以整数可以怎样计算?
(学生口述算法后)。
四、实践应用。
1、算一算。
9/10÷3015/16÷/15÷218/9÷65/6÷15。
2、填一填。
师:学会了知识就要灵活的运用,这道题你们能填上吗?
学生独立在书上第26页填一填,想一想。
集体订正。
3、解决问题。
学生在练习本上列式解答。
指生汇报完成情况。
运用分数除法能解决生活中的很多问题呢,谁能像老师这样来说一说生活中的问题,让大家解决。
(指生口头编题,其他学生解决)。
五、课堂总结。
学生谈一谈本节课的收获。
同学们,这节课你们过的快乐吗?学习本来就是一件快乐的事,老师希望今后你们能快乐的学习,快乐的成长。
六、布置作业:
22页练一练。
人教版分数除法应用二教学设计篇八
授课课题分数除以分数。
教学基本。
内容p58例4和练习十一t9-14。
教学。
目的。
和要。
求1、使学生经历探索分数除以分数的计算方法的过程,理解并掌握分数除以分数的计算方法,能正确计算分数除以分数的式题。
2、使学生在探索分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。
3、培养学生迁移、概括的能力。
教学重点。
及难点理解分数除以分数的计算方法,能正确地进行计算。
教学方法。
及手段。
使学生经历探索分数除以分数的计算方法和应用分数知识解决简单实际问题的过程,培养学生迁移、概括的能力。
学法指导迁移、概括。
集体备课个性化修改。
预习例4。
一、复习引新。
1、口算。
23÷214÷4512÷10310÷6。
9÷3104÷452÷3141÷32。
2、揭示课题:分数除以分数。
二、教学新知。
1、出示例4。
提问:这是已知什么,要求什么?用什么方法计算?
追问:为什么用除法计算?怎样列式?(板书:=)。
2.引导探索:分数除以整数怎么算呢?
(1)请大家画图探索一下得多少?
(2)指名到黑板上画一画。
(3)讨论:分数除以整数,能不能用被除数乘除数的倒数来计算呢?
板书:
请大家计算一下它的积,看得数与我们画图的结果是不是一样?
教学环节设计得数相同,你能猜想到什么?
板书:=。
3、验证猜想。
完成练一练第1题:先再长方形中涂色表示,看看里有几个,有几个,再计算。
=
你发现了什么?
4、概括方法。
三、巩固练习。
四、小结。
作业。
板书。
设计。
分数除以整数,用被除数乘除数的倒数来计算。
执行。
情况。
与课。
后小。
结
周次7课次(本周第几课时)4。
授课课题除法简单应用题(一)。
教学基本。
内容。
p62例5和练习十二t1-3。
教学。
目的。
和要。
求1、使学生联系对“求一个数的几分之几是多少”的已有认识,学会列方程解答“已知一个数的几分之几是多少求这个数”的简单实际问题。
2、进一步体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。
3、培养学生解决实际问题的能力。
教学重点。
及难点学会列方程解答“已知一个数的几分之几是多少求这个数”的简单实际问题。
体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。
教学方法。
及手段使学生在探索解决问题方法的过程中,进一步培养独立思考、主动与他人合作交流、自觉检验等习惯,获得一些成功的体验,增强学好数学的信心。
学法指导独立思考、合作交流。
集体备课个性化修改。
预习例5。
一、导入。
1、出示例5中两瓶果汁图,估计一下,大、小两瓶果汁之间有什么关系?
出示:小瓶的果汁是大瓶的。
提问:这句话表示什么?你能说出等量关系式吗?
如果大瓶里的果汁是900毫升,怎么求小瓶果汁里的果汁?自己算算看。
如果知道小瓶里的果汁,怎么求大瓶中的果汁呢?
2、揭示课题:简单的分数除法应用题。
二、教学新知。
1、出示例5。
提问:你想怎么解决这个问题?
教学环节设计2、讨论交流:你是怎么想、怎么算的?
如果学生用除法计算,教师可引导讨论:为什么可以用除法计算?依据是什么?
引导学生讨论:用方程解答是怎么想的,依据是什么?
3、引导检验:=900是不是原方程的解呢,怎么检验?
(1)出示题目。
(2)讨论:这里中的两个分数分别表示什么意思?这题中的数量关系式是什么?
(3)这题可以怎么解答,自己独立完成,并指名板演。
(4)交流:你是怎么解决这个问题的?
三、巩固练习。
1、完成“练一练”。
鼓励学生用两种方法进行解答。
2、完成练习十二t1。
3、小结解题策略。
作业。
板书。
设计。
大瓶的果汁*=小瓶的果汁。
执行。
情况。
与课。
后小。
结
人教版分数除法应用二教学设计篇九
教学内容:教科书第12页的例6、“练一练”、练习四的第5~9题。
教学目标:
1、进一步提高学生分析问题和灵活解答应用题的能力,引导学生通过画线段图。
表示题目中的数量关系,启发学生联系已有知识经验自主地列方程解决问题。
2、重视方程后检验方法的交流。
教学重点:
应用题数量关系的分析。
教学难点:
培养学生列方程解应用题的意识和分析应用题的能力。
教学准备:多媒体。
教学过程。
一、导入。
读题,理解题意。
分析题意。
问:十月份用水量比九月份节约20%,这里的20%是哪两个数量比较的结果?
这两个数量比较时,要把哪个量看作单位“1”
九月份用水量的20%是哪个数量?
让学生画图,根据图进一步理解以上3个问题。
用字母或含有字母的式子表示相关数量。
找出数量间的相等关系:
九月份用水量-十月份比九月份节约的用水量=十月份用水量。
让学生列方程解答。
检验。
可以用十月份比九月份节约的除以九月份,看是不是20%;也可以用九月份减十月份比九月份节约的,看是不是440立方米。
二、教学“练一练”
1、做第1题,先审题。
问:比舞蹈组人数多20%应该怎么理解。题中的数量间的相等关系是怎样的?
学生解答。
2、做第2题。
先帮助学生理解比原价降价15%的意思及等量关系。
再让学生解答。
三、巩固练习。
对比练习:
1、练习四的第8题:先解答;交流比较;小结:虽然一个条件和所求的问题相同,但。
由于另一个条件不同,表示单位“1”的量不同,所以解题方法也不同。
2、练习四第9题:引导学生画图;分析写出数量关系;列式解答。
四、小结。
通过本节课的学习,你学会了什么?
交流。
五、作业。
完成《练习与测试》相关作业。
板书设计。
教学内容:练习四的第10~16题。
教学目标:
1、强化学生通过画线段图表示题目中的数量关系,用方程解决问题的意识和能。
力进一步,提高学生分析问题和灵活解答应用题的能力。
2、通过对比让学生对稍复杂的百分数应用题有更深刻的认识,在自己的知识体系中能和稍复杂的分数应用题联系起来思考,进一步体会数学知识间的内在联系,感受数学知识和方法的应用价值。
教学重点:
应用题数量关系的分析。
教学难点:
教学准备:多媒体。
教学过程:
一、基本练习。
1.做练习四的第10题。
让学生自己独立解答。说一说形如的方程的解法。
2.做练习四的第11题。
要求学生画出线段图;根据画出的线段图找出题目中的相等关系;
根据相等关系列出方程;要求解出所列方程;提醒学生检验;
3.做练习四的第12题。
画图分析数量关系;根据数量关系口头列方程;解出方程并检验。
4.做练习四的第13题。
要求学生画图后,写出数量关系,再对照数量关系列出方程,并解出方程检验方程。
有什么区别?(引导学生将稍复杂的百分数应用题和稍复杂的分数应用题结合起来想,认识到稍复杂的百分数应用题其实也是分数应用题,只是分数呈现的形式不同)。
二、巩固练习。
1、做练习四的第14题。
这道题目中还有百分数吗?画出线段图,比较两小题的线段图有什么不同?
从线段图(或关键句)中你找到了什么相等的数量关系?
追问:应设谁为。根据数量关系列出方程。
2、做练习四的第15题。
两个分数各是什么意思?哪个是具体量,哪个是分率?要求学生画线段图分析。
从线段图中你找到了什么样的数量关系?设谁为?降价部分怎样表示?
你会列方程吗?提醒学生检验。
3、做练习四的第16题。
要求学生画线段图分析。
从线段图中你找到了怎样的对应关系?数量关系式是什么?你会列方程吗?
三、小结。
通过本节课的学习,你学会了什么?
交流。
四、作业。
完成《练习与测试》相关作业。
板书设计。
人教版分数除法应用二教学设计篇十
教学目标:
1.帮助学生理解、掌握稍复杂的分数乘法应用题的数量关系,学会用两种方法解答求一个树比少几分之几的分数应用题。
3.经过小组合作,让学生发现和探讨问题,在合作和交流的过程中,获得良好的情感体验,激发学生学习的兴趣,体验到数学与生活的密切联系。
教学重点:理解分数应用题的数量关系,会用两种方法灵活解答。
教学过程:
一.巧设铺垫,激趣导入。
1.创设情景:同学们,今天我们班来了一位特殊的嘉兵,谁呢?(请出小记者)现在我们来做个现场采访:在前面所的知识中,你感觉哪部分知识比较难理解?(学生自由发言,与小记者产生共鸣,从而引出“应用题”)。
2.设疑:小记者请求大家来帮助他如何理解、掌握应用题?
3.小记者设问探讨:解答前面所学的分数应用题关键在哪?(学生自由探讨,发表意见,引出找关键句、找单位“1”及数量关系,也可画线段图理解关系)。
4.小记者示题:说出下面各题的单位“1”及数量关系。
(1)一些奖状,发了3/5。
(2)已经看了全书的1/8。
(3)男生占全班人数的3/7。
(学生自由口述,选择喜欢的题目解答)。
引出“刚刚的3句话,在应用题中是作为什么部分?(关键句)。
5.示问:除了刚刚的几句关键句,你能找出在生活中哪些地方也用过类似的话?又如何找出单位“1”及数量关系(学生自由探讨,根据学生回答选择适当的关键句写在黑板上,为后面服务)。
二.探索交流,建构新知。
(一)自由构建新知。
1.设疑:一道完整的应用题除了关键句,还需要什么部分?(学生交流,引出“条件、问题“)。
2.编题:那你能否选择自己喜欢的关键句,补充一道完整的应用题?并思考如何解决?我们分小组比赛,看哪小组合作的既快又有新意,可邀请我们的小记者和老师一并参与(分小组合作探讨、交流)。
[设计意图:富有挑战性的问题犹如一枚枚石子投入蓄势已入的湖里,激起了层层涟漪,让学生在足够自主的空间、足够活动的机会中自主探究、积极合作、足以让学生获得积极的、深层次的体验。行云流水般的分数应用题教学全无例行公事、思路闭所,空间狭小之嫌。正所谓“灵感总青睐有准备的头脑”。学生结合自己的生活经验,自由提问,可以培养学生的发散性思维,并培养学生的问题意识。往往提出一个问题可能比解决问题更为有意义。这一环节,把学习的主动权真正交给了学生,让学生通过小组合作的方式操作,通过动脑编题——动手写题——自主探索、合作交流解题,放手让学生去探索,并通过小组合作比赛,这样不仅充分激发了学生的学习积极性,而且使学生体会了发现、掌握新知的方法。
(二)探讨交流新知。
1.交流展示成果:选一些小组向全班交流。
根据小组的汇报,选出一些典型的题目(多媒体)适时展示,全班共同交流。
例如:一些奖状共15张,发了3/5,还剩几张?(发了几张?)(发了的的比剩下的少几张?发了的比剩下的少几分之几?)。
示问:对刚刚那小组的成果(题目),你们会帮忙解答吗?(全班尝试解答,请部分学生板演)。
2.交流:“还剩几张”你是怎么想的?
学生介绍方法:
(1)根据数量关系,总共的—发了的=剩下的,总共的×3/5=运走的。
15—15×3/5。
=15—9。
=6(张)。
(2)画线段图帮助理解。
分析:结合线段图理解“把什么看作单位“!”,运走了几分之几,还剩几分之几,各是哪部分?怎么表示的?)。
15×(1—3/5)。
=15×2/5。
=6(张)。
整个方法介绍过程中,全班同学共同参与,群策群力,教师根据学生回答情况适时点拨。
3.小结:刚刚由于全班的共同努力,我们自己的问题自己想办法解决了,真是聪明!看来我们集体的智慧是无穷的。我们用了哪些方法来解答刚刚那一小组的题目的,说说你比较喜欢那种。(自由发言)。
那对于刚刚的方法还有什么困惑的吗?提出来大家共同解答。
(三)灵活运用新知。
2.学生解答剩余的题目,拓展、巩固对新知的理解。(自由发言、交流)。
4.小记者兴致昂然,想展示一下自己学到的本领,请其余同学出题来考他。(学生出题,视平台展示)。
4.创设情景:小记者解答有困难(数量关系出错,对应分率出错)请同学们帮助解答。
突出强调解答应用题的方法(理清数量关系,理清对应分率)。
[设计意图:结合学生表现颁发奖状,与我们的例题浑然一体,学生兴趣昂然激发了学生后面解决问题的积极性。同时设立小记者遇到困难,突出强调今天所学的知识的重点。这一活动,还是放手让学生自己去提问,再自己解决,充分相信学生,有助于扩展学生的思维空间,培养学生的创新意识和合作精神,增强了数学内容的趣味性、开放性。
三.巩固应用。
小记者出题:看同学们表现那么棒,考官做的那么溜,也想当会考官,你们敢不敢应战?(多媒体演示出题)。
[总体设想]:
1.从生活经验导入新课,使数学问题生活化。
课一开始,联系学生学习生活实际,说说学习方面比较困惑的知识话题导入新课,从“解答应用题关键所在”来切入主题。这样做使学生感到所学的内容不再是简单枯燥的数学,而是非常有趣、富有亲切感,他们被浓浓的生活气息所感动,兴致勃勃的投入到新课的学习之中。
2.让学生亲身体验知识的形成和发展。
小学生已经具有了一定的生活经验,因此教师设计了这样一个情节:小组自由选择喜欢的关键句编题并思考如何解答。学生通过合作探讨交流,得出解答的方法。从自己质疑——解疑问——汇报交流,整个教学过程环环相扣,双基训练扎实。教学中设置了许多开放性问题,拓宽了学生进行实践、创新学习的课程渠道,注重学生的情感体验和个性发展,增强数学内容的趣味性、开放性,强调学生数学学习的过程。
3.注重学习的开放性,学生的自主探究、合作交流。
整个学习过程,从问题导入,引出新知,到自由探讨新知,解决问题都是学生自主探究形成,真正主人教师只是参与其中,从而引导和辅助。学生是整节课引发的一环有一环,促使学生层层深入的思考,让学生自觉地、全身性的投入到学习活动中,用心发现、用心思考、真诚交流。
人教版分数除法应用二教学设计篇十一
吴兴区学校(幼儿园)具体课时备课表(成熟型教师用)。
单元(章)主题百分数任课教师与班级。
本课(节)课题纳税第8课时/共9课时。
教学目标(含重点、难点)。
及设置依据1.使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。
2.在计算税款的过程中,加深学生对社会现象的理解,提高解决问题的能力。
3.增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。
重点:税额的计算。
难点:税率的理解。
教学准备。
多媒体课件。
教学过程。
内容与环节预设个人二度备课课后反思。
一、复习。
1.口答算式。
(1)100的5%是多少?(2)50吨的10%是多少?
(3)1000元的8%是多少?(4)50万元的20%是多少?
内容与环节预设个人二度备课课后反思。
2.什么是税率?
二、新授。
1.阅读p98页有关纳税的内容。说说:什么是纳税?
2.税率的认识。
(1)说明:纳税的种类很多,应纳税额的计算方法也不一样。应纳税额与各种收入的比率叫做税率。一般是由国家根据不同纳税种类定出不同的税率。
(2)试说以下税率表示什么。
a、商店按营业额的5%缴纳个人所得税。这里的5%表示什么?
b、某人彩票中奖后,按奖金的20%缴纳个人所得税。这里的20%表示什么?
3.税款计算。
(1)出示例5(课本99页)。
(2)理解:这里的5%表示什么?(应缴纳营业税款占营业额的百分比。)。
(3)要求“应缴纳营业税款多少”就是求什么?
(4)让学生独立完成?
4.看课本98页内容。读一读,什么是纳税?什么是税率?
内容与环节预设个人二度备课课后反思。
三、练习。
1.巩固练习:练习二十三第4题。(要点:5%对应的单位“1”是营业额,7%对应的单位“1”是营业税。)。
2.依据第5题,学生各自发表意见。
(有关税率的常识:由于不同行业的经营效果有差别,又由于国家为了保护和扶持某些人民群众迫切需要的产品和服务行业等,会减少这些行业的税率,因此消费税和营业税的税率会有很大差别。如例5中说到饭店的营业税率是5%,而审稿费的个人所得税率就是3%。)。
四、小结:今天你有什么收获?
板书。
设计纳税。
应缴税款=应纳税金额×税率个人二度备课:课后反思:
作业布置或设计学习、宣传税法知识。课后反思:
教后整体反思。
人教版分数除法应用二教学设计篇十二
在分数应用题中,有一些比较复杂的分数应用题,其中有一种应用题,其单位“1”在发生变化,针对这种题,我教给学生的解决策略是“以不变应万变”。
例如:一根绳子剪去的部分是剩下的1/6,如果多剪10厘米,则剪去部分是剩下部分的1/5,这根绳子全长多少厘米?在这题中最容易找到的单位“1”是剩下的绳子,但是这个剩下的绳子在发生变化,两个剩下绳子长度不一样,剪去的部分也在发生变化,但不管剪去的和剩下的绳子如何变化,这根绳子的长度是不会发生变化的.,所以可以找剪去部分和剩下部分分别与全长的关系。根据“一根绳子剪去的部分是剩下的1/6”,可以知道剪去的部分是全长的1/7,或者剩下部分是全长的6/7,根据“剪去部分是剩下部分的1/5”,可以知道,剪去的部分是全长的1/6,或者剩下部分是全长的5/6,这是就可以设全长为x厘米。1/6x+10=1/5x或者6/7x―10=5/6x,就可以求出这根绳子的全长。
例如:六(1)班有女生24人,占全班人数的4/9,今年转出若干名女生,这时女生占全班人数的2/5,求今年转出多少名女生。在这一题中的单位“1”全班人数在发生变化,女生也在发生变化,但是男生却不变,转出学生之前男生是多少人,转出学生之后男生也应该是那么多人。根据“六(1)班有女生24人,占全班人数的4/9”先求出转出学生之前全班的人数是(24÷4/9=)54人,那么男生是(54―24=)30人,后来转出学生了,女生占全班人数的2/5,那么男生占全班人数3/5,就可以求出转出之后的全班人数(30÷3/5=)50人,那么转出去的女生人数是(54―50)4人。
解决复杂的分数应用题还有许多策略,但是学生的基础是前提。希望其他老师能与我交流,一起来探讨解决分数应用题的解决策略。
人教版分数除法应用二教学设计篇十三
吴兴区学校(幼儿园)具体课时备课表(成熟型教师用)。
单元(章)主题任课教师与班级。
本课(节)课题整理和复习(一)第课时/共课时。
教学目标(含重点、难点)。
及设置依据1.通过复习进一步理解百分数的意义,掌握百分数的写法。
2.掌握百分数和小数、百分数和分数互化的方法,熟练解答求一个数是(比)另一个数(多或少)百分之几应用题以及百分比应用题。
重点:熟练解答求一个数是(比)另一个数(多或少)百分之几应用题以及百分比应用题。
难点:百分数意义的理解。
教学准备多媒体课件。
教学过程。
内容与环节预设个人二度备课课后反思。
一、基本练习。
1.完成下面表格。
内容与环节预设个人二度备课课后反思。
小数0.16。
分数。
百分数24.5%0.9%。
2.只列式,不计算。
(1)40占50的几分之几?(2)50是40的百分之几?
(3)5比8少百分之几?(4)8比5多百分之几?
二、知识梳理。
1.百分数和分数在意义上有什么不同?百分数写法有什么特点?
2.说一说百分数和小数互化的方法,百分数和分数互化的方法?
3.求一个数是另一个数的百分之几的应用题用什么方法解答?
如:甲数是200,乙数是150。
(1)甲数是乙数的百分之几,算式:_____________,把________看作单位“1”。
(2)乙数是甲数的百分之几,算式:_____________,把________看作单位“1”。
(3)甲数比乙数多百分之几,算式:_____________,把________看作单位“1”。
(4)乙数比甲数少百分之几,算式:_____________,把________看作单位“1”。
三、深化练习:
1.李师傅加工一批零件,其中合格率是95%,这里的95%表示什么?
2.一条水渠已修的比未修的长25%,这里的25%表示什么?未修的比已修的短百。
内容与环节预设个人二度备课课后反思。
分之几?
四、小结:这节课复习了什么?
板书。
设计。
整理和复习(一)个人二度备课:课后反思:
作业布置或设计p104第1、2、3题。
课后反思:
教后整体反思。
人教版分数除法应用二教学设计篇十四
教学目标:使学生学会分析分数乘法应用题的数量关系,会应用一个数乘分数的意义解答两步计算的分数乘法应用题;培养学生解决问题的能力,提高学生的分析能力;进一步提高学生思考问题的逻辑性。
教学重,难点:掌握分数连乘的计算方法,突出一次计算,会解答分数连乘计算的实际问题。
教学过程:
(一)、导入。
1、说出下面各题算式所表示的意义,再口算各题。
1/2×2=2/5×3=2/3×1/2=3/4×5=。
2、说出下面各题中的两个量,应该把谁看着单位“1”。然后再给每题补充一个已知条件和一个问题,使它成为一道一步计算的分式乘法应用题。
母牛的头数是公牛的1/3,公牛头数的2/3和母牛相等。
母牛的头数相当于公牛头数的3/4,公牛的头数相当于母牛头数的1/2。
小组完成,集体订正。
(二)、教学实施。
1.板书:公牛有30头,母牛的头数相当于公牛的1/3,小牛的头数相当于木牛的2/5,小牛有多少头?(认真读题,弄清题意)。
2.指导学生画线段图:怎样用线段图表示已知条件和问题?要求小牛的头数,就要知道哪个量?(母牛的量)母牛的头数又和哪个数量有关?(公牛的头数)先画一条线段,表示哪个数量?(公牛的头数)崽化一条线段,表示哪个数量?(母牛的头数)画多长?根据什么?表示小牛的头数的线段应该怎样画?板书:
公牛:|||||||||||。
30头。
母牛:||。
小牛:
头
3.分析数量关系:
4.列式解答:根据以上分析,这道题应该怎样解答?怎样列综合算式解答?板书:
30×1/3×2/5=。
根据综合算式让学生说说每一步分别求的是什么,每一步分别是把哪个数量看着单位“1”。同时强调:分数连乘不必像整数,小数连乘那样,逐次计算,可以一次计算,遇到整数和分数相乘,要用整数与分数的分母约分,不能约分的直接与分数的分之相乘。
(三)巩固练习。
完成第18页第4、5、9、10题,学生要说明每一步所表示的意义,每一步是把哪个数量看着单位“1”。
(四)课堂小结:解答两步计算的分数乘法应用题与解答一步计算的分数乘法应用题的相同点都是求一个数的几分之几是多少的应用题,不同点是分数连乘应用题要连续求一个数的几分之几是多少。解题关键是要找准每一步的单位“1”。
教学反思:
第三课时求比一个数少几分之几的数是多少的实际问题。
教学目标:使学生认识“求比一个数少几分之几的数是多少”的应用题的结构特征,学会利用线段图来分析数量关系,掌握解答这类应用题的思路和方法,并能正确列式计算;培养学生分析问题及综合运用所学知识的能力。
教学重、难点:了解“求比一个数少几分之几的数是多少”的应用题的结构特征;正确分析数量关系,比较熟练的画出线段图。
教学过程:(一)导入。
板书:超市运来花生油和豆油共600桶,花生油的桶数占总桶数的2/5。
(二)、教学实施。
1.根据以上两个条件,我们可以提出以下数学问题:
2.能用图表示豆油的部分吗?板书:
“1”
花生油占总桶数的。
||||||。
豆油?桶。
600桶。
3.分析数量关系;看图想想,豆油占总桶数的几分之几?求豆油的桶数就是在求什么?交流讨论得出:豆油的桶数占总桶数的,求豆油的桶数也就是在求600的是多少,用乘法计算。
后者方法很容易理解,主要是从“总桶数-花生油的桶数=豆油的桶数”这个数量关系入手分析,也就是“和-一个量=另一个量”
“1”
原来:||||||||。
85分贝。
降低了。
现在:||||||||。
分贝。
根据线段图想到了什么?
3.分析数量关系:求现在听到的声音是多少分贝该怎样计算?先求什么,再求什么?(先求降低了多少分贝,再求现在听到的声音分贝是多少;还可以先求现在声音的分贝占原来声音分贝的几分之几,再求现在听到的声音是多少分贝。)。
4.列式解答:
=70(分贝)=70(分贝)。
(三)、深化练习。
完成教材20页的“做一做”;完成练习五的第2、4、5、8、10题。
(四)课堂小结。
今天我们学习了“求比一个数少几分之几的数是多少”的应用题,这类题需要两步完成,通过今天的学习我们能够准确地分析并计算出这类题。
课后反思:
将本文的word文档下载到电脑,方便收藏和打印。
人教版分数除法应用二教学设计篇十五
学习内容分析。
本节课内容是在学生已理解平均分的意义,掌握一些整数知识的基础上进行学习的,分数概念比较抽象,教材从学生熟悉的一个简单的数学事实出发:一个苹果平均分给两个人,每个人分得半个苹果,让学生讨论用什么方法表示“一半”。这个讨论过程,一方面让学生意识到原来的数不够用了,要另想办法表示“一半”;另一方面让学生参与创造,感受表示“一半”的方法其实有很多的。在多种方的对比中,体会用分数表示一半的优越性,体会学习分数的必要性;进而让学生在“涂一涂”“折一折”“说一说”等操作和描述活动过程中理解简单的分数所表示的意义,并会认、会读、会写分数,认识分数的各部分名称。本节课的核心是引导学生结合具体的情境和操作过程来理解简单的分数的意义,渗透数形结合的思想。
学习者分析。
分数的初步认识是从整数到分数进行数的概念和第一次扩展,无论在意义、读写方法以及各部分的名称认识上,分数和整数都有很大的差异,学生学习时可能出现一些困难,因此,学生在学习过程中通过“折一折”、“涂一涂”、“说一说”等形式,逐步体会分数的意义,同时培养了学生的合作交流与动手操作能力。
教学目标。
课程标准:能结合具体情境初步理解分数的意义,能认、读、写简单的分数。
知识与技能:初步理解分数的意义,并能认、读、写简单的分数,知道分数的各部分名称。体会学习分数的必要性。并培养学生独立思考、探究学习的能力及思维的灵活性。
过程与方法:玩中学——学中做——做中得——乐中验。不但激发了学生的学习兴趣而且渗透了学习方法。
教学重点及。
解决措施。
认识分数各部分的名称,初步掌握简单分数的写法和读法,体会学习的必要性。
教学难点及。
解决措施。
教学流程。
设计思路。
一、创设情景,导入新课。
分苹果。
二、活动—建构。
(一)建构二分之一。
1、初步感知。
活动一:画一画。
用自己喜欢的方式表示出一半的意思。
2、深化认识。
活动二:涂一涂。
(二)认识分数各部分名称、读写及表示的意义。
观看微课。
(三)探索几分之几。
活动三:折一折。
请拿出准备好的纸片,动手折一折,涂一涂,你还能得到哪些分数?
(1)、学生独立折纸。
(2)、上台展示:展示自己的作品,并说说创造分数的过程。
三、巩固练习、实践应用。
下面的画面让你联想到了什么分数?
图:法国国旗(1/3)巧克力(1/8)。
四、总结质疑、完善认识。
师:同学们,这节课你有什么收获和体会?有什么问题吗?
“三三式教学,
创建学习共同体”理论的渗透及表现。
活动一:画一画。
用自己喜欢的方式表示出一半的意思。
(使用小组合作学习,互惠互助的学习模式)。
(三)探索几分之几。
活动三:折一折。
请拿出准备好的纸片,动手折一折,涂一涂,你还能得到哪些分数?(使用小组合作学习,互惠互助的学习模式;学生倾听,教师串联、反刍)。
信息技术应用分析。
知识点。
学习水平。
媒体内容与形式。
使用方式。
使用效果。
分苹果、练习等。
中等。
ppt。
图文展示。
激发兴趣。
认识分数。
中等。
微课。
视频播放。
容易掌握。
分数的表示过程等。
中等。
数字故事。
播放。
直观感受。
人教版分数除法应用二教学设计篇十六
教学内容:
浙教版第十一册第103页例1例2,练习十七题。
教学目标:
1、掌握求一个数与它的几分之几的差(和)是多少的应用题的数量关系,并能正确解答。
2、通过分析、比较,培养学生善于思考问题提出问题的能力。
3、培养学生良好的审题习惯。
4、渗透环保观念和终身学习观念。
教学重点和难点和关键。
教学重点:分析题中的数量关系和掌握解题思路,并能正确解答。
教学难点:1、寻求所求问题对应的几分之几。2、弄清两种不同的解题思路。
教学关键:1、确定单位“1”。2、找出所求问题占单位“1”的几分之几。
教学过程:
一、复习铺垫。
1、找单位“1”
(1)一本书,已经看了1/4,还剩几分之几?
(2)实际投资是计划投资的4/5。
(3)男生25人,占全班人数的5/9。
2、口答:
(1)一堆煤,运走了3/5,还剩几分之几?
(2)女生人数比男生人数多1/3,女生比男生多的人数占()的1/3。
(3)白兔比黑兔少1/4,白兔是黑兔的几分之几?
二、创设情景、引入新知。
1、你们喜欢鸟吗?鸟类种数减少了,就意味着许多美丽的鸟类从此就永远消失了。你们知道为什么吗?由于人类的这些行为,有的鸟类灭绝了,还有一些鸟类,尽管还存在,但数量已经很少了,如果再不加以保护,也将很快灭绝掉。丹顶鹤就是这样的一种鸟类。丹顶鹤是国家的一级保护动物,是我国特产鸟类,群居黑龙江省的扎龙,丹顶鹤生活特别有规律,它体姿优美文雅、风貌优秀、翩翩起舞可与孔雀开屏媲美,是长寿动物与龟并称,古人将它作为长寿和幸福的象征,所以特别受中国人的钟爱。
2、今天老师还给大家带来了几条有关丹顶鹤的信息。
出示信息1:国家一级保护动物野生丹顶鹤,2001年全世界约有2000只,我国占其中的1/4。
根据这些信息:你能算出2001年我国约有多少只丹顶鹤吗?怎样列式?你是怎么想的?
(2000×1/4=500(只),求2000只的1/4是多少?)。
3、如果我们把我国约有多少只?这个问题去掉,你能提出哪些问题?(外国约有多少只?)。
出示信息2(例4):
揭示课题:这就是我们今天共同探讨的问题“稍复杂的求一个数的几分之几的应用题”(板书课题)。
三、引导探究,解决问题。
1、请同学们把信息2表达的'意思用线段图表示出来。
展示并口述画的线段图。
2、是把什么看着单位“1”?平均分成几份?(1/4)表示谁占谁的几分之几呢?怎样解答这道题呢?请同学们根据线段图列出算式。(先独立解答,师巡视,再交流)。
3、两名学生板演两种解法。
4、你怎样想的?能说出解题思路吗?(学生口述思路,教师在线段图上展示)。
方法一:把全世界的丹顶鹤的只数看着单位“1”,先求出我国的只数,再用总只数减去我国的只数,剩下的就是其他国家的只数。
5、比较一下,这两种解法有什么区别?有什么联系?(学生小组交流、汇报。)。
〈1〉相同点:单位“1”相同。
〈2〉不同点:第一种解法是用总只数减去我国的只数算出其它国家的。第二种解法是先求出其他国家的只数占总数的几分之几,再用总只数乘这个几分之几,就算出其他国家有多少只。
四、再次探索。
1、教师引言:正如前面所说:丹顶鹤是“长寿和幸福”的象征,人们称它为仙鹤,因此我国在扎龙专门设立自然保护区又誉为“鹤的乐园”。在人们的得力保护下,近两年来,丹顶鹤的数量逐年增多,请看下面信息:
2、请同学们默读信息3,已知什么?要求什么?理解哪一句话对解题最有帮助?怎样理解2007年我国丹鹤的只数比2001年的只数多呢?(把2001年500只丹顶鹤看作单位“1”,2007年比2001年多的只数是2001年只数的4/5)。
3、(师生齐画线段图)这道题有几个不同的数量相比,画几条线段图更好表示?(用两条线段表示)。
教师引导学生画出2001年的线段,然后让学生独立完成余到此为下部分,一人板演。(巡视)。
4、展示线段图并叙述。
指线段图引导分析:我们把什么看着单位“1”?平均分成几份?把2007年的只数分成了几部分?哪两部分?(一部分与2001年同样多,另一部分比2001年多2/5。)。
5、请同学们根据线段图列出算式。(师巡视,指名板演两种代表性的解法)。
6、你能说出解题思路吗?
(第一种解法:先求多的只数+2001年的只数=2007的只数,第二种解法:先求出2007年占单位“1”的几分之几,或2007年是2001年的(1+4/5)倍,再求2007年的只数;也就是求500只的(1+4/5)倍是多少)。
五、回顾小结。
1、刚才同学们用自己的聪明才智解决了以上问题,现在我们一起研究信息2和信息3这两问题有什么共同特点。
(信息2把总数2000只分成两部分,一部分是我国的只数,另一部分是其它国家的只数。信息3是把2007年和2001年相比,把2007年的只数分成两部分,一部分是和2001年的只数同样多,另一部分比2001的只数多2/5。
2、相同点:
单位“1”的数量都是已知的。
3、没有直接告诉所求问题占单位“1”量的几分之几,解题时需要用单位“1”的量减去或加上它的几分之几,或者先算出要求的数量占单位“1”的几分之几,再用单位“1”的量乘这个几分之几。)。
4、指导学生看书例题5,完成课本内容并质疑问难。
人教版分数除法应用二教学设计篇十七
教学内容:教科书第11页的例5、练一练、练习四的第1~4题。
教学目标:1.进一步提高学生分析问题和灵活解答应用题的能力,引导学生通过画线段图表示题目中的数量关系,启发学生联系已有知识经验自主地列方程解决问题。
2.重视方程后检验方法的交流。
教学重点:应用题数量关系的分析。
教学难点:培养学生列方程解应用题的意识和分析应用题的能力。
设计理念:数学活动不在于教师教会学生多少,而在于学生学会了解决问题的方法没有。教师需树立“授人予鱼不如授人予渔”的观念,因此教学本课的目的是让学生学会运用画线段图,找数量关系,列方程等方法来解决相关的类似的题目。
教学步骤教师活动学生活动。
一、激情促思。
通过之前的学习,大家已掌握了不少百分数的知识,今天给大家呈现的是一种稍复杂的百分数应用题(板书课题),想不想攻克它。
要攻克它,我们首先要了解它,分析它,师出示例题。
二、探究新知。
三、巩固练习。
四、评价总结。
2.从图上你获取了什么信息?
教师根据学生的交流板书(板书有意义的信息,教师适当引导):
男生人数×80%=女生人数。
男生人数+女生人数=36人。
引导学生将上面的关系式进行综合后老师板书:男生人数+男生人数×80%=36人。使学生用方程解答成为一种迫切的内因。
下面你会求男生人数了吗?怎样求?
3.这个方程你会解吗?女生人数怎样求?你解得对吗?
板书学生的方程,解读学生的方程。
追问:你是怎样检验的?
追问:你为什么设男生为?为什么不设女生为呢?(通过比较让学生明白设单位“1”为较为合理。
怎样确保自己的正确率?
1、做练一练的第1题。
思考:数量关系在哪句话中,是什么?应该把谁看作,另一个量怎样表示?
你能根据数量关系列出方程吗?会解这个方程吗?你怎样检验自己的结果是否正确?
2.做练一练的第2题。
3.做练习四的第1题,看谁做得又对又快。
4.做练习四的第2、3两题。
先说一说各题的数量关系,再列方程解答。
5.做练习四的第4题。
说说学了这节课你有哪些收获?
学生在教师指导下画线段图。
学生讨论后交流。
引导学生讨论得到综合后的数量关系。
引导学生把男生人数设为列出方程。
学生解方程,并引导学生进行检验。
引导学生计算20+16是否等于36。
学生思索比较。
学生可能会说两种答案:“美术组有36人”和“女生人数是男生人数的80%”,通过比较让学生明白后者说的是相关联的两种量之间的倍比关系,用来解设更为方便。
指名学生回答。
学生列出方程。
解方程。
检验。
学生口答。
列方程并解答。
检验。
学生练习,尽量口算,集体订正。
学生说数量关系。
列方程解答。
集体检验。
学生口答。
列方程解答。
检验。
引导学生讨论得到:两个关键句中梨树都是1份数,桃树都是3份数,虽然单位“1”不同了,但倍比关系并未改变。