六年级数学分数应用题说课稿(精选19篇)
议论文是一种常见的写作方式,需要我们给出明确的观点并进行充分论证。一个完美的总结应该包含对过去工作或学习的全面回顾。如果你想了解更多关于运动训练的知识和技巧,可以查阅以下相关资料。
六年级数学分数应用题说课稿篇一
本课是《义务教育课程标准实验教科书》(北师大版)数学五年级下册第25页到26页的内容。
2、教材分析。
《分数除法(一)》是第三单元第二课时的内容,是在学生学习了分数乘法、认识了倒数的基础上进行教学的,教材中呈现了两个问题,就是把4/7分别平均分成2份、3份,目的是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。
3、教学目标:
根据新课标的要求和教材的特点,结合五年级学生的认知能力,本节课我确定如下的教学目标:
知识与能力目标:理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。
过程与方法目标:通过实践活动和自主探究,培养学生动手能力及发现问题、解决问题的能力。
情感、态度与价值观目标:通过一系列“自主探究————得出结论”的过程,体验其中的成就感,增强学生学习数学的自信心。
4、教学重点:
理解分数除法的意义,掌握分数除以整数的计算方法。
5、教学难点:
分数除以整数计算法则的推导过程。能够运用分数除以整数的方法解决简单的实际问题。
6、教学准备。
为了更好地对本节课进行教学,课前我准备了多媒体课件、长方形纸等。
二、说教法与学法。
在本节课中我将贯彻“以学生为主体,教师为主导,训练思维为主线”的教学原则:
1、自主探究、寻求方法。
让学生充分自主探究、寻求分数除以整数的意义和计算方法。
2、设计教法体现主体。
课堂设计以学生为主体,教师是领路人,注重学生间的合作与交流各抒已见、取长补短、共同提高。
3、分层练习、注重发展。
练习有层次,由尝试练习到综合练习到发展练习,层层深入。
三、说教学流程。
根据以上的教学理念,结合本课的特点,我把本课的教学程序设计为以下三个层次进行教学:
具体教学环节设计如下:
(一)激趣导入——十兄弟的故事。
创设这一情境,是因为《十兄弟》这个电影,大家都看都过。富有神话色彩,学生会感兴趣。在兴趣中进入新课的学习。
(二)探究新知。
为了使故事和所学知识连贯起来,所以我又利用故事来引出新知。展示多媒体:几天后,神奇的事发生了,大虾妻子怀孕还生下10个孩子。十个孩子一夜长大,而且各有本领,由于家里穷没有东西吃,所以大虾的妻子就把一张饼的4/7分给大口九和飞天五,他们每人分多少呢?为了让学生能够动手操作,告诉学生把饼看作成长方形,这样就回归到我们熟悉的图形中了。
把一张纸的平均分成2份,每份是这张纸的几分之几?
让学生自主思考解决这个问题。学生利用事先准备好的纸,先把纸平均分成7份,再涂出其中的4份,然后再将这4份平均分成2份,将其中1份涂色,最后看看涂上色的这部分占整张纸的几分之几。在汇报反馈时,将学生的思维过程展示出来,即分、涂的过程。使每位学生都能在清晰地展示中分享他人的思维方法。通过思考操作学生达成共识:里有4个1/7,平均分成2份,每份就是2个1/7,是2/7。接着让学生列出算式4/7÷2=2/7,在探究过程中,学生同时理解了分数除法的意义。
2、比较归纳,初探算法。
我引导学生再一次进行探究。为了便于全班统一交流,我选取学生举例中的一道典型算式进一步研究,如4/7÷3,我引导学生再一次进行探究。为了便于全班统一交流,我选取学生举例中的一道典型算式进一步研究。此时,先让学生动手分一分、涂一涂,然后再让他们进行小组交流。此时,先让学生动手分一分、涂一涂,然后再让他们进行小组交流。根据学生的小组讨论,学生发现把4/7平均分成3份,每一份就是这张纸的4/21。得到的算式是4/7÷3=4/21。此时我还引导学生发现:把4/7平均分成3份,这其中的一份实际上就是4/7的1/3,而求一个数的几分之几可以用乘法来计算,算式是4/7×1/3=4/21。比较两个算式,学生很快发现它们是相等的。
苏霍姆林斯基曾说过:“引导学生能借助已有的经验去获取知识,这是最高的教学技巧之所在。”本环节的设计通过让学生动手操作、自主探究、合作交流等方式,体验了“探索——发现——验证——修改”的过程,通过一系列活动,使学生完成了知识的自我建构,同时也加深了学生对分数除以整数意义的理解,符合学生的发展需要。
课件出示。
分数除以整数的计算方法在本节课既是教学的重点,又是难点,为了使学生更好的掌握这部分知识,我先让学生通过涂一涂,进一步感知分数除法的意义,初步感知分数除以整数的计算方法,然后提出是不是除以一个整数就可以乘它的倒数呢?通过三组算式来验证提出的假设,这样让学生在教师的引导下,亲身经历了知识形成的全过程,突破了教学重难点。
四、巩固应用。
我们知道通过形式多样、难易程度适当的习题,让学生在有层次的练习中巩固本节课的知识,使学生的思维得到发展。所以我设计了以下巩固练习:
1、算一算。
(教师出示算式,提出要求:口述计算过程)。
学生选两道在练习本上做一做。
此过程我要时刻提醒学生计算的结果,能化简一定要化简。
2、填一填。
师:学会了知识就要灵活的运用,这道题你们能填上吗?
学生独立在书上试一试。
集体订正。
从简单的问题要逐渐加深,从填一填的题中可以让学生对计算方法理解充分。
3、拓展练习。
拓展练习是为了让学生了解,在计算过程中遇到带分数怎么办?有的学生会想到化假分数,这样即复习了旧知识又巩固了新知识。
4、解决问题。
学生在练习本上列式解答。
指生汇报完成情况。
运用分数除法能解决生活中的很多问题呢?谁能像老师这样来说一说生活中的问题,让大家解决。
五、课堂总结。
一个新的计算结论必须反复验证。让学生通过实际运算再次验证一个分数除以整数的意义和计算方法,学生在不断地思考与验证中,也深刻理解了分数除法的计算算理。让学生自己总结,教师补充,锻炼了学生的语言表达能力。
以上教学程序的设计遵循学生的认知规律和年龄特点,对计算进行探究式教学,也是新理念的挑战,学生是学习的主人,让学生自主探究,交流,让学生体验成功的喜悦。学生在教师的引导中操作、思考、解决问题,从而使学生获得了知识,发展了智力,培养了积极的学习情感,三维目标得到了有机的.整合。
六、作业。
作业是对本节课知识的再巩固,同时还要联系实际,制定作业是:
运用分数除法能解决生活中的很多问题呢?回家编几道生活中的问题,明天我们再一起解决。
七、说教学预测。
在本次教学设计中我们是利用数形结合的思想让学生体会分数除法的计算方法,同时让学生自主探索、合作交流,突破本节课的重点。体会分数除法转化的方法,并会利用转化的方法来解决实际问题。我们教研组相信学生会通过本节课的学习,而达到我们的预期目标。
六年级数学分数应用题说课稿篇二
有些分数应用题数量变化多,分析难度大,不易列式计算。但是,仔细分析就会发现,变来变去,总有一个量是不变的,这就是我们所说的不变量。
对于这类分数应用题,家长辅导孩子解答时,要专注“不变量”,以静制动,使问题迎刃而解。比如:
分析:两桶水的总重量总是不变的,但又未知,我们把它看作单位“1”的量。则“取前”第一桶占两桶水总重量的1/1+6=1/7,“取后”第一桶占两桶水总重量的1/1+4=1/5。
第一桶取前取后差12千克占两桶总重量的1/5-1/7=2/35,故两桶水总重量为12÷2/35=210(千克),由此可求出原来第一桶水的重量为:210÷1/7=30(千克)。
将本文的word文档下载到电脑,方便收藏和打印。
六年级数学分数应用题说课稿篇三
有些分数应用题数量变化多,分析难度大,不易列式计算。但是,仔细分析就会发现,变来变去,总有一个量是不变的,这就是我们所说的不变量。
对于这类分数应用题,家长辅导孩子解答时,要专注“不变量”,以静制动,使问题迎刃而解。比如:
分析:两桶水的总重量总是不变的,但又未知,我们把它看作单位“1”的量。则“取前”第一桶占两桶水总重量的1/1+6=1/7,“取后”第一桶占两桶水总重量的1/1+4=1/5。
第一桶取前取后差12千克占两桶总重量的1/5-1/7=2/35,故两桶水总重量为12÷2/35=210(千克),由此可求出原来第一桶水的重量为:210÷1/7=30(千克)。
六年级数学分数应用题说课稿篇四
建立错题库。生活中的有心人都可以发现我们往往会犯同样的错误,小孩子就更加了。很多孩子会在某一道或某一类题上屡次出错。究其原因,主要是因为没有很好的掌握相关知识点,当然有些题本身就容易迷惑孩子,可作业或考试中却常常出现,针对这种情况,最好的办就是准备错题本,把出过错的题摘抄下来,并写上错因分析,并在学习中不断积累,建立属于自己的错题库。
多问。学习中最怕的就是不懂装懂。要提高数学成绩,必须把不懂的问题解决好,所以在数学学习中遇有不懂的问题,经过思考后仍然不懂就要问老师或同学了。多交流。提高数学成绩,除了以上几个方面,还要注意多与同学交流。交流的方法可以是多种多样的。其中最为有效的方法是,同学之间出题互考。这样也可以提高数学习的兴趣。
六年级数学分数应用题说课稿篇五
2.渗透对应思想.。
教学重点。
理解应用题中的单位“1”和问题的关系.。
教学难点。
2.正确灵活的判断单位“1”.。
教学过程。
一、复习、质疑、引新。
1.说出、、米的意义.。
2.列式计算。
20的是多少?6的是多少?
学生完成后,可请同学说一说这两个题为什么用乘法计算?
3.谈话:同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算.这是乘。
法意义的扩展出现的新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(出示课题:分数应用题)。
二、探索、质疑、悟理。
(一)教学例1(也可以结合学生的实际自编)。
学校买来100千克白菜,吃了,吃了多少千克?
1.读题.理解题意,知道题中已知条件和所求问题;搞清数量间的关系.。
2.分析.。
教师提问:重点分析哪句话呢?“吃了”这句话是分率句.是什么意思呢?
(就是把100千克白菜平均分成5份,吃了这样的4份).。
3.画图.(演示课件:分数乘法应用题1)。
画图说明:a.量在下,率在上,先画单位“1”
b.十份以里分份,十份以上画示意图.。
c.画图用尺子,用铅笔.。
4.尝试解答.。
解法一:用自己学过的'整数乘法做。
(千克)。
解法二:
(二)巩固练习。
六年级一班有学生44人,参加合唱队的占全班学生的,参加合唱队有多少人?
1.把哪个数量看作单位“1”?
2.为什么用乘法计算?
(三)教学例2。
例2.小林身高米,小强身高是小林的,小强身高多少米?
1.演示课件:分数乘法应用题2。
2.求参加合唱队有多少人实际上就是求米的是多少。
3.列式:(米)。
答:小强身高米.。
(四)变式练习。
小强身高米,小林身高是小强的倍,小林身高多少米?
三、归纳、总结。
1.今天所学题目为什么用乘法计算。
2.用分数乘法解答的题的条件和问题上有什么共同的特点?从哪里入手分析?
共同点:都是已知单位“1”和分率,求单位“1”的几分之几是多少。
从分率可入手分析。
四、训练、深化。
(一)先分析数量关系,再列式解答。
1.一只鸭重千克,一只鸡的重量是鸭的,这只鸡重多少千克?
2.一个排球定价36元,一个篮球的价格是一个排球的,一个蓝球多少元?
(二)提高题。
1.一桶油400千克,用去,用去多少千克?还剩多少千克?
2.一桶油400千克,用去吨,用去多少千克?还剩多少千克?
五、课后作业。
(一)修路队计划修路4千米,已经修了。修了多少千米?
(二)一头鲸长7米,头部长占。这头鲸的头部长多少米?
(三)成昆铁路全长1100千米,桥梁和隧道约占全长的。桥梁和隧道约长多少千米?
六、板书设计。
六年级数学分数应用题说课稿篇六
公式求解法:许多应用题可以根据题目的数量关系,总结、归纳、推导出解答这类题目的数量关系式(或公式),如:圆柱体积计算公式,路程、速度、时间的关系式等。这些应用题在教学过程中,要让学生熟练掌握这些数量关系式(公式),并正确灵活运用于应用题的解答。
转化求解法:转化求解策略是数学解题的一个重要技巧,它把生疏的题目转化成熟悉的题目;把繁难的题目转化成简单的题目;把抽象的题目转化为具体的题目,教学中要引导学生灵活运用转化技巧化生为熟,化繁为简,化抽象为具体,提高学生解题能力。假设求解法:假设求解就是根据应用题的已知条件,先做一个假设,然后根据题意和假设之间的矛盾进行分析、调整,寻求解题途径。
六年级数学分数应用题说课稿篇七
图形运动型试题:初中数学的图形运动有平移、翻折和旋转。图形变换是一种重要的思想方法,它是一种以变化的、运动的观点来处理孤立的、离散的问题的思想,很好地领会这种解题的思想实质,并能准确合理地使用,在解题中会收到奇效,也将有效地提高思维品质。在解题中我们要通过实验、操作、观察和想象的方法掌握运动的本质,在图形的运动中找到不变量,然后解决问题。
阅读理解型试题:这是检验学生是否“会学”数学的一类试题,通过让学生阅读一段新的数学知识,然后来解答有关习题。实验操作型试题:观察、试验、猜想、探索是新课标的基本概念,这类题有效地考查了学生综合运用知识分析问题和解决问题的能力,试题文字量较大,考查学生良好的基本功底和快速的理解能力,数形结合的思路在题中充分体现。
六年级数学分数应用题说课稿篇八
不管是简单分数应用题还是复杂的分数应用题,题中都有关键句,关键句中都有单位“1”的量,准确找出单位“1”的量是解答分数应用题的前提条件。
一般来讲,单位“1”的确定有以下两点方法和规律:
1、关键句中分数前面有个“的”,“的”字前面的量就是单位“1”的量。
如“甲的2/3是乙”,那么单位“1”的量就是2/3前面的“甲”;“乙是甲的4/7”,那么单位“1”的量就是“甲”;“乙的7/8相当于甲”,那么单位“1”的量就是“乙”。
2、关键句中“比”字后面的量是单位“1”的量。
如“篮球比足球多1/3”,那么单位“1”的量就是比字后面的量足球;“足球比篮球少1/4”,那么单位“1”的量是篮球。
有些分数应用题,如果按照从始至终的先后顺序去分析,很难达到解决问题的目的,甚至陷入绝境。家长可以引导孩子不妨“反过来想一想”进行逆推,便容易打开思路,顺利解题。比如:
分析:从最后条件出发思考:95+5=100(千克),即为现存油的5/6,故现在桶里有油100除以5/6=120(千克)。
综合算式:
﹝(95+5)÷(1-1/6)-20﹞÷(1-1/3)=150(千克)。
有些分数应用题,如果按题中所给条件直接去思考,就难以找到解题方法,如果在解题时先假设一个主观上所需要的条件,然后按照题目里数量关系推算,所得的结果发生与题目条件不同的矛盾,再进行适当的调整,即可找到正确的答案。如:
分析:假设第一周修的恰好是全长的2/5,这样第一、二周修后剩下的282米中就要增加10米。
假设第二周修的恰好是全长的1/4,这样第一、二周修后剩下的282米中就要减少5米,于是条件变为“”第一周修了全长的2/5,第二周修了全长的1/4,还剩(282+10-5)米没有修。
把这条路全长看作单位“1”,那么(282+10-5)的对应分率就是(1-2/5-1/4)。
于是列式为:(282+10-5)÷(1-2/5-1/4)=8201(米)。
有些分数应用题,可以通过改变看问题的角度将题中某些已知数量转换成与之有关联的另一个量,使其成为一个较为熟悉的简单的问题,从而找到解题的方法。如:
分析:这道题可以转化为熟悉的“归一”问题。题中的5/7根据分数的意义,表示把这时第一个钱罐里的钱平均分成7份,这时第二个钱罐里的钱占其中的5份,这5份共35+15=50(元),则每份是50÷5=10(元)。
因此,这时第一个钱罐有钱10×7=70(元),那么第一个钱罐里原有钱70+15=85(元)。综合算式:(35+15)÷5/7+15=85(元)。
六年级数学分数应用题说课稿篇九
分数应用题很多时候容易产生“歧义”,所以家长要特别提醒孩子在审题时抓住关键句,找准比较的对象。
分数应用题中都有说明两个量之间关系的句子,这些句子是应用题的题眼、解题的突破点。比如:
分析:设定原来的速度为100%,提高20%后为120%,当再次降低时,是在120%的基础上降低,此时的20%是120%×0.2=24%。所以降低后是120%-24%=96%。
六年级数学分数应用题说课稿篇十
一、说教材:
这部分内容是在学过的分数除法的意义和计算法则、分数乘法应用题、用方程解答已知一个数的几分之几是多少求这个数的文字题的基础上进行教学的,这类应用题是教学中的难点,在与求一个数的几分之几是多少的应用题混合练习中,难以判断用乘法还是用除法解答。教学这类应用题,要紧密联系一个数乘分数的意义,先用列方程的方法来解答,在此基础上再教学用分数除法来解答,这样不但加强了与求一个数的几分之几是多少的乘法应用题的联系,同时也加强对应用题的数量关系的分析,特别是判断哪个数量是单位“1”的量,分析它是已知还是未知来确定怎样用方程解。另外,还加强了方程解法与用除法解法之间的联系,使学生在掌握方程解法的基础上,切实学会用除法来解,这样既培养了学生灵活解答分数应用题的能力,又有助于发展学生思维的灵活性。
教学目标:1、让学生经历解决生活中实际问题的过程,使学生掌握用方程解答“已知一个数的.几分之几是多少,求这个数”的应用题;2、通过分析解决问题的学习活动,培养学生分析问题和解决问题的能力。
教学重点:找准单位“1”,找出数量关系。
教学难点:能正确地分析数量关系并列方程解答应用题。
二、说教学法:
为实现教学目标,有效地突出重点、突破难点,依据现代认知科学理论,运用直观性原则,采用线段图展示条件和问题,帮助学生理解题意,分析数量关系,确定解题方法,在师生共同分析、教师主导基础上,紧扣学生已有经验,密切数学与生活联系,引导学生通过小组比较、互动、合作讨论等方式分析数量关系,再独立完成解答过程,做到扶放适度,促进学生在半独立、独立实践中掌握知识,提高解决问题的能力,培养学生自主学习意识和创新意识,学会探究问题的方法。
三、说教学过程设计及意图:
教学过程主要分三个层次。
第一、通过形式多样的复习做铺垫,面向全体学生为学习新知做好充分准备。主要设计三道复习题:1、找单位“1”的量;2、根据分率句写数量关系式;3、分数乘法应用题。
第二、探究新知教学。首先例1的教学通过教师与学生逐步图示和引导,着重帮助学生分析题中的数量关系,使学生明确这种题型的分析思路与乘法应用题是一致的,再放手让学生通过独立练习,明确解题的基本方法,通过比较复习题与例1的异同,让学生感知乘、除法的内在联系,最后进行口述检验,旨在让学生养成良好的学习习惯;其次在教学例2时,与例1不同之处,只是涉及到两种量,教学画图时要画两条线段,再放手让他们小组合作完成作图,数量关系的分析,放手让他们自己解答,培养他们分析问题、解决问题的能力。
第三是巩固提高阶段。练习安排上做到循序渐进,第1题基本上同例题一样叙述数量间关系,第2题在叙述上稍做变化,第3道增加一步为两步计算的应用题,旨在培养学生思维灵活性,同时注重对学生语言表达能力的训练。练习中基本上采用全部放手的做法,让学生独立分析解答,教师在引导、鼓励学生完成学习任务,给学生营造自主的学习氛围。练习后,师生共同进行课的小结,老教师布置课后作业。
六年级数学分数应用题说课稿篇十一
1.使学生能够区分分数乘、除法应用题,学会找数量间相等的关系,列方程解应用题。
2.提高学生的分析解题能力,发展学生的分析推理能力。
教学重点和难点。
重点:分析数量关系,帮助学生理解题意。
难点:找出数量间相等的关系,准确列方程解题。
教学过程。
(一)复习。
1.判断单位1练习。
的数量为单位1。)。
单位1。)。
2.找准单位1,并用乘法算式表示下面各题的数量关系。
3.准备题。
说出下面各题的特点,并列式解答。
导入:这两道题中出现三个量,即苹果、梨、桔子,下面老师把这两道题改编成这样一道题。
(二)讲授新课。
出示例5。
1.找出题中已知条件和未知条件。老师根据学生的.回答,指导他们画图。
提问:这道题里有几个量?需要用几条线段来表示?(有三个数量,需要画三条线段。)。
提问:先根据哪个条件来画线段,表示哪个量?(根据梨的筐数是苹。
师:把苹果看成单位1,画在上面,梨和苹果比,画在苹果的下面。
线段画在梨的下面。
2.分析数量关系。
提问:苹果的筐数和哪个量有关系?有什么关系?(和梨的筐数有关。
提问:梨的筐数又和哪个量有关系?有什么关系?(梨的筐数和桔子。
提问:梨、苹果、桔子三量之间是什么关系?(组织学生讨论)。
提问:你能根据题中的数量关系,列出等量关系式吗?
如果学生回答不上来,老师可继续提问。
3.根据等量关系列方程。
解设桔子为x筐。
答:桔子有25筐。
列式后继续提问:
(3)等号两边表示的都是谁的筐数?
(4)等号两边都是根据什么列的算式?
(根据分数乘法的意义,求一个数的几分之几用乘法来列式的。)。
师:为了检验同学们对分数乘除复合应用题的掌握情况,请同学们做下面练习。
(三)巩固练习。
(投影片)。
1.第52页的练一练。(讨论)。
(1)找出含有分率的句子,说说谁是单位1?
的重量)。
2.看图列方程解题。
找出本题的等量关系,列方程解题。
3.填空并列式解答:
(4)设为x万米。
(5)列方程为。
通过填空练习,可以帮助学生进行数量关系的分析,所以应让学生根据这几个填空进行讨论,老师可根据学生的讨论填空。
副标题#e#。
4.对比练习。
厘米?
设谁为x厘米?等量关系式是什么?(设高为x厘米,等量关系式为:
米?
设谁为x厘米?等量关系式是什么?(设高为x厘米,等量关系式为。
对比;第一道题是分数连除的复合应用题,第二道是分数乘除复合应用题。
(四)课堂总结。
今天我们学的应用题有什么特点?(是以前学过的分数乘除法应用题的复合题。)。
解答这类题应注意什么?(弄清题里有几个量,它们之间什么关系,找出等量关系。)。
(五)布置作业。
(略)。
课堂教学设计说明。
这是一节分数乘除复合应用题的新授课,题中哪部分属于乘法题,哪部分属于除法题,历来是学生学习的难点,所以在教案设计中尽量做到有画图、有讨论、有比较。引导学生有重点地进行分析,帮助学生理清解题思路,从而找到数量间相等的关系,列方程解题。
在练习设计中,重在培养学生分析问题和解决问题的能力。通过填空,对比练习,引导学生分析、比较,深入思考,把思维的过程一步步引入深层,逐渐把分数乘、除法应用题的解题方法统一到分数乘法的意义上来。这样,不仅揭示了分数乘、除法应用题的联系,也培养了学生的思维品质。
本教案无论是新授还是练习,都把培养学生的思维能力做为训练重点,通过教学,达到激发学生情趣,培养能力之目的。
六年级数学分数应用题说课稿篇十二
细心地发掘概念和公式:很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
收集自己的典型错误和不会的题目:同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。
六年级数学分数应用题说课稿篇十三
(2)(教材第3页例2)。
【教学目标】。
通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。
【重点难点】。
体会引入负数的必要性,初步理解负数的含义。
【新课讲授】。
1.教学例2。
(1)教师出示存折明细示意图。(教材第3页的主题图)教师:同学们能说说“支出(-)或(+)”这一栏的数各表示什么意义吗?组织学生分组讨论、交流,然后指名汇报。
(2)引导学生归纳总结:像2000,500这样的数表示的是存入的钱数;而前面有“-”号的数,像-500,-132这样的数表示的是支出的钱数。
(3)教师:上述数据中500和-500意义相同吗?(500和-500意义相反,一个是存入,一个是支出)。你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗?说说你是怎么表示的?师把学生的表示结果一一板书在黑板上。
2.归纳正数和负数。
(1)你能把黑板上板书的这些数进行分类吗?小组讨论交流。
(2)教师展示分类的结果,适时讲解。像+8,+4,+2000,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。像-8,-4,-500,-20这样的数,我们把它叫做负数。
(3)那么0应该归为哪一类呢?组织学生讨论,相互发表意见。师设难:“我认为0应该归为正数一类。”
归纳:0既不是正数也不是负数,它是正数和负数的分界点。
(4)你在什么地方见过负数?教师鼓励学生注意联系实际举出更多的例子。
【课堂作业】。
完成教材第4页的“做一做”第2题。
【课堂小结】。
通过这节课的学习,你有什么收获?
【课后作业】。
完成练习册中本课时的练习。
教学反思:
六年级数学分数应用题说课稿篇十四
1.使学生理解成数和折扣的含义,以及成数和折扣与分数、百分数之间的关系;会解答有关成数和折扣的应用题。
2.提高学生分析、解答应用题的能力,发展学生思维的灵活性。
理解成数和折扣的含义;理解成数和折扣与分数、百分数的含义。
1.把下列各数化成百分数。
2.李庄去年种小麦50公顷,今年种小麦60公顷。今年比去年多种小麦百分之几?
师述:农业收成,有时用成数来表示。今天我们就来学习有关成数和折扣的应用题。
板书:分数应用题
1.成数的含义。
师述:什么是成数呢?“几成”就是十分之几,如“一成”就是十分之一,也就是10%。
(1)填空:
“三成”是十分之( ),改写成百分数是( )。
“三成五”是十分之( ),改写成百分数是( )。
(2)把下面的“成数”改写成百分数。
七成 二成五 五成 九成九
十成 二成八 七成四 八成二
2.出示例1。
(1)学生默读。
(2)这道题和复习中的第三题有什么不同之处?
(3)指名学生说解题思路。
师述:在列式计算时,我们可以直接把“成数”化成百分数,用百分数进行列式计算。
板书:
=416×(1+25%)
=52(吨)
答:今年收白菜52吨。
3.练习。
4.折扣的含义。
师述:工厂和商店为了推销商品,有时将商品减价百分之几销售,这就是平常说的打“折扣”销售。
某种商品打“八折”出售,就是按原价的80%出售,也就是减价20%。打五折出售,就是按原价的( )%出售,也就是减价( )%。
5.出示例2。
例2 商店出售一种录音机,原价330元。现在打九折出售,比原价便宜了多少元?
(1)学生读题。
(2)问:打九折出售是什么意思?
(3)求比原价便宜了多少元?你想怎样解答?
(4)指名说解题思路。
板书:方法(一) 330-330×90%
=330-297
=33(元)
方法(二) 330×(1-90%)
=330×10%
=33(元)
答:比原价便宜了33元。
6.课堂小结。
今天我们学习了哪些知识?
师述:今天我们学习了有关“成数”和“折扣”的知识,知道了“成数”和“折扣”的含义,以及“成数”和“折扣”与分数和百分数之间的关系,并且学习了有关“成数”和“折扣”的一些实际的、简单的应用题。
1.填空:
(1)某县今年棉花产量比去年增产三成。这句话的意思是( )是( )的30%。
(2)一块麦地,改用新品种后,产量增加了四成五。这句话的意思是改用新品种后产量是( )的( )%。
(3)一种皮茄克打九折出售。这句话的意思是( )是( )的90%。
(4)一批旧书打五五折出售。这句话的意思是现价比( )便宜了( )%。
2.把下面的折扣数改写成百分数。
七折 九折 六五折 八五折 六八折
3.把下面的百分数改写成“成数”。
75% 60% 42% 100% 95%
本节课从概念入手,并和原来学习的百分数应用题进行比较,学生易于找到突破口,便于学生理解、掌握本节课的重点和难点。通过和百分数应用题的比较,加深了学生对百分数应用题的理解和掌握,培养了学生分析能力。另外,课本上出现了大量生活中的实例,使学生体会到百分数就在我们身边,学好百分数应用题,能解决大量实际问题,从而提高了学生学习百分数应用题的兴趣。
六年级数学分数应用题说课稿篇十五
她从容不迫,让学生在轻松愉悦的氛围中感受数学,领会数学,语言富有感染力和亲和力。
靳老师通过复习分数与小数、小数与百分数的知识,为学习今天的百分数与分数的互化做好了铺垫。
教学时教师把课堂交给学生,从刚开始讲授新知,就让学生提出自己感兴趣的数学问题,激发了孩子们的求知欲,引发学生去思考问题,解决问题。随后的在教学20%怎样化成分数时,教师也是一步步的'引导学生说出百分数化成分数的步骤和方法。即先把百分数化成分母为100的分数,如果这个分数可约分要进行约分。这样学生对所学知识就有了一定的条理性和系统性。
靳老师在学生遇到问题时,及时予以点拨,让学生明白自己错在哪里。如在教学把0.4%化成分数这道题时,有的学生不会做或者做错,靳老师一步一步引导学生找到方法,指出错误说明原因。0.4%先化成分母是100的分数,但是现在的这个分数的分子是小数,为了得到最简分数,要怎么办呢?同学们说出把分子上的小数化成分数,那么怎样化呢?学生说出是利用分数的性质,分子和分母同时乘以10。最后在进行约分就可以了。
靳老师所选的题目有直接转化题、列示计算题和表格题。形式多样的练习有利于学生积极主动去巩固新知。由易到难的设计也符合小学生的认知发展水平,使不同能力的学生得到充分的发挥。
建议:
1、教师讲课的语调稍有点低。
2、复习时选择的题较多,应对这些题进行适当的筛选,为后面讲授新知和进行练习节约时间。
3、课的导入有些枯燥,缺乏情境。应选用孩子感兴趣的情景导入新课,激发孩子们的求知欲,这样一个良好的开端会对整堂课学生的学习兴趣大有帮助。
4、课件展示不及时。学生每做完一道题,教师应及时把答案给学生展示出来,这不仅是对做对的同学的肯定,也是对做错同学的提醒。
六年级数学分数应用题说课稿篇十六
2.学会用一个数乘分数的意义解答两步分数乘法应用题.。
教学重点。
1.掌握两步分数应用题的解题思路和方法.。
教学难点。
分析两次单位“1”的不同之处.。
教学过程。
一、复习、质疑、引新。
(一)指出下面分率句中的单位“1”.。
1.乙是甲的。
2.小红的身高是小明的。
3.参加合唱队的同学占全班同学的。
4.乙的相当于甲。
5.1个篮球的价钱是一个排球价钱的倍。
(二)口头分析并列式解答。
1.小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?
2.小华储蓄了15元,小新储蓄的是小华的,小新储蓄了多少元?
二、探索、悟理。
(一)出示组编的例题。
1.思考讨论。
(1)小华储蓄的钱是小亮的,是什么意思?谁是单位“1”?
(2)小新储蓄的是小华的,又是什么意思?谁是单位“1”?
2.汇报思路讲方法。
由此基础上试列综合算式:
(二)巩固练习。
小华有36张邮票,小新的邮票是小华的,小明的邮票是小新的,小明有多少张邮票?
1.分析数量关系,独立画图并列式解答.。
2.学生板演.。
(张)。
(张)。
答:小明有40张.。
3.综合算式。
三、归纳、明理。
用连乘解答的题有什么特点?”“解题思路是什么?”
1.认真读题弄清条件和问题。
2.确定单位“1”找准数量关系。
根据分数乘法的意义,找准“量”、“率”对应关系,即谁是谁的几分之几.。
3.列式解答。
板书:抓住分率句,找准单位“1”,
画图来分析,列式不用急.。
四、训练、深化。
(一)联想练习根据下面的每句话,你能想到什么?
1.苹果的个数是梨的.(如,梨是单位“1”;苹果少,梨多;苹果比梨少等)。
2.修了全长的。
3.现在的售价比原来降低了。
(二)先口头分析数量关系,再列式解答.。
1.鹅的孵化期是30天,鸭的孵化期是鹅的,鸡的孵化期是鸭的,鸡的孵化期是多少天?
(三)提高题.。
五、课后作业。
六、板书设计。
六年级数学分数应用题说课稿篇十七
1.巩固分数连除应用题的分析方法,掌握此类题的结构及数量关系。
2.进一步提高学生的分析概括能力及解题能力。
教学重点。
找准单位“1”,巩固分数除法应用题的解答方法。
教学难点。
掌握分数连除应用题的结构及数量关系。
教学过程。
(一)复习。
(投影)。
1.找准单位“1”,并列式解答。
2.出示准备题。
(1)读题,请学生找出已知条件和未知条件。
(3)老师指导学生画图。老师先画一条线段表示美术组人数后提问:谁和美术组比?怎么画?(生物组和美术组比,可以画在美术组上面。)谁和生物组比?(航模组和生物组比,应画在最上面。)。
提问:美术组,生物组,航模组三个数量之间有什么关系。
(4)请一名同学列式解答,然后订正。
(二)讲授新课。
老师把准备题进行改编。
指名读题,找出已知条件和未知条件。
1.指导学生画图。
提问:这道题中有哪几个量?需用几条线段来表示?(有三个量,用三条线段表示。)。
提问:和准备题比,已知条件和未知条件发生了什么变化?(给了航模组人数,求美术组人数。)。
老师按学生的回答,把准备题的图示进行修改。
2.找出含有分率的句子,进行分析。
(3)这道题中有几个单位“1”?美术组、生物组、航模组三量之间有什么关系?
(4)根据三量之间的关系,列出等量关系式。
(5)这个式子的等号两边相等吗?为什么?
人。)。
学生回答,老师板书:
3.根据等量关系列方程解答。
提问:根据上面的分析,应设谁为x?(设美术组人数为x。)。
老师板书:
解设美术组有x人。
答:美术组有30人。
看方程提问:
(3)为什么要设美术组人数为x?
(因为只有知道美术组的人数,才能求出生物组的人数。航模组又和生物组比,所以设美术组为x人。)。
师小结:对于含有两个“已知一个数的几分之几是多少,求这个数”这样条件的复合应用题,首先要找准单位“1”,在两个单位“1”都是未知的情况下,根据题中条件,准确设定其中一个单位1的量为x。
(三)巩固练习。
(投影)。
先讨论以下问题,再动笔做:找出单位“1”,画图并分析数量关系。
2.看图,找出数量间相等的关系,并列方程解答:
(1)说出这个图所反映的等量关系式。
(2)师小结:这道题出现了“小汽车是大汽车的4倍”,而不是几分之几,但它们的数量关系不变,解题思路也一样。
师:这道题和前两题比,前两题是不同数量相比较,这一道题是同一数量相比较,我们可以画单线图分析数量关系。(老师指导画图。)。
三好生4人。
学生动笔做,老师带领学生订正。
的高是多少厘米?
根据题意填空:
是()厘米。设()为x。
果树有多棵?
(四)课堂总结。
今天我们学习的应用题有什么特点?(今天学习的是由过去学过的两道分数除法应用题组成的复合题。)。
这类题分析解答时应注意什么?(弄清有哪三个量,它们之间什么关系?找出等量关系,确定设哪个量为x,再列方程解答。)。
(五)布置作业。
(略)。
课堂教学设计说明。
本节课讲的是分数连除应用题,是连续求一个数的几分之几是多少的逆解题,所以本课由分数连乘应用题引入,通过改变已知条件和未知条件,使之转变成一道分数连除应用题,为帮助学生理清数量关系,抓住新旧知识的共同因素,列方程解应用题打下了基础。本教案还重视分析思路的训练,通过设计提问和画线段图分析数量关系,为学生自己解题奠定了基础。在练习的设计中,采用不同形式,由扶到放,不但一步步强化了学生的分析思路,也进一步培养了学生逻辑思维能力。
六年级数学分数应用题说课稿篇十八
(一)出示例8的4个小题.。
1.学校有20个足球,篮球比足球多,篮球有多少个?
2.学校有20个足球,足球比篮球多,篮球有多少个?
3.学校有20个足球,篮球比足球少,篮球有多少个?
4.学校有20个足球,足球比篮球少,篮球有多少个?
(二)学生试做.。
1.第一题。
解法(一)。
解法(二)。
2.第二题。
解:设篮球有个.。
解法(一)。
解法(二)。
解法(三)。
3.第三题。
解法(一)。
解法(二)。
4.第四题。
解:设篮球个.。
解法(一)。
解法(二)。
解法(三)。
(三)比较区别。
1.比较1、3题.。
什么不同的地方?
(1)观察讨论.。
(2)全班交流.。
(3)师生归纳.。
这两道题都是把足球看作单位1,单位1的量是已知的,求篮球有多少个?
2.比较2、4题。
(1)观察讨论.。
(2)全班交流.。
(3)师生归纳.。
(一)请你根据算式补充不同的条件.。
学校有苹果树30棵,________________,桃树有多少棵,
1.2.。
3.4.。
5.6.。
(二)分析下面的数量关系,并列出算式或方程.。
1.校园里有柳树60棵,杨树比柳树多,杨树有多少棵?
2.校园里有柳树60棵,杨树比柳树少,杨树有多少棵?
3.校园里的杨树比柳树多,杨树有25棵,柳树有多少棵?
4.校园里的柳树比杨树少,杨树有25棵,柳树有多少棵?
.
六年级数学分数应用题说课稿篇十九
进一步理解分数应用题的解题思路、数量关系和解题方法,进一步提高学生分析推理的能力和解题能力。
进一步理解分数应用题的解题思路、数量关系和解题方法,进一步提高学生分析推理的能力和解题能力。
教学过程设计
师生活动
备注
一、 基本训练
二、应用题练习
二、讲解思考题
四、课堂作业
1、口算
2、说出单位1的量和分数的对应数量
(见幻灯投影)
3、根据条件说出数量关系式(见幻灯投影)
1、做练习四第6题
问:把哪个数量看作单位1?为什么?题里有怎样的数量关系?
2、做练习四第8题
问:哪个数量是单位1的量?与对应的哪个数量?要求什么数量?
又问:这道题你是怎样想的?求萝卜比白菜少多少吨的数量关系式是什么?
3、做练习四第11题
问:这两题有什么相同和不同的地方?和吨表示的意思有什么不同?
又问:这两题都求还剩多少吨,为什么第(1)
题用乘法,第(2)题用减法?
4、分析练习四第12题
1、出示口答题(见幻灯投影)
2、学生读思考题
问:这里两个3/10的.意义有什么不同?
练习四7、9、10、12
说明:解答像上面这样的分数应用题,关键是确定单位1的数量。
重点还应放在单位1和数量关系上。在一个数是另一个数的几分之同的数量关系方面有些同学不太掌握,需要加强.