高一数学函数的奇偶性教案设计大全(16篇)
教案能够提高教师的课堂教学效果,有效提升学生的学习效果。教案的编写要灵活应变,根据实际教学情况进行调整和优化。范文中的教学资源使用合理,能够充分支持教学活动。
高一数学函数的奇偶性教案设计篇一
一、内容与解析(一)内容:基本初等函数习题课(一)。
(二)解析:对数函数的性质的掌握,要先根据其图像来分析与记忆,这样更形像更直观,这是学习图像与性质的基本方法,在此基础上,我们要对对数函数的两种情况的性质做一个比较,使之更好的'掌握.
二、目标及其解析:
(一)教学目标。
(1)掌握指数函数、对数函数的概念,会作指数函数、对数函数的图象,并能根据图象说出指数函数、对数函数的性质,了解五个幂函数的图象及性质及其奇偶性.
(二)解析。
(1)基本初等函数的学习重要是学习其性质,要掌握好性质,从图像上来理解与掌握是一个很有效的办法.
(2)每类基本初类函数的性质差别比较大,学习时要有一个有效的区分.
三、问题诊断分析。
在本节课的教学中,学生可能遇到的问题是不易区分各函数的图像与性质,不容易抓住其各自的特点。
四、教学支持条件分析。
在本节课一次递推的教学中,准备使用p5。
高一数学函数的奇偶性教案设计篇二
【知识目标】:使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.
【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.
【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.由于判断或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判断或证明函数的单调性是本节课的难点.
【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用如下(1)函数的单调性起着承前启后的作用。一方面,初中数学的许多内容在解决函数的某些问题中得到了充分运用,函数的单调性与前一节内容函数的概念和图像知识的延续有密切的联系;函数的单调性一节中的知识是它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础。
(2)函数的单调性是培养学生数学能力的良好题材,这节课通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确定义,明确指出函数的增减性是相对于某个区间来说的。教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格证明方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系。同时还要综合利用前面的知识解决函数单调性的一些问题,有利于学生数学能力的提高。
(3)函数的单调性有着广泛的实际应用。在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的'数形结合思想将贯穿于我们整个数学教学。因此“函数的单调性”在中学数学内容里占有十分重要的地位。它体现了函数的变化趋势和变化特点,在利用函数观点解决问题中起着十分重要的作用,为培养创新意识和实践能力提供了重要方式和途径。
【学情分析】从学生的知识上看,学生已经学过一次函数,二次函数,反比例函数等简单函数,函数的概念及函数的表示,能画出一些简单函数的图像,从图像的直观变化,学生能粗略的得到函数增减性的定义,所以引入函数的单调性的定义应该是顺理成章的。从学生现有的学习能力看,通过初中对函数的认识与实验,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生也容易产生共鸣,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。但是如何运用数学符号将自然语言的描述提升为形式化的定义,学生接受起来比较困难?在教学中要多引导,让学生真正的理解函数单调性的定义。
【教学方法】教师是教学的主体、学生是学习的主体,通过双主体的教学模式方法:启发式教学法——以设问和疑问层层引导,激发学生,启发学生积极思考,逐步从常识走向科学,将感性认识提升到理性认识,培养和发展学生的抽象思维能力。探究教学法——引导学生去疑;鼓励学生去探;激励学生去思,培养学生的创造性思维和批判精神。合作学习——通过组织小组讨论达到探究、归纳的目的。【教学手段】计算机、投影仪.
【教学过程】一、创设情境,引入课题(利用电脑展示)1.如图为某市一天内的气温变化图:(1)观察这个气温变化图,说出气温在这一天内的变化情况.(2)怎样用数学语言刻画在这一天内“随着时间的增大,气温逐渐升高或下降”这一特征?引导学生识图,捕捉信息,启发学生思考.问题:观察图形,能得到什么信息?预案:(1)当天的最高温度、最低温度以及何时达到;(2)在某时刻的温度;(3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,是很有帮助的.问题:还能举出生活中其他的数据变化情况吗?预案:股票价格、水位变化、心电图等等春兰股份线性图.水位变化图归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.
〖设计意图〗由生活情境引入新课,激发兴趣.二、归纳探索,形成概念对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知问题1:分别作出函数的图象,并且观察自变量变化时,函数值有什么变化规律?(学生自己动手画,然后电脑显示下图)预案:生:函数在整个定义域内y随x的增大而增大;函数在整个定义域内y随x的增大而减小.师:函数的图像变化规律生:在y轴的的左侧y随x的增大而减小.在y轴的的右侧y随x的增大而增大。师:我们学过区间的表示方法,如何用区间的概念来表述图像的变化规律生:在上y随x的增大而增大,在上y随x的增大而减小.师:这样表述就比较严密了,很好。由上面的讨论可知,函数的单调性与自变量的范围有关,一个函数并不一定在整个正义域内是单调函数,但在定义城的某个子集上可以是单调函数。(3)函数的图像变化规律如何。
生:(1)定义域中的减函数。(2)在上y随x的增大而减小,在上y随x的增大而减小.师:对于两种答案,哪一种是正确的,为什么?学生分组讨论。从定义域,图像的角度考虑,也可以举反例引导学生进行分类描述(增函数、减函数).并引导学生用区间明确描述函数的单调性从而让学生明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.
问题2:能不能根据自己的理解说说什么是增函数、减函数?预案:如果函数在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数;如果函数在某个区间上随自变量x的增大,y越来越小,我们说函数在该区间上为减函数.教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识.
〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识.2.探究规律,理性认识问题1:下图是函数的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?(电脑显示,学生分组讨论)学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.
〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性.问题2:如何从解析式的角度说明在为增函数?预案:生:在给定区间内取两个数,例如1和2,因为1222,所以在为增函数.生:仅仅两个数的大小关系不能说明函数y=x2在区间[0,+∞)上为单调递增函数,应该举出无数个。由于很多学生不能分清“无数”和“所有”的区别,所以许多学生对学生2的说法表示赞同。
生:函数)无数个如(2)中的实数,显然f(x)也随x的增大而增大,是不是也可以说函数在区间上是增函数?可这与图象矛盾啊?师:“无数个”能不能代表“所有”呢?比如:2、3、4、5……有无数个自然数都比大,那我们能不能说所有的自然数都比大呢?所以具体值取得再多,也不能代表所有的,思考如何体现区间上的所有值。引导学生利用字母表示数。生:任取且,因为,即,所以在为增函数.旧教材的定义在这里就可以归纳出来,但是人教b版新教材使用了自变量的增量和函数值的增量来表述,并为以后学习利用导数判断函数的单调性做准备,所以需进一步引导学生利用增量来定义函数的单调性。
(5)仿(4)且,由图象可知,即给自变量一个增量,,函数值的增量所以在为增函数。对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量进一步寻求自变量的增量与函数值的增量之间的变化规律,判断函数单调性。注意这里的“都有”是对应于“任意”的。
〖设计意图〗把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.3.抽象思维,形成概念问题:你能用准确的数学符号语言表述出增函数的定义吗?师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.
(1)板书定义设函数的定义域为a,区间ma,如果取区间m中的任意两个值,当改变量时,都有,那么就称函数在区间m上是增函数,如图(1)当改变量时,都有,那么就称函数在区间m上是减函数,如图(2)。
高一数学函数的奇偶性教案设计篇三
1、了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法。
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念。
(2)能从数和形两个角度认识单调性和奇偶性。
(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程。
2、通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想。
3、通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度。
一、知识结构。
(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像。
二、重点难点分析。
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识。教学的难点是领悟函数单调性,奇偶性的本质,掌握单调性的证明。
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点。
三、教法建议。
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程当中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来。
(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。
函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。
高一数学函数的奇偶性教案设计篇四
教学任务分析:
(1)理解幂函数的概念,会画五种常见幂函数的图像;
(2)结合幂函数的图像,理解幂函数图像的变化情况和性质;
(3)通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。
教学重点:
常见幂函数的的概念、图像和性质。
教学难点:
幂函数的单调性及比较两个幂值的大小。
教具准备:
多媒体课件、投影仪、打印好的作业。
教学情景设计。
问题。
问题2:如果正方形的边长为x,那么正方形面积y=?
问题3:如果正方体的棱长为x,那么正方体体积y=。
问题4:如果正方形场地的面积为x,那么正方形的边长?y=?
问题5:如果某人x秒内骑车行进1千米,那么他骑车的平均速度y=(千米/秒)引导学生探索发现:
引导学生归纳结论。
(1)?指数为常数。
1、即(是)。
2、(不是)。
3、(不是)。
定义域。
值域。
高一数学函数的奇偶性教案设计篇五
理解函数的奇偶性及其几何意义。
【过程与方法】。
利用指数函数的图像和性质,及单调性来解决问题。
【情感态度与价值观】。
体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣。
【重点】。
【难点】。
(一)导入新课。
取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:
答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称;
(二)新课教学。
(1)偶函数(evenfunction)。
(学生活动):仿照偶函数的定义给出奇函数的定义。
(2)奇函数(oddfunction)。
注意:
1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。
2、具有奇偶性的函数的图象的特征。
偶函数的图象关于y轴对称;
奇函数的图象关于原点对称。
3、典型例题。
例1.(教材p36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性(本例由学生讨论,师生共同总结具体方法步骤)。
解:(略)。
总结:利用定义判断函数奇偶性的格式步骤:
1首先确定函数的定义域,并判断其定义域是否关于原点对称;
2确定f(-x)与f(x)的关系;
3作出相应结论:
若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;
若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数。
(三)巩固提高。
1、教材p46习题1.3b组每1题。
解:(略)。
(教材p41思考题)。
规律:
偶函数的图象关于y轴对称;
奇函数的图象关于原点对称。
说明:这也可以作为判断函数奇偶性的依据。
(四)小结作业。
课本p46习题1.3(a组)第9、10题,b组第2题。
三、规律:
偶函数的图象关于y轴对称;
奇函数的`图象关于原点对称。
高一数学函数的奇偶性教案设计篇六
《函数的奇偶性》这节课的教学模式是采用循序渐进,由简单的问题引入,然后在教师的引导下,探索结论,最后,在教师的指导下,对所学的实际结论进行学生的实际应用。
一、这种教学模式的教学程序是:
(一)实际练习引入课题,并能去发现生活中的相关信息,引起学生的兴趣。
(二)看图,具体引入函数进行观察探索,包括图像观察,自变量的变化,函数值的变化规律。
(三)明确这是函数的一种性质,明确定义,并强调定义中的注意事项,怎样理解定义中的规定。
(四)教师具体以例题进行示范,学生们领会对函数奇偶性的认识,并怎样进行判断。
(五)同学们在领会的基础上,进行实际训练,达到对知识的理解和应用。
二、这种教学模式的优势是:循序渐进,学生能够实际参与,在教学中体现和谐,教师的导和学生的练保证教学的效果。
这种教学模式的`缺点与解决方法是:
还缺乏对学生更高层次的参与的调动,尤其是职业中学中部分在初中已经放弃学习的同学的参与问题。对配套练习要进一步细化,要对每一个知识点都要精心设计相应知识点的训练,图像的认识上,要加大同学们对生活的感知和相关软件的使用,并能在电脑上实际体验函数图像的对称情况。
高一数学函数的奇偶性教案设计篇七
教学目标:了解奇偶性的含义,会判断函数的奇偶性。能证明一些简单函数的奇偶性。弄清函数图象对称性与函数奇偶性的关系。
难点:函数图象对称性与函数奇偶性的关系。
一、复习引入。
(1)奇函数。
(2)偶函数。
(3)与图象对称性的关系。
(4)说明(定义域的要求)。
二、例题分析。
例1、判断下列函数是否为偶函数或奇函数。
例2、证明函数在r上是奇函数。
三、随堂练习。
1、函数()。
是奇函数但不是偶函数是偶函数但不是奇函数。
既是奇函数又是偶函数既不是奇函数又不是偶函数。
2、下列4个判断中,正确的是_______.
(1)既是奇函数又是偶函数;
(2)是奇函数;
(3)是偶函数;
(4)是非奇非偶函数。
3、函数的图象是否关于某直线对称?它是否为偶函数?
高一数学函数的奇偶性教案设计篇八
教材分析:
幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数。?幂函数模型在生活中是比较常见的,学习时结合生活中的具体实例来引出常见的幂函数?.组织学生画出他们的图象,根据图象观察、总结这几个常见幂函数的性质。对于幂函数,只需重点掌握?这五个函数的图象和性质。学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析。学生已经有了学习幂函数和对象函数的学习经历,这为学习幂函数做好了方法上的准备。因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习。
课时分配1课时。
教学目标。
重点:从五个具体的幂函数中认识的概念和性质。
难点:从幂函数的图象中概括其性质,据幂函数的单调性比较两个同指数的指数式的大小。
知识点:幂函数的定义、五个幂函数图象特征。
能力点:通过具体实例了解幂函数的图象和性质,并能进行简单的应用。
自主探究点:通过作图归纳总结幂函数的相关性质。
考试点:了解幂函数的概念,
结合函数的图象了解它们的变化情况。
易错易混点:学生容易将幂函数和指数函数混淆。
拓展点:通过指数函数的图象性质研究幂函数指数的变化。
教具准备:多媒体辅助教学。
课堂模式:导学案。
一、引入新课。
(一)回顾引入。
【师生互动】师:数学的内在美常常让我感动,下面我们共同来欣赏运算的完美性,
思考:由8、2、3、这四个数,运用数学符号可组成哪些等式?
生:探讨,交流。
师生共同分析:
师:我们知道对于等式。
1.如果一定,随着的变化而变化,我们建立了指数函数。
2.如果一定,随着的变化而变化,我们建立了对数函数。
设想:如果一定,随着的变化而变化,是不是也可以确定一个函数呢?
【设计说明】使学生回忆所学两个基本初等函数,为所要学习的幂函数作铺垫。
(二)观察下列对象:
问题(1):如果张红购买了每千克1元的蔬菜千克,那么她需要付的钱数=元,
问题(2):如果正方形的边长为,那么正方形的面是=。
问题3):如果正方体的边长为,那么正方体的体积是=。
问题(4):如果正方形场地面积为,那么正方形的边长=。
问题(5):如果某人s内骑车行进了1km,那么他骑车的平均速度=。
【师生互动】师:(1)它们的对应法则分别是什么?
(2)以上问题中的函数有什么共同特征?
让学生独立思考后交流,引导学生概括出结论。
生:(1)乘以1(2)求平方(3)求立方。
(4)求算术平方根(5)求-1次方。
师:上述的问题涉及到的函数,都是形如:,其中是自变量,是常数。
师生:共同辨析这种新函数与指数函数的异同。
二、探究新知。
组织探究。
1.幂函数的定义。
一般地,形如(r)的函数称为幂函数,其中是自变量,是常数。
如等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数。
【师生互动】师:1.幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种“形式定义”的函数,引导学生注意辨析。
2.研究函数的图像。
(1)(2)(3)。
(4)(5)。
生:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所作图象,体会幂函数的变化规律。
师:引导学生应用函数的性质画图象,如:定义域、奇偶性。
师生共同分析:强调画图象易犯的错误。
【设计意图】(1)通过具体作图,可使学生加深对图象的直观印象,记忆比较牢固;同时也提高了学生数形结合的思维能力;(2)符合学生的认知规律,由特殊到一般,从具体到抽象;(3)充分发挥学生学习的能动性,以学生为主体,展开课堂教学。
【师生互动】师:引导学生观察图象,归纳概括幂函数的的性质及图象变化规律。
生:观察图象,分组讨论,探究幂函数的性质和图象的变化规律,并展示各自的结论进行交流评析,并填表。
定义域值域奇偶性单调性定点。
师生共同分析幂函数性质:
(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);。
高一数学函数的奇偶性教案设计篇九
【过程与方法】。
利用指数函数的图像和性质,及单调性来解决问题。
【情感态度与价值观】。
体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣。
【重点】。
【难点】。
(一)导入新课。
取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:
答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称;。
(二)新课教学。
(1)偶函数(evenfunction)。
(学生活动):仿照偶函数的定义给出奇函数的定义。
(2)奇函数(oddfunction)。
注意:
1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;。
2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。
2.具有奇偶性的函数的图象的特征。
偶函数的图象关于y轴对称;。
奇函数的图象关于原点对称。
3.典型例题。
例1.(教材p36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性(本例由学生讨论,师生共同总结具体方法步骤)。
解:(略)。
总结:利用定义判断函数奇偶性的格式步骤:
1首先确定函数的定义域,并判断其定义域是否关于原点对称;。
2确定f(-x)与f(x)的关系;。
3作出相应结论:
若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;。
若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数。
(三)巩固提高。
1.教材p46习题1.3b组每1题。
解:(略)。
(教材p41思考题)。
规律:
偶函数的图象关于y轴对称;。
奇函数的图象关于原点对称。
(四)小结作业。
课本p46习题1.3(a组)第9、10题,b组第2题。
三、规律:
偶函数的图象关于y轴对称;。
奇函数的`图象关于原点对称。
高一数学函数的奇偶性教案设计篇十
知识梳理:
1、轴对称图形:
2中心对称图形:
1、画出函数,与的图像;并观察两个函数图像的对称性。
2、求出,时的函数值,写出。
结论:
(1)、强调定义中任意二字,奇偶性是函数在定义域上的整体性质。
(2)、奇函数偶函数的定义域关于原点对称。
5、奇函数与偶函数图像的对称性:
如果一个函数是奇函数,则这个函数的图像是以坐标原点为对称中心的__________。反之,如果一个函数的图像是以坐标原点为对称中心的中心对称图形,则这个函数是___________。
如果一个函数是偶函数,则这个函数的图像是以轴为对称轴的__________。反之,如果一个函数的图像是关于轴对称,则这个函数是___________。
(1)(2)(3)。
(4)(5)。
练习:教材第49页,练习a第1题。
总结:根据例题,你能给出用定义判断函数奇偶性的步骤?
题型二:利用奇偶性求函数解析式。
例2:若f(x)是定义在r上的奇函数,当x0时,f(x)=x(1-x),求当时f(x)的解析式。
练习:若f(x)是定义在r上的奇函数,当x0时,f(x)=x|x-2|,求当x0时f(x)的解析式。
已知定义在实数集上的奇函数满足:当x0时,,求的表达式。
题型三:利用奇偶性作函数图像。
例3研究函数的性质并作出它的图像。
练习:教材第49练习a第3,4,5题,练习b第1,2题。
当堂检测。
1已知是定义在r上的奇函数,则(d)。
a.b.c.d.
2如果偶函数在区间上是减函数,且最大值为7,那么在区间上是(b)。
a.增函数且最小值为-7b.增函数且最大值为7。
c.减函数且最小值为-7d.减函数且最大值为7。
3函数是定义在区间上的偶函数,且,则下列各式一定成立的是(c)。
a.b.c.d.
4已知函数为奇函数,若,则-1。
5若是偶函数,则的单调增区间是。
6下列函数中不是偶函数的是(d)。
abcd。
7设f(x)是r上的偶函数,切在上单调递减,则f(-2),f(-),f(3)的大小关系是(a)。
abf(-)f(-2)f(3)cf(-)。
8奇函数的图像必经过点(c)。
a(a,f(-a))b(-a,f(a))c(-a,-f(a))d(a,f())。
9已知函数为偶函数,其图像与x轴有四个交点,则方程f(x)=0的所有实根之和是(a)。
a0b1c2d4。
11若f(x)在上是奇函数,且f(3)_f(-1)。
12、解答题。
已知函数在区间d上是奇函数,函数在区间d上是偶函数,求证:是奇函数。
已知分段函数是奇函数,当时的解析式为,求这个函数在区间上的解析表达式。
高一数学函数的奇偶性教案设计篇十一
1.复习因式分解的概念,以及提公因式法,运用公式法分解因式的方法,使学生进一步理解有关概念,能灵活运用上述方法分解因式.
2.通过因式分解综合练习,提高观察、分析能力;通过应用因式分解方法进行简便运算,培养学生运用数学知识解决实际问题的意识.
高一数学函数的奇偶性教案设计篇十二
按照描点法分三步画图:
(2)描点按照表中所列出的函数对应值,在平面直角坐标系中描出相应的7个点;
(3)边线用平滑曲线顺次连接各点,即得所求y=x2的图象。
注意两点:
(1)由于我们只描出了7个点,但自矿业量取值范围是实数,故我们只画出了实际图象的一部分,即画出了在原点附近、自变量在-3到3这个区间的一部分。而图象在x3或x-3的`区间是无限延伸的。
(2)所画的图象是近似的。
3.在原点附近较精确地研究二次函数y=x2的图象形状到底如何?――我们c1与1之间每隔0.2的间距取x值表和图13-14。按课本p118内容讲解。
4.引入抛物线的概念。
关于抛物线的顶点应从两方面分析:一是从图象上看,y=x2的图象的顶点是最低点;一是从解析式y=x2看,当x=0时,y=x2取得最小值0,故抛物线y=x2的顶点是(0,0)。
小结。
(1)函数解析式关于自变量是整式;(2)函数自变量的最高次数是2。
高一数学函数的奇偶性教案设计篇十三
2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期。
3会用代数方法求等函数的周期。
4理解周期性的几何意义。
“周期函数的概念”,周期的求解。
1、是周期函数是指对定义域中所有都有,即应是恒等式。
2、周期函数一定会有周期,但不一定存在最小正周期。
例1、若钟摆的高度与时间之间的函数关系如图所示。
(1)求该函数的周期;
(2)求时钟摆的高度。
例2、求下列函数的周期。
(1)(2)。
总结:(1)函数(其中均为常数,且的周期t=xx)。
(2)函数(其中均为常数,且的周期t=xx)。
例3、求证:的周期为。
且
总结:函数(其中均为常数,且的周期t=。
例5、(1)求的周期。
(2)已知满足,求证:是周期函数。
课后思考:能否利用单位圆作函数的图象。
高一数学函数的奇偶性教案设计篇十四
讲授新课前,做一份完美的教案,能够更大程度的调动学生在上课时的积极性,以下是白话文为大家整理的人教版高一数学《指数函数》教案,希望可以帮助到有需要的朋友。
1。使学生掌握的概念,图象和性质。
(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。
(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。
(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象。
2。通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。
3。通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。
(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。
(2)本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数在和时,函数值变化情况的区分。
(3)是学生完全陌生的一类函数,对于这样的.函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。
(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是。
(2)对底数的限制条件的理解与认识也是认识的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面对数函数中底数的认识,所以一定要真正了解它的由来。
关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。
1。理解的定义,初步掌握的图象,性质及其简单应用。
2。通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。
3。通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。
重点是理解的定义,把握图象和性质。
难点是认识底数对函数值影响的认识。
投影仪。
启发讨论研究式。
一。引入新课。
我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数———————。
1。6。(板书)。
这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:
由学生回答:与之间的关系式,可以表示为。
问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了次后绳子剩余的长度为米,试写出与之间的函数关系。
由学生回答:。
在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量均在指数的位置上,那么就把形如这样的函数称为。
一。的概念(板书)。
1。定义:形如的函数称为。(板书)。
教师在给出定义之后再对定义作几点说明。
2。几点说明(板书)。
(1)关于对的规定:
教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若会有什么问题?如,此时,等在实数范围内相应的函数值不存在。
若对于都无意义,若则无论取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定且。
(2)关于的定义域(板书)。
教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时,也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为。扩充的另一个原因是因为使她它更具代表更有应用价值。
(3)关于是否是的判断(板书)。
刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。
(1), (2), (3)。
(4), (5)。
学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3)可以写成,也是指数图象。
最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。
3。归纳性质。
作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。
函数。
1。定义域:
2。值域:
3。奇偶性:既不是奇函数也不是偶函数。
4。截距:在轴上没有,在轴上为1。
对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于轴上方,且与轴不相交。)。
在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故的值应有正有负,且由于单调性不清,所取点的个数不能太少。
此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当越小,图象越靠近轴,越大,图象上升的越快),并连出光滑曲线。
二。图象与性质(板书)。
1。图象的画法:性质指导下的列表描点法。
2。草图:
当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且,取值可分为两段)让学生明白需再画第二个,不妨取为例。
此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单。即=与图象之间关于轴对称,而此时的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到的图象。
最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如的图象一起比较,再找共性)。
由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:
以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。
填好后,让学生仿照此例再列一个的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。
3。性质。
(1)无论为何值,都有定义域为,值域为,都过点。
(2)时,在定义域内为增函数,时,为减函数。
(3)时,, 时,。
总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。
三。简单应用 (板书)。
1。利用单调性比大小。 (板书)。
一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。
例1。比较下列各组数的大小。
(1)与; (2)与;。
(3)与1。(板书)。
首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。
解:在上是增函数,且。
(板书)。
教师最后再强调过程必须写清三句话:
(1)构造函数并指明函数的单调区间及相应的单调性。
(2)自变量的大小比较。
(3)函数值的大小比较。
后两个题的过程略。要求学生仿照第(1)题叙述过程。
例2。比较下列各组数的大小。
(1)与; (2)与 ;。
(3)与。(板书)。
先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说可以写成,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说可以写成,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)。
最后由学生说出1,1,。
解决后由教师小结比较大小的方法。
(1)构造函数的方法:数的特征是同底不同指(包括可转化为同底的)。
(2)搭桥比较法:用特殊的数1或0。
三。巩固练习。
练习:比较下列各组数的大小(板书)。
(1)与 (2)与;。
(3)与;(4)与。解答过程略。
四。小结。
1。的概念。
2。的图象和性质。
3。简单应用。
五。板书设计。
高一数学函数的奇偶性教案设计篇十五
1、使学生掌握指数函数的概念,图象和性质。
(1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域。
(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质。
(3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如。
的图象。
2、通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。
3、通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。
教材分析。
(1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。
在
和
时,函数值变化情况的区分。
(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。
(1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是。
的样子,不能有一点差异,诸如。
(2)对底数。
的限制条件的理解与认识也是认识指数函数的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。
关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。
高一数学函数的奇偶性教案设计篇十六
(1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域.
(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质.
(3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如。
的图象.
2.通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.
3.通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.
教学建议。
教材分析。
(1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.
(2)本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质.难点是对底数在和时,函数值变化情况的区分.
(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.
教法建议。
(1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是。
的样子,不能有一点差异,诸如。
(2)对底数。
的限制条件的理解与认识也是认识指数函数的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.
关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.
<