新人教版六下数学负数教学设计范文(12篇)
度假旅游时,我们可以欣赏到不同地区的独特美景。总结要包含个人观点和感悟,突出自己的思考。以下是一些总结范文,供大家参考和借鉴。
新人教版六下数学负数教学设计篇一
一、复习重点、难点:
本次复习的重点是复习表内除法,万以内数的认识和加、减法,以及根据所学的知识解决简单的实际问题。
1.“表内除法”的复习。
通过一学期的学习,学生对除法的意义和计算已经比较熟悉了。教材中安排了两道题,分别对除法的意义和计算进行总复习。目的是使学生清楚什么样的实际问题要用除法解决,同时,使学生能比较熟练地进行除法计算。
2.“万以内数的认识”的复习。
万以内数认识的重点是数的读、写和数的组成。教材分别安排题目进行复习。另外,结合实际数据,使学生进一步明确准确数与近似数不同,知道近似数的作用,从而对数有更全面的认识。
3.“万以内的加、减法”的复习。
本学期所学的万以内的加、减法计算与100以内的加、减法有很多联系。因此,这部分内容复习的重点是培养学生综合运用知识的能力。对于每一个计算的问题,学生应能根据已学知识正确计算。学生可以选择自己喜欢的方法进行计算。另外,还要特别注意对学生估算意识的培养。
4.“克和千克”的复习。
这部分内容的重点是让学生能够形成对克和千克的观念,知道它们的作用,并能根据实际情况选择正确的单位。
5.“图形与变换”的复习。
本学期所学的图形(锐角和钝角)与变换(平移和旋转)都是实际情境中学习的。因此,复习的重点也是让学生结合自己的实际生活对图形和变换进行描述,加深对这些知识的认识。从而培养学生有意识地用数学语言表达生活中现象的意识和习惯。
6.“解决问题”的复习。
培养学生用所学的数学知识解决简单的实际问题,是小学数学教学的主要目标之一。通过本学期的学习,学生已经能够根据情境中给出的资源(条件),解决一些简单的问题。本单元的复习中,在原有知识的基础上,进一步提高学生的解决问题的能力。重点是使学生能够根据题目中的条件和问题,正确选择解决方法。对同一问题的解决方法不止一种,不要求学生都掌握,只要学生用一种自己喜欢的方法正确解答即可。
7.“统计”的复习。
统计知识复习的重点是培养学生对数据的分析能力。
8、“找规律”的复习。
重点复习图形的排列规律和数列的排列规律。
二、具体复习安排:
1.“表内除法”的复习。(1课时)。
开始复习表内除法时,可以通过第119页第1题所提供的情境复习除法的含义。使学生更加明确在什么样的情境下要用除法解决问题。在复习除法计算时,可先让学生说一说怎样计算一道除法式题,然后再进行巩固练习。教师应根据本班的实际情况,既要进行全面的、基本的练习,也要对一些学生容易出错的题目进行针对性的练习,使学生能够比较熟练地进行计算。教师还可以借助乘法表对表内除法进行适当整理,引导学生发现简单的规律,从而更好的掌握表内除法。练习形式注意多样化,除教材中的练习形式,教师还可以补充其他的学生比较有兴趣的练习方式。对于计算方法,不作统一要求,只要学生能正确、迅速地进行计算就可以了。
2.“万以内数的认识和加减法”的复习。(2课时)。
复习万以内数的认识时,可以先引导学生回忆万以内数的有关知识,然后再分别复习。读、写数可以像教材中的看计数器,也可以采取其他形式,注意学生间的活动,既要提高学生的兴趣,又要注意练习的效率。近似数的复习,要让学生认真看教材中提供的素材,仔细辨别哪些是准确数,哪些是近似数。还可以让学生说一说生活中哪些地方用到近似数。
复习万以内的加、减法时,结合第120页的第6、7题,让学生说一说是怎样算的,计算应注意的问题。对于学生中出现的错误,教师要及时了解错误的原因,采用适当的方法进行订正。第121页的第8题,是让学生用估算的方法解决问题。学生估算的方法可能不同,只要能作出正确的判断,教师就应给予充分的肯定。
3.“克和千克及图形的变换”的复习。(1课时)。
复习“克和千克”时,要注意培养学生形成正确的观念。第121页的第9题,在学生作出选择后,让学生说一说选择(或不选择)的理由,从而加深对克和千克的认识。除了让学生根据数据进行判断外,还可以让学生准备一些实物,用手掂一掂,估一估,再用秤称一称,看自己估得是否正确,以便增加学生的感性认识。
新人教版六下数学负数教学设计篇二
设计理念:
1.词中有画的想像必须充分依托文本,在咬文嚼字中想像词境。
2.绘出文字的画面--倾听文字的声音--品尝文字的味道--提升文字的内涵。
教学目标:
1.通过朗诵,以“沉醉”为切入点,感悟词人的快乐心情及对大自然、美好生活的热爱。
2.有感情地吟诵词。
教学重点及难点:
1.以“沉醉”为切入点,想像词境,并能用语言描绘出来。
2.有感情地吟诵词,并能吟出“沉醉”的感觉。
教学时间:四十分钟。
一.话题引入,初读全词。
1.导入揭题。
2.初读,要求:读准字音,读准节奏。
3.指读,指导读词要求。
4.同学们,请你根据词语解释,先想一想这首词的大概意思,然后再自己说一说。
5.轻读,体会一下词中传递出词人和朋友们怎样的心情?
6.你是从词中哪些词语感受到的?
二.美读全词,想象画面。
1.反复读几遍词,圈圈划划,想想词人和朋友们因何而“沉醉”?
2.交流,感悟“沉醉”(根据学生的回答相机调整)。
(1)常记溪亭日暮,沉醉不知归路。
不知归路——为什么会“不知归路”?只有她一个人喝醉吗?真的是快乐的酒醉啊,读—。
溪亭日暮——词人和朋友们看到了怎样落日的美景,会说些什么?美美地醉一回!读—。
(2)兴尽晚回舟,误入藕花深处。
兴尽晚回舟——什么“游兴”满足了?怎么读?
误入藕花深处——为什么会“误”?到了荷塘深处,你仿佛看到了什么?读—。
(3)争渡,争渡,惊起一滩鸥鹭。
争渡,争渡,——为什么要争?你仿佛看到了怎样的画面?读——。
(4)再读,感悟词人不仅“沉醉”于酒,“沉醉”于“景”,还“沉醉”于“情”。
三.对照比读,延伸课外。
对照比读《如梦令》(昨夜雨疏风骤),感悟富有情趣的生活场景。
四.布置作业,阅读拓展。
1.练笔:尝试着将这首词改写成一篇生动有趣的故事,突出“沉醉”。
如梦令。
酒
沉醉景快乐。
情
将本文的word文档下载到电脑,方便收藏和打印。
新人教版六下数学负数教学设计篇三
“数学思考”是人教版六年级下册第六单元总复习的一个内容。在本套教材的各册内容中都设置了独立的单元,即”数学广角”,其中渗透了排列、组合、集合、等量代换、逻辑推理、统筹优化、数学编码、抽屉原理等方面的数学思想方法。在总复习第一部分“数与代数”专门安排了《数学思考》的小节,通过三道例题进一步巩固、发展学生找规律的能力,分步枚举组合的能力和列表推理的能力。本节课是教材中的例5,例5体现了找规律对解决问题的重要性。这里的规律的一般化的表述是:以平面上几个点为端点,可以连多少条线段。这种以几何形态显现的问题同,便于学生动手操作,通过画图,由简到繁,发现规律。解决这类问题常用的策略是:由最简单的情况入手,找出规律,以简驭繁。这也是数学问题解决比较常用的策略之一。
平时,这几个类型的问题是编排在数学奥赛内容里。现在在复习内容中出现,而且只是很小的一节,我认为编排在这里的目的,不仅是让学生掌握这几个题的解法,更重要的是在学生心中渗透“数学的思想”方法,去解决实际生活中复杂的数学问题。同时也积累一些解决问题的策略。因为解决问题的方法是多种多样的,策略也是需要不断积累的,但不管解决什么数学问题,特别是这样复杂的数学问题,我们一定要注意有一份数学的思想。所以在教学设计中,我意在让学生多总结,多归纳,并谈自己的感想。
二、教学成功的地方:
1、让学生经历“数学化”的过程。
“创设情境――建立模型――解释应用”是新课程倡导的课堂教学模式,本节课我运用这一模式,设计了丰富多彩的数学活动,让学生经历“找规律数线段”的探究过程,再回归生活加以应用,提高学生灵活解题的能力。让学生经历“数学化”的过程,学会思考数学问题的方法,培养学生的数学思维能力。
2、给学生提供探究的空间。
苏霍姆林斯基指出:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个探索者、发现者、研究者,而在儿童的精神世界中,这种需要特别强烈。”所以我以“探究活动”贯穿整节课,让学生自己动手操作,通过画一画、猜一猜、数一数、比一比、说一说,激发学生的学习兴趣,加深对所学内容的理解。让学生在活动中体验,在体验中领悟,由具体到抽象由易到难,自然过渡、水到渠成。
3、注重学生的思维提升。
本节课的教学,有意识地培养学生化繁为简的数学思想。导入环节时巧设连线游戏,紧扣教材例题,同时又让数学课饶有生趣。任意点8个点,再将每两点连成一条线,看似简单,连线时却很容易出错。这样在课前制造一个悬疑,不仅激发了学生学习欲望,同时又为探究“化难为简”的数学方法埋下伏笔。在探讨总线段数的算法时,同样延用从简到繁的思考方法,先探究3个点时总线段数怎么计算,之后列出4个点和5个点时总线段数的算式,让学生观察发现这些算式的共有特征:都是从1依次加到点数减1的那个数,从而让学生明白总线段数其实就是从1依次连加到点数减1的那个数的自然数数列之和。接着让学生用已建立的数学模型去推算6个点,8个点时一共可以连成多少条线段。这样既巩固算法,同时还回应了课前游戏的设疑。最后拓展提升,还原生活,去解决生活中的实际问题。整个过程都在逐步地让学生去体会化难为易的数学思想,懂得运用一定的规律去解决较复杂的数学问题。
三、教后遗憾的地方:
新课标下的课堂追求的是课堂的真实性和有效性。这节课,学生向我们展示了真实的一面。但是也存在着好多遗憾的地方。
(1)没有充分掌握自己班学生的学习程度。
简直可以用他们自己的话来说“连想都不用想的”来看待了。
(2)对于课堂上生成的问题处理得还不够到位。
如:创设情境:用卡片上的8个点,每两个点连成一条线段,一共可以连成多少条线段呢?学生出现了很多种答案,而正确答案只有一个。这正如我的课前预设:需要化繁为简去探索规律解决问题。可是当时有个学生提出了不同的方法:把这8个点当作8个好朋友,连线当作好朋友在握手,第一个人可以跟7个朋友握手,第二个人只要跟6个…看起来她已经会做这类题了,还能化抽象为形象,大部分同学听完后一定会接受她的这种做法,但还没教就让她全说了,下面我还要让学生探究什么?想到这我立即打断了她的话,继续按预设进行。课后我一直为这种处理方式深感不安。其实我应该放弃预设,大胆的生成,让它作为一种好方法存在。以下教学环节改为探究规律,验证这个同学所采用方法的准确性。
新人教版六下数学负数教学设计篇四
知识与技能:通过情景创设,在解决实际问题的过程中充分调用学生已有的知识经验,进行知识迁移。学生在老师的引导下探究和归纳乘法交换律、结合律,理解乘法交换律、结合律的作用,了解运用运算定律可以进行一些简便运算。
过程与方法:鼓励学生大胆猜想,并从中感悟科学验证的方法。感受数学与现实生活的联系,能用所学知识解决简单的实际问题。培养根据具体情况,选择适当算法的意识与能力,发展思维的灵活性。
情感、态度和价值观:通过教学情景的创设和欣赏自然景色的美,向学生渗透环保教育。
教学重难点。
教学重点。
探索发现乘法交换律、结合律,懂得运用所学知识进行简便计算。
教学难点。
乘法分配律的应用。
教学工具。
多媒体课件。
教学过程。
一、复习导入。
二、学习乘法交换律和乘法结合律。
1.学习例5。
(1)出示例5。
(2)学生在练习本上独立解决问题。
(3)引导学生对解决的问题进行汇报。
4×25=100(人)。
25×4=100(人)。
两个算式有什么特点?
你还能举出其他这样的例子吗?
教师根据学生的举例进行板书。
你们能给乘法的这种规律起个名字吗?
板书:交换两个因数的位置,积不变。这叫做乘法交换律。
能试着用字母表示吗?
学生汇报字母表示:a×b=b×a。
2.学习例6。
(1)出示例6。
(2)学生在练习本上独立解决问题。
教师巡视,适时指导。
(25×5)×225×(5×2)。
=125×2=10×25。
=250(桶)=250(桶)。
(3)引导学生对解决的问题进行汇报。
两个算式有什么特点?
你还能举出其他这样的例子吗?
教师根据学生的举例进行板书。
你们能给乘法的这种规律起个名字吗?
板书:先把前两个数相乘,或者先把后两个数相乘,积不变。这叫做乘法结合律。
能试着用字母表示吗?
学生汇报字母表示:(a×b)×c=a×(b×c)。
(4)完成例6下面做一做的第一题。
3.学习例7。
新人教版六下数学负数教学设计篇五
1、整数和小数部分:复习整、小数的概念以及整、小数的运算和应用题。
2、简易方程:复习用字母表示数,解简易方程,列方程解文字题、应用题。
3、分数和百分数:复习分数、百分数的概念,以及分数的基本性质、四则运算和应用题。
4、量的计量:复习计量单位、掌握各单位名称之间的进率,进行名数改写。
5、几何初步知识:复习了平面图形的概念、特征以及图形之间的联系和区别。平面图形的周长和面积的计算、公式的推导,复习立体图形的概念、特征及体积和表面积的计算。
6、比和比例:复习比和比例的意义和基本性质、化简比、求比值;复习正反比例的意义和判断,用比和比例的知识解答应用题。
7、简单统计:复习求平均数、统计表、统计图。
二、复习要求。
1、比较系统的牢固的掌握基础知识,具有进行四则运算的能力,会使用学过的一些方法合理、灵活的进行计算,会解简易方程,养成检验和验算的习惯。
2、巩固已获得的一些计量单位的大小的表象,牢固的掌握所学单位之间的进率,进行名数的改写,并能简单的估计或应用。
3、牢固掌握所学几何形体的特征,进一步发展空间观念,能正确的计算一些几何图形的周长、面积、和体积,巩固绘图、测量等技能。
4、掌握所学的统计初步知识,能够看懂和绘制简单的统计图表,能够计算平均数,能利用统计图表中的数据和平均数进行分析比较。
5、掌握所学的常见的数量关系和应用题的解答方法,能够比较灵活的运用所学知识解答应用题和生活中一些简单的实际问题。
三、复习重点、难点、关键。
重点:重视基础知识的复习,注意知识间的联系,使概念、法则和性质系统化、网络化。
难点:在基础知识复习中,注意培养学生的能力,尤其是综合运用知识解决问题的能力,注重数学与生活的联系。
关键:在复习过程中,教师要注意启发、引导学生主动的整理复习。
新人教版六下数学负数教学设计篇六
理解平均数的意义,初步学会简单的求平均数的方法。
(二)过程与方法。
学生经历用平均数知识解决简单生活问题的过程,积累分析和处理数据方法,发展统计观念。初步感知“移多补少”“对应”等数学思想。
(三)情感态度和价值观。
感受平均数在生活中的应用价值,体验学习数学解决实际问题的乐趣。
二、教学重难点。
教学重点:理解平均数的含义,掌握求平均数的方法。
教学难点:借助“移多补少”的方法理解平均数的意义。
三、教学准备。
课件、实物投影。
四、教学过程。
(一)创设情境。
1.谈话引入。
以幻灯片形式出示教师家的书橱。
现在,我的书架上层有12本书,下层有10本书,我想请同学们帮忙,重新整理一下,使每层书架上的书一样多。
2.感知课题。
(1)学生思考,想象移动的过程。
(2)教师操作并提问:现在每层都有11本书了,这个11是它们的什么数?
(3)教师:像这样把几个不同的数,通过“移多补少”的方法,得到相同的数,就是这几个数的平均数。
今天,我们就来认识一下“平均数”这个新朋友,好吗?
(板书:平均数)。
(二)探究新知。
1.引发质疑,探索新知。
教师:看到这个课题,你想通过这节课学习到哪些知识?
预设:
(1)平均数是一个什么数?
(2)怎样计算平均数?
(3)平均数在生活中有什么用?
2.理解含义,探求方法。
出示例1,为了保护环境,学校四年级1班的一组同学利用业余时间收集矿泉水瓶,做环保小卫士。
仔细观察统计图,从图中知道了什么?你能根据统计图提出什么问题?
预设:
(1)小红比小兰多收集多少个瓶子?
(2)小明再给小亮几瓶,他俩的瓶子就一样多?
(3)他们平均每人收集了多少个瓶子?
你怎样理解“平均每人收集了多少个瓶子?”你怎样才能让他们的瓶子数量一样多呢?
学生汇报交流。
小结1:求平均数实际就是把多的补给少的,在数学上叫做“移多补少”。
小结2:求平均数也可以采用计算的方法,用他们一共收集的矿泉水瓶个数总和除以人数,得到平均每人收集多少个。
(14+12+11+15)÷4=13(个)。
【设计意图】注重让学生自主探索、合作交流,通过解决平均每人收集多少个矿泉水瓶的问题,引导学生思考并理解求平均数的方法,掌握“移多补少”以及“先求和再平均分”的数学方法。
3.理解平均数的含义。
引导学生体会13不是每个人真正收集的矿泉水瓶数量,而是4个人的总体水平。
小结:平均收集13个矿泉水瓶,不是每个人真正收集的数量,是一个“虚拟”的数,反映了这组收集矿泉水瓶数的情况。
教师:生活中你还在哪些地方或什么事情中遇到或用到过平均数吗?举例说一说。
预设:
(1)本周平均最高气温6摄氏度。
(2)三年级学生的平均身高是140厘米。
(3)四年级2班五位同学平均每人捐10本图书。
(4)李莉同学平均每天上学路上花费15分钟。
【设计意图】初步理解平均数的意义,并在现实生活中寻找实例,感受数学源于生活。
(四)全课小结。
今天你有什么收获?
新人教版六下数学负数教学设计篇七
1.理解最简单的抽屉原理及抽屉原理的一般形式。
2.引导学生采用操作的方法进行枚举及假设法探究。
【过程方法】。
经历抽屉原理的探究过程,初步了解抽屉原理。
【情感态度价值观】。
体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力。
【教学重、难点】经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教学过程】。
一、问题引入。
1.游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。
2.讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?
游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。
引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
二、探究新知。
(一)教学例1。
师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。
板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),
引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。
问题:
(1)“总有”是什么意思?(一定有)。
(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)。
学生思考并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。
问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)。
新人教版六下数学负数教学设计篇八
《义务教育课程标准实验教科书·数学》六年级下册。
【教材分析】。
让学生初步了解简单“抽屉原理”,教材借助把4枝铅笔放进3个文具盒中的操作情景,介绍了较简单的“抽屉原理”,通过用“抽屉原理”解决简单的实际问题,初步感受数学的魅力。主要培养学生的思考和推理能力,让学生初步经历“数学原理”的过程,提高学生数学应用意识。
【学情分析】。
教材借助把4枝铅笔放进3个文具盒中的操作情景,介绍了较简单的“抽屉原理”。学生在操作实物的过程中可以发现一个现象:不管怎么放,总有一个文具盒里至少放进2枝铅笔,从而产生疑问,激起寻求答案的欲望。为了解释这一现象,教材呈现了枚举。
【教学目标】。
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
【教学重点】。
经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
【教学难点】。
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教具、学具准备】。
每组都有3个文具盒和4枝铅笔。
【教学过程】。
一、谈话导入。
教师:同学们,你们在电脑上玩过“电脑算命”吗?“电脑算命”看起来很深奥,只要报出你的出生的年、月、日和性别,一按键,屏幕上就会出现所谓性格、命运、财运等。通过今天的学习,我们掌握了“抽屉原理”之后,你就不难证明这种“电脑算命”是非常可笑和荒唐的,是不能信的鬼把戏。
教师:通过学习,你想解决那些问题?
二、通过操作,探究新知。
(一)认识“抽屉原理”
师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0)(2,1)。
【点评】此处设计教师注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。)。
生:不管怎么放,总有一个盒子里至少有2枝笔?
师:是这样吗?谁还有这样的发现,再说一说。
师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导)。
师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。
(4,0,0)(3,1,0)(2,2,0)(2,1,1),
师:还有不同的放法吗?
生:没有了。
师:你能发现什么?
生:不管怎么放,总有一个盒子里至少有2枝铅笔。
师:“总有”是什么意思?
生:一定有。
师:“至少”有2枝什么意思?
生:不少于两只,可能是2枝,也可能是多于2枝?
师:就是不能少于2枝。(通过操作让学生充分体验感受)。
学生思考——组内交流——汇报。
师:哪一组同学能把你们的想法汇报一下?
组1生:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。
师:你能结合操作给大家演示一遍吗?(学生操作演示)。
师:同学们自己说说看,同位之间边演示边说一说好吗?
师:这种分法,实际就是先怎么分的?
生众:平均分。
师:为什么要先平均分?(组织学生讨论)。
生1:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。
生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了?
师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)。
师:哪位同学能把你的想法汇报一下,
生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:把6枝笔放进5个盒子里呢?还用摆吗?
生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:把7枝笔放进6个盒子里呢?
把8枝笔放进7个盒子里呢?
把9枝笔放进8个盒子里呢?……。
你发现什么?
生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。
【点评】教师关注了“抽屉原理”的最基本原理,物体个数必须要多于抽屉个数,化繁为简,此处确实有必要提领出来进行教学。在学生自主探索的基础上,教师注意引导学生得出一般性的结论:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。通过教师组织开展的扎实有效的教学活动,学生学的有兴趣,发展了学生的类推能力,形成比较抽象的数学思维。
(二)探究新知。
1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
(留给学生思考的空间,师巡视了解各种情况)。
2.学生汇报。
生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。
板书:5本2个2本……余1本(总有一个抽屉里至有3本书)。
7本2个3本……余1本(总有一个抽屉里至有4本书)。
9本2个4本……余1本(总有一个抽屉里至有5本书)。
师:2本、3本、4本是怎么得到的?生答完成除法算式。
5÷2=2本……1本(商加1)。
7÷2=3本……1本(商加1)。
9÷2=4本……1本(商加1)。
师:观察板书你能发现什么?
生1:“总有一个抽屉里的至少有2本”只要用“商+1”就可以得到。
师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
生:“总有一个抽屉里的至少有3本”只要用5÷3=1本……2本,用“商+2”就可以了。
生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。
师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。
交流、说理活动:
生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。
生2:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的.2本可以在2个抽屉里再各放1本,结论是“总有一个抽屉里至少有2本书”。
生3我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。
师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?
生4:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。
师:同学们同意吧?
师:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
3.解决问题。71页第3题。(独立完成,交流反馈)。
小结:经过刚才的探索研究,我们经历了一个很不简单的思维过程,我们获得了解决这类问题的好办法,下面让我们轻松一下做个小游戏。
【点评】在这一环节的教学中教师抓住了假设法最核心的思路就是用“有余数除法”形式表示出来,使学生学生借助直观,很好的理解了如果把书尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。特别是对“某个抽屉至少有书的本数”是除法算式中的商加“1”,而不是商加“余数”,教师适时挑出针对性问题进行交流、讨论,使学生从本质上理解了“抽屉原理”。
三、应用原理解决问题。
生:2张/因为5÷4=1…1。
师:先验证一下你们的猜测:举牌验证。
师:如有3张同花色的,符合你们的猜测吗?
师:如果9个人每一个人抽一张呢?
生:至少有3张牌是同一花色,因为9÷4=2…1。
四、全课小结。
上面我们所证明的数学原理就是最简单的“抽屉原理”,可以概括为:把m个物体任意放到m-1个抽屉里,那么总有一个抽屉中放进了至少2个物体。
五、思维训练。
1.从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔……十二种生肖)相同。说明理由。
2.任意367名学生中,一定存在两名学生,他们在同一天过生日。说明理由。
【教学反思】。
1、小组活动很容易抓住学生的注意力,让学生觉得这节课要探究的问题即好玩又有意义。
2、理解“抽屉原理”对于学生来说有着一定的难度。
3、部分学生很难判断谁是物体,谁是抽屉。
新人教版六下数学负数教学设计篇九
一、教学内容:
负数的意义。(课本123—125也得例1、例2)。
二、教学目标:
1、知识与技能:使学生认识负数,理解负数的意义,学会读写负数,并能用负数表示相关的量。知道0既不是正数,也不是负数。
2、数学思考:通过教学,培养学生的初步分析能力,初步建立负数的概念。
3、问题解决:通过正数、负数的学习,培养学生应用数学知识解决实际问题的能力。
4、情感与态度:从实际问题引入正数、负数,然后通过实例巩固,感知数学知识来源于生活,应用于生活。
三、重点、难点与关键:
1、教学重点:理解负数的意义,初步建立负数的概念。
2、教学难点:使学生认识负数,理解负数的意义,学会读写负数,并能用负数表示有关的量。
3、教学关键:使学生认识负数,理解负数的意义,学会读写负数,并能用负数表示有关的'量。
四、教具准备:多媒体课件。
五、教学过程;
(一)游戏导入,课件展示,生活实例导入。
1.游戏:师生作相反动作游戏,感受生活中的相反现象。
2.课件展示:搜集的天气预报视频。根据天气预报中的0下摄氏度的读法和记录方法引入新课。
(二)联系生活实际,学习新知。
新人教版六下数学负数教学设计篇十
1、落红不是无情物,化作春泥更护花。(龚自珍)。
2、造物无言却有情,每于寒尽觉春生。(张维屏)。
3、今夜偏知春气暖,虫声新透绿窗纱。(刘方平)。
4、此夜曲中闻折柳,何人不起故园情。(李白)。
5、卧看满天云不动,不知云与我俱东。(陈与义)。
6、不是花中偏爱菊,此花开尽更无花。(元稹)。
第二单元。
我们爱我们的民族,这是我们自信心的泉源。(周恩来)。
我是中国人民的儿子,我深情地爱着我的祖国和人民。(邓小平)唯有民魂是值得宝贵的,唯有他发扬起来,中国才有真进步。(鲁迅)我爱我的祖国,爱我的人民,离开了她,离开了他们,我就无法生存,更无法写作。(巴金)。
第三单元。
1、轻诺必寡信。《老子》。
2、民无信不立。《论语》。
3、不精不诚,不能动人。《庄子》。
4、诚者,天之道也;诚之者也,人之道也。《礼记》。
5、有所期诺,纤毫必偿;有所期约,时刻不易。《袁氏世范》。
第四单元。
1、善待地球就是善待自己。
2、拯救地球就是拯救未来。
3、但存方寸地,留与子孙耕。
4、有限的资源,无限的循环。
5、珍惜自然资源,共营生命绿色。
第五单元。
1、横眉冷对千夫指,俯首甘为孺子牛。《自嘲》。
2、其实地上本没有路,走的人多了,也便成了路。《故乡》。
3、我好像一只牛,吃的是草,挤出来的是奶、血。许广平《欣慰的纪念》。
4、时间就是性命,无端的空耗别人的时间,其实是无异于谋财害命的。《门外文谈》。
第六单元。
诗经《采薇》昔我往矣,杨柳依依。今我来思,雨雪霏霏。春夜喜雨(唐)杜甫。
好雨知时节,当春乃发生。随风潜入夜,润物细无声。
野径云俱黑,江船火独明。晓看红湿处,花重锦官城。
西江月夜行黄沙道中(宋)辛弃疾。
孤村落日残霞,轻烟老树寒鸦,一点飞鸿影下。青山绿水,白草红叶黄花。
第七单元。
马诗(唐)李贺。
大漠沙如雪,燕山月似钩。
何当金络脑,快走踏清秋。
第八单元。
雕梁画栋巧夺天工独具匠心引人入胜。
古色古香余音绕梁不落窠臼雅俗共赏。
美不胜收脍炙人口曲高和寡妙笔生花。
阳春白雪笔走龙蛇不同凡响别具一格。
第八单元成语及解释:
1、雕梁画栋:指有彩绘装饰的很华丽的房屋。
2、巧夺天工:形容技艺巧妙,多指工艺美术。
3、独具匠心:具有独到的灵巧心思,指在技巧和艺术方面有创造性。
4、引人入胜:指美妙的境地或生动的情景.现多指山水风景或文艺作品特别吸引人。
5、古色古香:形容书画,器物等有古雅的色彩和情调。
6、余音绕梁:形容歌声优美,给人留下深刻的印象。
7、不落窠臼:比喻有独创风格,不落老套子。
8、雅俗共赏:旧时用来形容某种艺术作品,各种人都能够欣赏。
9、美不胜收:形容好的东西很多,看不过来。
10、脍炙人口:比喻好的诗文为人们所称赞和传诵。
11、曲高和寡:旧时指知音难得.现比喻言论和作品不通俗,能了解的人不多。
12、妙笔生花:比喻杰出的写作才能。
13、阳春白雪:用来比喻较高级的文学艺术作品,经常与“下里巴人”对比着用。
14、笔走龙蛇:形容书法生动而有气势,风格洒脱.也指书法速度很快,形容书法笔势雄健活泼。
15、不同凡响:形容事物不平凡,十分出色,多指文学艺术作品。
16、别具一格:具有一种独特的风格。
新人教版六下数学负数教学设计篇十一
一、教材分析:
《认识负数》是在学生系统地认识整数、小数的基础上进行教学的。通过负数的认识,使学生明白“数”不仅包括正的,还有负的,从而使学生对数的概念形成一个完善、系统的知识结构,为今后进一步认识负数打下基础。在生活中,由于人们生活和生产的需要,有时仅仅用已学过的数(即正数)已经不能明确地表达意思了,于是产生了负数。学生在感知了负数的产生之后,由于生活经验,已经见过负数的存在,于是在这种生活经验的基础上,尤其是在温度中,深刻体会了负数的意义,从而为下节课系统认识“正负数”打下扎实的基础。
二、学情分析:
在学习“生活中的负数”之前,学生已经系统认识了整数和小数,并且对“分数”也有了初步的认识。知道这些已学过的数的个数都是无限的。学生由于生活经验,可能在某些地方已经知道了负数的存在。基于这样的学习起点,本节课必须在学生认知冲突产生矛盾的前提下让学生体会“负数”产生的必要性。并通过熟悉的生活情境让学生体会负数的意义。同时在本节课上也应尽量通过数学思想的渗透,使知识形成一个完整的结构,为今后进一步学习正、负数打下基础。
设计理念:
1、注重体现数学知识形成的逻辑性。
新知的形成往往是在旧知的迁移或是与旧知产生矛盾冲突的前提下形成的。本节课我就合理采用后者的呈现形式,让学生在记录一组信息时,强烈感受到仅仅用以前学过的数已经不能清楚地表示一对相反意义的量了,于是体会到了负数产生的必要性。并感受符号化的思想,体会到数学的简洁性。同时通过生活经验的感知和内化,理解了负数的意义,又沟通了正数、0、负数三者之间的联系,使知识形成完整的结构。这样的知识形成过程既符合学生的认知规律,又符合数学知识和思维的逻辑性。
2、注重体现数学知识与生活联系的紧密性。
《新课标》中提出:在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题。可见数学知识与生活的联系有多重要。本节课我先结合地震引出负数,再联系南方大雪灾,让学生在雪灾的场景中对比正、负数;还让学生举一举你在生活中见到过哪些负数,唤起学生对数学知识的学习兴趣。然后创设学生熟悉的生活情境,让学生感受和理解负数的意义。比如在温度中体会到负数刚好是与正数相反的,同时通过温度计的展示使“0是正数与负数的分界点”这一道理清晰地建立在学生脑海中。
3、注重数学科与其它学科之间的联系。
数学知识中如果能有效结合教材实际对学生进行爱国教育、安全教育、爱心教育和环保教育,那就更体现数学教学的人文性了。本节课我就结合了汶川大地震、南方雪灾的事例和负数的历史,让学生感受到了我国军民一条心,全民献爱心的战胜困难的决心,还就两次灾害的发生提出环保的迫切性以及中国负数的渊源历史,同时结合教师精彩的结束语有效地对学生渗透了思想教育。
新人教版六下数学负数教学设计篇十二
《义务教育课程标准实验教科书·数学》六年级下册第68页。
【教学目标】。
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
【教学重点】。
经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
【教学难点】。
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教具、学具准备】。
每组都有相应数量的盒子、铅笔、书。
【教学过程】。
一、课前游戏引入。
师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)。
师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。
师:开始。
师:都坐下了吗?
生:坐下了。
生:对!
【点评】教师从学生熟悉的“抢椅子”游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。
二、通过操作,探究新知。
(一)教学例1。
师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0)(2,1)。
【点评】此处设计教师注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
生:不管怎么放,总有一个盒子里至少有2枝笔?
是:是这样吗?谁还有这样的发现,再说一说。
师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导)。
师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。
(4,0,0)。
(3,1,0)。
(2,2,0)。
(2,1,1),
师:还有不同的放法吗?
生:没有了。
师:你能发现什么?
生:不管怎么放,总有一个盒子里至少有2枝铅笔。
师:“总有”是什么意思?
生:一定有。
师:“至少”有2枝什么意思?
生:不少于两只,可能是2枝,也可能是多于2枝?
师:就是不能少于2枝。(通过操作让学生充分体验感受)。
学生思考——组内交流——汇报。
师:哪一组同学能把你们的想法汇报一下?
组1生:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。
师:你能结合操作给大家演示一遍吗?(学生操作演示)。
师:同学们自己说说看,同位之间边演示边说一说好吗?
师:这种分法,实际就是先怎么分的?
生众:平均分。
师:为什么要先平均分?(组织学生讨论)。
生1:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。
生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了?
师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)。
师:哪位同学能把你的想法汇报一下,
生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:把6枝笔放进5个盒子里呢?还用摆吗?
生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:把7枝笔放进6个盒子里呢?
把8枝笔放进7个盒子里呢?
把9枝笔放进8个盒子里呢?……。
你发现什么?
生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。
【点评】教师关注了“抽屉原理”的最基本原理,物体个数必须要多于抽屉个数,化繁为简,此处确实有必要提领出来进行教学。在学生自主探索的基础上,教师注意引导学生得出一般性的结论:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。通过教师组织开展的扎实有效的教学活动,学生学的有兴趣,发展了学生的类推能力,形成比较抽象的数学思维。