数学教案正比例的意义(模板16篇)
教案能够规范教学过程,使学生的学习更加有针对性和有效性。教案的编写需要根据课程标准和教材要求进行合理的教学设计。这些教案范文注重了学科知识的融会贯通和学生能力的培养。
数学教案正比例的意义篇一
1、认识"0",知道"没有"可用"0"来表示。
2、发展联系生活情景的联想能力。
每人自备一个空纸盒、数卡0---9、秒表、温度计。
一、看看有什么。
每人打开一个空纸盒,说说里面有什么。"没有"可以用什么来表示?(可以用"0"来表示)出示数卡"0",幼儿认读,说说"0"像什么。(蛋、气球、圆圈)请幼儿在空盒里装上喜欢的东西,说说现在是否还能用"0"来表示。
二、说"0"。
启发幼儿联系生活实际,想想说说还有什么情况可用"0"来表示。如幼儿园里的.小朋友都回家了,可以用"0"来表示等。
可请个别幼儿来表演,如伸出五个手指头,然后藏在背后,可以用"0"来表示;拿几张卡片,一一发给好朋友,自己一张都没有了,也可以用"0"来表示。
三、了不起的"0"。
"0"可以用来表示没有,还可用来表示其他吗?
教师参与幼儿讨论并逐一出示数卡、温度计、秒表等,使幼儿知道"0"排在任何一个数字后面,就能使该数字增大许多。"0"在秒表中间表示开始,温度计上的"0"表示零上和零下的分界等。
原来"0"不单单表示"没有"了,还有很多的用处呢。
数学教案正比例的意义篇二
1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
成正比例的量的特征及其判断方法。
理解两个变量之间的比例关系,发现思考两种相关联的'量的变化规律.
启发引导法。
自主探究法。
课件。
一、定向导学(5分)。
1、已知路程和时间,求速度。
2、已知总价和数量,求单价。
3、已知工作总量和工作时间,求工作效率。
4、导入课题。
今天我们来学习成正比例的量。
5、出示学习目标。
1、理解正比例的意义。
2、能根据正比例的意义判断两种量是不是成正比例。
二、自主学习(8分)。
自学内容:书上45页例1。
自学时间:8分钟。
自学方法:读书法、自学法。
自学思考:
1、举例说明什么是成正比例的量,成正比例的量要具备几个条件?
2、正比例关系式是什么?
(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。例如底面积一定,体积和高成正比例。
y/x=k(一定)。
(4)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是175立方米?225立方厘米的水有9厘米。
2、归类提升。
引导学生小结成正比例的量的意义和关系式。
三、合作交流(5分)。
第46页正比例图像。
1、正比例图像是什么样子的?
2、完成46页做一做。
3、各组的b1同学上台讲解。
四、质疑探究(5分)。
1、第49页第1题。
2、第49页第2题。
3、你还有什么问题?
五、小结检测(8分)。
1、什么是正比例关系?如何判断是不是正比例关系?
2、检测。
1、49页第3题。
六、堂清作业(9分)。
练习九页第4、5题。
数学教案正比例的意义篇三
3.培养学生的抽象概括能力和分析判断能力.。
1.已知路程和时间,怎样求速度?
2.已知总价和数量,怎样求单价?
3.已知工作总量和工作时间,怎样求工作效率?
(一)导入新课。
(二)教学例1.(课件演示:成正比例的量)。
2.出示下表,并根据上述内容填表.。
一列火车行驶的时间和路程。
时间(时)。
……。
路程(千米)。
……。
3.思考:在填表过程中,你发现了什么?
(1)表中有时间和路程两种量.。
(2)当时间是1小时,路程则是90千米,
时间是2小时,路程是180千米……。
时间变化,路程也随着变化.。
时间扩大,路程随着扩大;时间缩小,路程也随着缩小.。
教师说明:像这样,时间变化,路程也随着变化,我们就说,时间和路程是两种相关。
联的量.。
教师板书:两种相关联的量。
(3)请每位同学先取一组相对应的数据,然后计算出路程与时间的比的比值.。
教师板书:
(4)教师提问:根据计算,你发现了什么?
教师说明:相对应的两个数的比的比值都一样或固定不变,在数学上叫做“一定”
教师板书:相对应的两上数的比值一定。
4.教师小结。
教师板书:
(三)教学例2(继续演示课件:成正比例的量)。
例2.在一间布店的柜台上,有一张写着某种花布鞋的米数和总价的表.。
时间(时)。
1
2
3
4
5
6
7
……。
路程(千米)。
8.2。
16.4。
24.6。
32.8。
41.0。
49.2。
57.4。
……。
1.观察上表。
(1)表中有数量(米数)和总价这两种量,它们是两种相关联的量.。
(2)总价随米数的变化情况是:
米数扩大,总价随着扩大;米数缩小,总价也随着缩小.。
(3)相对应的总价和米数的比的比值是一定的.。
教师板书:
2.师生小结。
通过刚才的观察和分析,我们知道总价和米数也是两种什么样的量?为什么?
怎样变化?它们扩大、缩小的规律是怎样的?
教师板书:(一定).。
(2)例1中时间变化,路程就随着变化;例2中米数变化,总价也随着变化.。
教师板书:一种量变化,另一种量也随着变化.。
(3)两种量中相对应的两个数的比值(也就是商)一定.。
教师板书:两种量中相对应的两个数的比值(也就是商)一定.。
2.小结。
3.字母关系式。
教师板书:(一定)。
(五)教学例3(继续演示课件:成正比例的量)。
例3.每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?
2.汇报判断结果,并说明判断的根据.。
(六)反馈练习.。
出示图片:做一做1。
数学教案正比例的意义篇四
教科书第63页的例2,“练一练”和练习十三的第4、5题。
1。能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。
2。使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。
3。使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的'习惯。
能认识正比例关系的图像。
利用正比例关系的图像解决实际问题。
多媒体。
一、复习激趣。
1、判断下面两种量能否成正比例,并说明理由。
数量一定,总价和单价。
和一定,一个加数和另一个加数。
比值一定,比的前项和后项。
二、探究新知。
1、出示例1的表格。
根据表中列出的两种量,在黑板上分别画出横轴和纵轴。
你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?
2、学生尝试画出正比例的图像。
3、展示、纠错。
每个点都应该表示路程和时间的一组对应数值。
4、回答例2图像下面的问题,重点弄清:
(1)说出每个点表示的含义。
(2)为什么所描的点在一条直线上?
(3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎么看的?
借助直观的图像理解两种量同时扩大或缩小的变化规律。
三、巩固延伸。
1、完成练一练。
小玲打字的个数和所用的时间成正比例吗?为什么?
根据表中的数据,描出打字数量和时间所对应的点,再把它们按顺序连起来。
估计小玲5分钟打了多少个字?打750个字要多少分钟?
2、练习十三第4题。
先看一看、想一想,再组织讨论和交流。要求学生说出估计的思考过程。
3、练习十三第5题。
先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。
组织讨论和交流。
4、你能根据生活实际,设计出两种成正比例量关系的一组数据吗?
根据表中的数据,描出所对应的点,再把它们按顺序连起来。
同桌之间相互提出问题并解答。
四、反思。
这节课你学会了什么?你有哪些收获?还有哪些疑问?
五、作业。
完成《练习与测试》相关作业。
板书设计。
数学教案正比例的意义篇五
教科书第52页例1,第55页课堂活动第1题及练习十二1,2,3题。
1.使学生通过具体问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行交流。
2.通过探索正比例意义的教学活动,使学生感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
3.通过观察、交流、归纳、推断等教学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活应用知识的能力。
认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系。
理解正比例的意义,感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
教具:多媒体课件。
学具:作业本,数学书。
(1)下面是居委会张阿姨负责的小区水费收缴情况,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。
(2)揭示课题。
教师:这些数量之间藏着不少的知识,今天这节课我们就来研究这些数量间的一些规律和特征。
用课件在刚才准备题的表格中增加几列数据,变成表。
教师:请同学们观察这张表,先独立思考后再讨论、交流:从这张表中你发现了什么规律?并根据这种规律帮助张阿姨把表格填写完整。
教师根据学生的回答将表格完善,并作必要的板书。
教师:同学们发现表格中的水费随着用水量的增加也在不断增加,像这样水费随着用水量的变化而变化,我们就说水费和用水量是相互关联的。
板书:相关联
教师:你们还发现哪些规律?
学生在这里主要体会水费除以用水量得到的每吨水单价始终是不变的,教师可根据学生的回答板书出来,便于其他学生观察:
教师:水费除以用水量得到的单价相等也可以说是水费与用水量的比值相等,也就是一个固定的数。
板书:
教师:我们再来研究一个问题。
课件出示第52页下面的试一试。
学生先独立完成。
教师:你能用刚才我们研究例1的方法,自己分析这个表格中的`数据吗?
教师根据学生的回答归纳如下:
表中的路程和时间是相关联的量,路程随着时间的变化而变化。
时间扩大若干倍,路程也扩大相同的倍数;时间缩小若干倍,路程缩小相同的倍数。
路程与时间的比值是一定的,速度是每时80 km,它们之间的关系可以写成路程时间=速度(一定)
教师:我们研究了上面生活中的两个问题,谁能发现它们之间的共同点呢?
引导学生归纳出这两个问题中都有相关联的量,一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数,所以它们的比值始终是一定的。
教师:像上面这样的两种量,叫做成正比例的量,它们的关系叫做成正比例关系。
教师:请大家说一说生活中还有哪些是成正比例的量。
(1)完成练习十二的第1题。
教师:请同学们用所学知识判断一下,下面表中的两种量成正比例关系吗?为什么?
学生独立思考,先小组内交流再集体交流。
(2)完成练习十二的第2题。
教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?
数学教案正比例的意义篇六
教学目标:
1、运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义。
2、感受比在生活中的广泛应用,提高解决问题的能力。
教学重点:
理解按一定的比来分配一个数量的意义。
教学难点:
根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地运用乘法求各部分量。
教学过程:
一、谈话导入:
同学们,我们已经认识了比,那么比在生活中有什么用途呢?这节课我们就来探究一下比在生活中的应用。
二、交流预习情况:
1、集体订对获取的数学信息及提出的问题。
师板书摘要:
信息:一筐橘子,分给大班和小班,已知大班30人,小班20人。
问题:怎么分合理?能不能按比分配?
2、小组交流解决问题的策略(要求小组每人发言)。
3、小组汇报:
方案一:大班30个,小班20个,分完为止;
方案二:大班3个,小班2个,分完为止;
方案三:大班30个,小班20个,剩下的平均分;
方案四:大班往小班去5人,然后平均分;
方案五:数清橘子总数,除以总人数,再用每人所分个数乘各班人数即各班所得;
方案六:将橘子平均分成5份,大班3份,小班2份;
……。
4、针对方案同学提出疑义,并作出更改;
在解决疑问中,明确和以前所学的平均分有所不同。
更改如:大班30个,小班20个,剩下的不能平均分,要按3:2分才合理;
5、比较发现合理方案的共同点:不管怎么分,都要保证最终两个班分到的橘子数量的比要和两班的人数比相等。
三、尝试解决问题:如果共有140个橘子,该怎么分?
同桌交流后列式解决,指生上堂板演并讲解解题思路:
解法一:30:20=3:23+2=5140÷5=28(个)。
大班:28×3=84(个)小班:28×2=56(个)。
解法二:30:20=3:23+2=5。
大班:140×=84(个)小班:140×=56(个)。
四、师生总结解题方法。
今天遇到的问题不是平均分,而是按一定的比进行分配的问题,我们是把按比分配的问题转化成了以前的平均分问题,只是要按比所表示的份数平均分。
思路:已知整体,按比把它分成两部分或几部分,求各部分。
板书:总数量×=各部分的数量。
五、巩固练习p55试一试,练一练1题。
独立完成,集体订正。
六、小结(学生小结,师生补充)。
板书设计:
总数量×=各部分的数量。
数学教案正比例的意义篇七
教材分析:
正比例应用题这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例1教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。通过方框中的说明突出了怎样进行思考的过程,特别强调了新科技要判断题目中两种相关联的量成什么比例关系,以及列出比例式所需的相等关系,即“行驶的路程和时间成正比例关系,所以两次行的路程和时间的比是相等的”然后再设未知数,列出等式(方程)解答,并在解答的基础上引导学生“想一想”,如果改变例1题目里的条件和问题该怎样解答。
教学对象分析:
成正比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正比例的量,从而加深对正比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。
数学教案正比例的意义篇八
2.使学生理解和掌握乘法交换律,并能运用它进行验算.。
教学重点:
使学生理解并运用乘法的意义及其运算定律――交换律.。
教学难点:
乘法交换律的应用.。
教具学具准备。
口算卡片、投影仪.。
教学步骤。
一、铺垫孕伏。
1.口算:14×350×302×5015×415+15+15+15。
4+4+4+430×1260×404×259+9+9+9+9。
2.导入:刚才的口算题同学们算得很对,那么同学们想不想即算得对又算得快呢?好!为了实现你们的愿望,这节课我们继续学习乘法的有关知识.乘法的意义和乘法的交换律.(板书课题)。
二、探求新知。
数学教案正比例的意义篇九
反思整节课,体现了学生自主探究,从生活情境出发,真正解放了学生,既关注了学生的学习过程,又使学生在交流评价过程中情感、态度、价值观等方面获得丰富的体验,较好的体现了事先的教学设想,感触较深。
这部分内容是在教学过比和比例的知识的基础上进行教学的,着重使学生理解正比例的意义。比例是建立在比的关系的基础上的,所以必须让学生回顾明确什么是是比和比值。两个数相除叫做这两个数的比。所得的商叫做比值。比有两种写法,一种是比号写法,另一种是用分数写法。只有比值一样的两个比才能组成比例。从内容上看,“成正比例的量”这一内容,在整个小学阶段是一个较抽象的概念,他不仅要让学生理解其意义,还要学会判断两种是否是成正比例的量,同时还要理解用字母公式来表示正比例关系,要渗透给学生一些函数的思想,为以后初中学习打下基础。根据教材和内容的特点,我选择了师生互动,以教师的“引”为主导,学生为主体,让学生在互动交流中去理解成正比例的量这一概念。首先,让学生弄清什么叫“两种相关联”的量,我引导学生去从表格中去发现时间和路程两种量的变化情况,在变化中发现:路程随着时间的变化而变化的,同时引导学生初步感知成正比例的两种量的变化方向性。其次,我进一步引导学生考虑:路程随着时间的变化而变化,在这一变化过程中,有什么规律呢?学生看了春游路程和时间表中之后,发现路程和时间比的比值是一样的,都是500米。让学生理解相对应的路程和时间的比的比值都是500米,从而突破了正比例关系的第二个难点。两种量中相对应的两个数的比会一定。把学生对成正比例量的意义的理解成一系统。由于学生还是第一次接触这一概念,之后,例2的学习还是让学生对比例1来自己理解数量和总价的正比例关系。最后,在两个例题学习的基础上总结出成正比例量的意义,把这意义从局部的路程和时间、数量和总价推广到其他数量之间的关系。然后,老师例子说明,并且请学生互动找例子。
不足之处是在练习方面,学生找不到哪些数量成正比例时应让学生讨论,每个正比例关系都应让学生互相说一说,这样或许会懂得更多。
数学教案正比例的意义篇十
活动目标:
1.体验从高到矮或从矮到高的排列顺序。
2.大胆地用语言表述排列的结果。
活动准备:
1.事先联系好一个小朋友的爸爸妈妈来幼儿园配合幼儿活动。(也可利用图片的方式)。
2.《幼儿画册》(第三册p7)。
活动过程:
数学教案正比例的意义篇十一
理解正比例的意义,掌握正比例变化的规律。
请同学口述三量关系:
(1)路程、速度、时间;(2)单价、总价、数量;(3)工作效率、时间、工作总量。
(学生口述关系式、老师板书。)
今天我们进一步研究这些数量关系中的一些特征,请同学们回答老师的问题。
幻灯出示:
生:60千米、120干米、180千米……
师:根据刚才口答的问题,整理一个表格。
出示例1。(小黑板)
例1一列火车行驶的时间和所行的路程如下表。
师:(看着表格)回答下面的问题。表中有几种量?是什么?
生:表中有两种量,时间和路程。
师:路程是怎样随着时间变化的?
师:像这样一种量变化,另一种量也随着变化,这两种量就叫做两种相关联的量。
(板书:两种相关联的量)
师:表中谁和谁是两种相关联的量?
生:时间和路程是两种相关联的量。
师:我们看一看他们之间是怎样变化的?
生:时间由1小时变2小时,路程由60千米变为120千米……时间扩大了,路程也随着扩大,路程随着时间的变化而变化。
生:路程由480千米变为420千米、360千米……
师:从上面变化的情况,你发现了什么样的规律?(同桌进行讨论。)
生:时间从小到大,路程也随着从小到大变化;时间从大到小,路程也随着从大到小变化。
师:我们对比一下老师提出的两个问题,互相讨论一下,这两种变化的原因是什么?
(分组讨论)
师:请同学发表意见。
生:第一题时间扩大了,行的路程也随着扩大;第二题时间缩小了,所行的路程也随着缩短了。
师:根据时间和路程可以求出什么?
生:可以求出速度。
师:这个速度是谁与谁的比?它们的结果又叫什么?
生:这个速度是路程和时间的比,它们的结果是比值。
师:这个60实际是什么?变化了吗?
生:这个60是火车的速度,是路程和时间的比值,也是路程和时间的商,速度不变。
驶多少千米,速度都是60千米,这个速度是一定的,是固定不变的量,我们简称为定量。
师:谁是定量时,两种相关联的量同扩同缩?
生:速度一定时,时间和路程同扩同缩。
师:对。这两种相关联的量的商,也就是比值一定时,它们同扩同缩。我们看着表再算一算表中路程与时间相对应的商是不是一定。
(学生口算验证。)
生:都是60千米,速度不变,符合变化的规律,同扩同缩。
师:同学们总结得很好。时间和路程是两种相关联的量,路程是随着时间的变化而变化的:时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。扩大和缩小的规律是:路程和时间的比的比值总是一样的。
师:谁能像老师这样叙述一遍?
(看黑板引导学生口述。)
师:我们再看一题,研究一下它的变化规律。
出示例2。(小黑板)
例2某种花布的米数和总价如下表:
(板书)
按题目要求回答下列问题。(幻灯)
(1)表中有哪两种量?
(2)谁和谁是相关联的量?关系式是什么?
(3)总价是怎样随着米数变化的?
(4)相对应的总价和米数的比各是多少?
(5)谁是定量?
(6)它们的变化规律是什么?
生:(答略)
师:比较一下两个例题,它们有什么共同点?
生:都有两种相关联的量,一种量变化,另一种量也随着变化。
师:对。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是今天我们学习的新内容。(板书课题:正比例的意义)
师:你能按照老师说的叙述一下例1中两个相关联的量之间的关系吗?
生:路程随着时间的变化而变化,它们的比值(也就是速度)一定,所以路程和时间是成正比例的量,它们的关系是正比例关系。
师:想一想例2,你能叙述它们是不是成正比例的量?为什么?(两人互相试说。)
师:很好。请打开书,看书上是怎样总结的?
(生看书,并画出重点,读一遍意义。)
师:你能举出日常生活中成正比例关系的两种相关联的量的例子吗?
生:(答略)
师:日常生活和生产中有很多相关联的量,有的成正比例关系,有的是相关联,但不成比例关系。所以判断两种相关联的量是否成正比例关系,要抓住相对应的两个量是否商(比值)一定,只有商(比值)一定时,才能成正比例关系。
1.课本上的“做一做”。
2.幻灯出示题,并说明理由。
(1)苹果的单价一定,买苹果的数量和总价( )。
(2)每小时织布米数一定,织布总米数和时间( )。
(3)小明的年龄和体重( )。
师:今天主要讲的是什么内容?你是如何理解的?
(生自己总结,举手发言。)
师:打开书,并说出正比例的意义。有什么不明白的地方提出来。
(略)
课堂教学设计说明
第一部分:复习三量关系,为本节内容引路。
第二部分:新课从创设正比例表象入手,引导学生主动、自觉地观察、分析、概括,紧紧围绕判断正比例的两种相关联的两个量、商一定展开思路,结合例题中的数据整理知识,发现规律,由讨论表象到抽象概念,使知识得到深化。
第三部分:巩固练习。帮助学生巩固新知识,由此验证学生对知识的理解和掌握情况,帮助学生掌握判断方法。最后指导学生看书,抓住本节重点,突破难点。安排适当的练习题,在反复的练习中,加强概念的理解,牢牢掌握住判断的方法。合理安排作业,进一步巩固所学知识。
总之,在设计教案的过程中,力争体现教师为主导,学生为主体的精神,使学生认识结构不断发展,认识水平不断提高,做到在加强双基的同时发展智力,培养能力,并为以后学习打下良好的基础。
数学教案正比例的意义篇十二
1、经历正比例意义的建构过程,通过具体问题认识成正比例的量,能找出生活中成正比例量的实例,能正确判断成正比例的量。
2、通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析比较、归纳概括、判断推理能力,同时渗透初步的函数思想。
3、在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。
一、谈话导入。
1.出示苹果、梨、橘子的图片问:起一个总的名称是什么?
2.出示:仿照第一题填空。
(1)时间:3小时20分2小时45分。
(2)总价:5元()()。
(3)():6千克800克3吨350克。
填后问:左边的是什么?右边对应的是什么?你还能举出一种量和它对应的数吗?
二、学习新课。
(一)相关联的量。
教师做实验,向弹簧称上加钩码问:
(1)这其中有哪两种变化着的`量?(2)弹簧长度为什么会变化?
指出:弹簧长度是随着钩码数量的变化而变化的,像这样的两种量我们把他们叫做相关联的量。
追问:现在你知道什么叫相关联的量了吗?你能举例说明吗?
(二)学习成正比例的量。
1、出示19页表格。
观察图像,填表,回答下面的问题:
(1)表中有哪两个相关联的量?
(2)正方形的周长是怎样随着边长的变化而变化的?
(3)正方形的面积是怎样随着边长的变化而变化的?
(4)它们的变化规律相同吗?
小组讨论交流汇报。
2、20页第2题。
3、正比例的意义。
(1)例1和例2有什么共同点?(两种相关联的量,比值一定)。
师指出:这样的两种量就是成正比例的量,他们的关系叫成正比例关系。
问:现在你知道什么叫成正比例的量了吗?自由说说指生回答阅读课本。
师板书关系式:y/x=k(一定)。
(2)那么,要判断两种量是否成正比例的量该看什么呢?
三、巩固提高:19页说一说。
四、全课小结。
数学教案正比例的意义篇十三
1.一个因数不变,积与另一个因数成正比例.()。
2.长方形的.长一定,宽和面积成正比例.()。
3.大米的总量一定,吃掉的和剩下的成正比例.()。
4.圆的半径和周长成正比例.()。
5.分数的分子一定,分数值和分母成正比例.()。
6.铺地面积一定,方砖的边长和所需块数成正比例.()。
7.圆的周长和直径成正比例.()。
8.除数一定,被除数和商成正比例.()。
9.和一定,加数和另一个加数成正比例.()。
数学教案正比例的意义篇十四
正比例的知识,是六年级的教学内容,是在学生已经学习了比和学会了分析基本数量关系的基础上进行学习的',是学生学习反比例知识以及进一步研究数量关系的基础,内容抽象,学生难以接受。因此,使学生正确的理解正比例的意义是本节课的重点和难点。我在实际教学中,总体来说是比较成功的。主要体现在以下几点:
1、从生活中引入。
数学来源于生活,又运用于生活。所以我从学生所熟悉的生活中的例子入手,引导学生发现我们的身边处处都有相互关联的两种量。如:一个人的“体重”与“年龄”;从家到学校“已经走过的路程”和“剩余的路程”……等等。然后出示一组具有正比例特点的例子,再组织学生进行探究活动。
2、在探究中发现。
探究学习是我们学习数学的基本方法之一,也是我们研究解决问题的重要方法。本课教学中,我通过表格列举出两种变化的数量在一定的情况下变化的数据,引导学生进行探究,从而自己发现两种相关联的量,一种扩大(或缩小)若干倍时,另一种也扩大(或缩小)相同的倍数,而且这两种数量对应的数的比值始终不变。从而理解正比例概念的本质特征。在教学中,使学生在观察、思考、探究中获得新知,充分发挥了学生的主体作用,大大地提高了学习的效率和学习兴趣。
3、在交流中升华。
在本课的设计中,我本着“以学生为主体”的理念,运用启发式的教学原则,给学生以充分交流的时间、空间,组织学生以小组的形式,进行合作交流,使学生把探究中的发现,通过相互交流的形式进行展示,使每个学生不但展示了自己成功,也分享了别人的成果。学生不仅学到了新知,在其他方面也得到了全面提升。
4、在生活中应用。
学习数学目的是运用数学,也就是为了解决身边的数学问题。为此,在归纳总结出了正比例的意义后,我安排了让学生说说生活中的一些正比例关系的例子,培养学生综合运用知识的能力,从而体会到数学离不开生活,生活也离不开数学。
5、在练习中发展。
为了及时巩固新知识,练习是必不可少的。在练习的设计上,我除了设计理解正比例意义题型之外,重点设计了对学生运用正比例意义去判断生活中两种相关联的量是否成正比例的题型。在练习设计上做到由浅入深,循序渐进,使不同的学生都有一定的发展。
6、在反思中进步。
反思整节课教学,基本体现了“以学生自主探究为主”的教学方式,既关注了学生的学习过程,又使学生在交流评价过程中情感、态度、价值观等方面获得丰富的体验,较好的实现了事先的教学设想。
不足之处:由于部分学生在以前分析数量关系这个内容的学习上没有完全过关,我也没有及时扫清学生学习上的这个障碍,所以他们虽然掌握了正比例的特征,但实际运用中,由于不能够正确分析数量关系,所以就不能够准确的判断成正比例的量。以后的教学中要先查漏补缺,以得到更好的教学效果。
数学教案正比例的意义篇十五
本节复习课,目的是通过整理复习,使学生对正比例和反比例的知识有一个全面的认识,使所学知识结构化,系统化。由于学生已是高年级,应该能够自主对知识进行整理,形成系统,因此在整理与回顾时我尽量放手,给学生充足的时间,让学生将本单元所学内容进行回顾整理,再深入各学习小组巡回指导,适当进行点拨。
在这个过程中,我为学生提供自主梳理知识的时间和空间,使学生体会数学知识、方法之间的密切联系。并注重发展学生提出问题、解决问题的能力,在回顾、整理、巩固、应用的过程中帮助学生再次经历重要概念和方法的形成过程,使学生不断积累活动经验,体会一些重要的数学思想。
数学教案正比例的意义篇十六
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。