五年级数学积的近似数教案(精选17篇)
教案是教师在备课阶段制定的一份详细教学计划,它对于课堂教学起到了重要的指导作用。教案的编写需要充分考虑学生的学习兴趣和参与度。这些教案范文涵盖了不同学科和年级的内容,具有一定的代表性。
五年级数学积的近似数教案篇一
1.填一填。
(1)0.9367保留一位小数约是(),保留两位小数约是(),保留三位小数约是()。
(2)13÷14的商保留一位小数要除到第()位,约是();保留两位小数要除到第()位,约是()。
2.求下面各题的商的近似值。(得数保留两位小数。)。
56.29÷6.199÷101。
28.74÷3153.3÷4.7。
3.张师傅8小时做零件617个,平均每小时约做零件多少个?(得数保留整数。)。
4.我国有五大淡水湖,其中鄱阳湖最大,面积为2933平方千米,巢湖居第五,面积为770平方千米。鄱阳湖的面积约是巢湖面积的多少倍?(得数保留两位小数。)。
5.一架飞机0.5小时飞行166.5千米,一只燕子每小时飞行94.5千米,飞机每小时飞行的.路程约是燕子的多少倍?(得数保留整数。)。
6.木工师傅做一个方桌面,需木板0.65平方米。现有6.34平方米的木板,可以做多少个这样的方桌面?(得数保留整数。)。
7.一列火车每小时行65.5千米,从甲城到乙城用了9.3小时,一架飞机每小时飞行166千米,从甲城到乙城需要多少小时?(保留两位小数。)。
五年级数学积的近似数教案篇二
1.填一填。
(1)0.9367保留一位小数约是(),保留两位小数约是(),保留三位小数约是()。
(2)13÷14的商保留一位小数要除到第()位,约是();保留两位小数要除到第()位,约是()。
2.按照“四舍五入”法求出商的近似值,填在下表中。
3.求下面各题的商的近似值。(得数保留两位小数。)。
56.29÷6.199÷101。
28.74÷3153.3÷4.7。
4.张师傅8小时做零件617个,平均每小时约做零件多少个?(得数保留整数。)。
5.我国有五大淡水湖,其中鄱阳湖最大,面积为2933平方千米,巢湖居第五,面积为770平方千米。鄱阳湖的面积约是巢湖面积的多少倍?(得数保留两位小数。)。
6.一架飞机0.5小时飞行166.5千米,一只燕子每小时飞行94.5千米,飞机每小时飞行的'路程约是燕子的多少倍?(得数保留整数。)。
7.木工师傅做一个方桌面,需木板0.65平方米。现有6.34平方米的木板,可以做多少个这样的方桌面?(得数保留整数。)。
五年级数学积的近似数教案篇三
一、用“四舍五入”的方法求出商的近似值。
保留整数保留一位小数保留两位小数。
2.7÷1.1。
16÷23。
2.7÷0.46。
二、下面是几种动物在水中的最高游速。(单位:千米/小时)。
请你计算它们的最高游速是多少千米/分。(结果保留三位小数)。
动物海狮海豚飞鱼。
速度(千米/小时)405064。
速度(千米/分)。
三、小强的.妈妈要将2.5千克香油分装在一些玻璃瓶。
里,需要准备几个瓶?
四、用27吨甘蔗可以制成3.42吨糖。
1、平均1吨甘蔗能制成多少吨糖?(得数保留两位小数)。
2、制1吨糖需要多少吨甘蔗?(得数保留两位小数)。
五年级数学积的近似数教案篇四
0.5964≈1.025≈1.9937≈。
保留两位小数。
12.038≈12.3045≈。
是“舍”还是“入”,要看省略的尾数部分的最高位是小于5还是等于大于5。
二、p10【例6】。
(1)让学生自读主题、读图,用自己的话讲述题意。
(a)题目的条件(b)条件的之间关系(c)题目求什么,有什么地方需要注意。
(2)独立列横式和竖式求解。
(3)根据题目问题要求,如何用四舍五入求积的近似数。
四舍五入的练习是让学生判断根据哪一位来进行四舍五入。
因为题目要求保留一位小数,这时候四舍五入要看哪一位?
(百分位,百分位上是0,小于5,舍去0和5,保留一位小数)。
五年级数学积的近似数教案篇五
我们生活中有时候需要很精准的数字,比如:
让学生体会生活中有时候只需要近似数,回顾四舍五入。
读书破万卷下笔如有神,以上就是为大家带来的6篇《五年级数学《积的近似数》教案》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在。
五年级数学积的近似数教案篇六
课本第76页。
1、掌握小数四则混合运算的顺序,能正确地进行计算。
2、经历计算、猜想、验证等数学活动过程,初步理解和掌握整数加法、乘法的'运算律对小数加法、乘法同样适用。
3、能运用运算律进行简便计算,掌握简便计算的方法,培养简便计算的意识。
正确计算小数四则混合运算,应用运算律进行简便计算。
运用乘法的运算律进行小数乘法的简便运算。
课件
一、复习导入,揭示课题。(4分钟左右)
1、回忆一下,我们学过的整数四则混合运算的运算顺序是怎样的?乘法运算律有哪些?请用字母表示出来。
总结:
(1)同一级符号从左往右依次计算;
(2)既有加减,又有乘除,先算乘除,再算加减;
(3)有小括号的,先算小括号里面的。
乘法交换律ab=ba
乘法结合律a(bc)=(ab)c
乘法分配率a(b+c)=ab+ac
2、明确课题。
今天就一起来学习“小数四则混合运算”。
1、明确例14中的数学信息及所需要解决的问题。
2、自学。
导学单(时间:5分钟)
(1)看图,根据题意列出综合算式。
(2)你是按照怎样的顺序进行计算的?为什么可以这样计算?
(3)比较两种解法,哪一种更简便?
(4)计算并比较三组算式。
点拨:先分别算出种茄子和辣椒的面积;或先算出这块长方形菜地的长是多少米。
点拨:小数四则混合运算的顺序和整数相同。
总结:“先算出这块菜地的长,再算它的面积”相对简便些。
3、小组交流。
交流内容
(1)小数四则混合运算的顺序是怎样的?
(2)三道算式的圆圈里能填等号吗?为什么?
(3)整数加、乘法的运算律,对小数加、乘法也都适用吗?
4。集体交流。
导学要点:整数加法、乘法的运算律对小数加、乘法同样适用。而且,应用运算律常常能使计算过程比较简便。
(一)适应练习。
1。整合“练一练”第1题和练习十四的第2题,先说出各题的运算顺序,再计算。
点拨:“练一练”第1题的(1)可以先同时计算乘除法,再算加法;练习十四第2题的最后一题,算式中既有中括号又有小括号,先算小括号里的,再算中括号里的。
2。整合“练一练”第2题和练习十四的第2题,用简便方法计算。
点拨:0。25×36=0。25×4×9
运用了什么运算律?
2。4×1。02=2。4×(1+0。02)
运用了什么运算律?
(二)口答练习。
1、练习十四第1题中的6道题。
提醒:
(1)数位对齐;
(2)从个位算起;
(3)不要忘加小数点。
(三)整合练习。
1、练习十四第4题。
提示:要求这四名同学完成接力赛的总时间,只要把表中的四个数据相加就可以了;而求这四个数连加的和时,可以应用加法的交换律和结合律使计算简便。
2、练习十四第5题。
点拨:
(2)0.25×0.35×400先算每棵向日葵可榨油的千克数,再算400棵向日葵可榨油的总千克数。
(四)创编练习。
简便计算:7.3×9.9 0.125×8.8
提醒:7.3×9.9=7.3×(10-0.1)
0.125×8.8=0.125×8×1.1或
0.125×8.8=0.125×(8+0.8)
通过这节课的学习你学到了什么知识?
教学反思:
苏教版四年级上册《整数四则混合运算练习课》数学教案
苏教版四年级上册《整数四则混合运算练习课》数学教案
第七单元整数四则混合运算
第3课时整数四则混合运算练习课
教学内容:
教材第73页。
学生进一步掌握三步混合运算的运算顺序,逐步形成计算技能,经历分析数量关系的过程,巩固解决问题的策略,培养数学思维能力和解决问题的能力。
教学重难点:
掌握三步混合运算的运算顺序,巩固解决问题的策略。
教学过程:
1、揭示课题。
这节课我们继续来练习混合运算,完成练习十一上的练习。(板书课题)
2、口算:
720÷90 484÷2 450÷50
28+42 3×48 40÷2
360×2 65-17 56+8
3、计算下面各题。指名说说混合运算的运算顺序是怎样的?
完成练习十一第9题。
学生独立计算,提醒自觉验算。
4、练习十一第10题。
说说每组中两道算式的相同和不同的地方,再判断哪道算式的得数大。
通过计算检验。
1、练习十一第11、12题。
学生独立解答。
反馈交流各自的解题思路。说说是怎样整理题目中的条件和问题的,怎样分析数量关系的。
2、练习十一第13题。
先让学生独立完成估算,并说说是怎样估算的。
再列式算出结果,并把它与估算的结果比较。
3、练习十一第14题。
学生读题,独立解答。
反馈解题思路。
引导思考“你还能提出什么问题”。
学生提出问题并解答。
通过今天的练习,你有什么收获呢?
四则混合运算
这一单元的目标是这样定的:
1、使学生掌握含有两级运算的运算顺序,正确计算三步式题。
2、让学生经历探索和交流解决实际问题的过程中,感受解决问题的一些策略和方法,学会用两、三步计算的方法解决一些实际问题。
3、使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
从教参的教学目标定位来看,应该是既注重两级运算的运算顺序教学,又要重视解决问题的一些策略。然而结合我们学生的学习实际情况来看,两样都已初步的感受过,但又不是很深入,如:四则运算的计算顺序包括带括号的计算顺序都在平时的练习中曾经碰到过,但不是很多(但有的学生在家长的帮助下对于先乘除后加减的运算顺序了然于胸了)。所以是不是把四则混合运算顺序作为重点来教我真的曾不止一次的怀疑过。让我怀疑动摇的还有一个原因就是学生解决问题的能力太差,新课程一线教师都清楚现在学生解决问题能力的欠缺。所以,这一次四则运算知识的教学也正是加强学生解决问题能力训练的一次好机会,与我有这种相同想法的教师还真不少,认为还是有必要侧重解决问题的策略教学。
在教学式题过程中,我要求学生用先算,再算,最后算来口述式题的运算顺序,减少运算顺序的错误,同时也加强学生语言表达能力。写作业时还要求学生根据式题的运算顺序用简单的画顺序线,以增强运算顺序的形象感。如:第11页例题5:先说出各题的运算顺序,再计算。
(1)42+6(12-4)
(2)42+612-4
口述顺序是:先算括号里的减法,再算口述顺序是:先算乘法,再算加法。最后
括号外的乘法,最后算括号外的加法。算减法。
而在教两三步计算解决简单的数学实际问题时,我先要求学生口述解题思路,让其明白列综合算式应先算什么,再算什么,最后算什么,把抽象的、明理的东西搞得的尽可能的形象,从而更接近于小学生的实际。
只有多巩固练习,就能熟能生巧,做到四则运算式题的顺序无误,列综合算式条理清晰,学生分析问题、解决问题的能力得到了提高,更大的收获是差生做式题的计算减少了不必要的错误。
五年级数学积的近似数教案篇七
1、运用角色游戏活动,帮助幼儿建立初步的角色意识,丰富幼儿的生活经验。
2、复习区分圆形、三角形和正方形的外形特征,尝试描述图形的二维特征。
3、启发幼儿用礼貌用语,进行简单的交往,积累美好的情感体验。
重点:在游戏活动中积累生活经验,并愿意描述。
难点:区分物体图形、颜色的二维特征。
1、小熊两个;小鸭、小兔、小猫挂饰若干;各种形状的礼物若干。
2、供幼儿操作的圆形、三角形和正方形的、大小、颜色不同的饼干若干,贴有圆形、三角形和正方形标记的'盘子各一。活动设计:
一、引起兴趣:
1、今天,我们来做个游戏——扮小动物,你愿意扮谁就选一个挂饰挂在身上。
2、幼儿带上挂饰,你扮谁呀?(我是小兔、我是小鸭……)。
4、怎么去呢?买些什么礼物呢?
5、每位选一件礼物,你选的是什么?告诉你的好朋友。
6、出发——小熊家到了。(敲门进入)。
二、送礼物:
1、告诉小熊自己送的是什么礼物,并祝小熊生日快乐。
2、按小动物分组把礼物送给小熊。
3、请个别幼儿把礼物按图形分类。
三、小熊请客人吃饼干:
1、小黑和小白准备了点心给你们吃,(出示两盆饼干)小黑准备的是奶油饼干,小白准备的是葱油饼干。
3、小白请大家动脑筋:
(1)请小鸭吃红的三角形饼干;
(2)请小兔吃黄的圆形饼干。
(3)请小猫吃绿的正方形饼干。
四、结束部分:
1、我也准备了一份礼物(出示生日蛋糕),引导幼儿一起唱“生日快乐歌”。
2、时间不早了,我们该回家了,等到明年再来给小黑、小白过生日。为您服务学科吧。
五年级数学积的近似数教案篇八
本节教材是北师大版五年级上册第四单元第一课时的内容,它是在前面已经学习了分数的认识、简单的同分母分数加减法的基础上教学的,它将为后面的分数的混合运算打下基础。
1、通过直观操作活动,理解异分母分数加减法的原理。
2、能正确计算异分母分数的加减法。
3、引导学生从现实体验出发,激发学生兴趣,学会合作,与人分享收获,并感受教学与生活的联系。
理解异分母分数的加减法的原理,能正确计算异分母分数的加减法。
理解异分母分数加减法的算理。
为了讲清重点,突破难点,使学生达到本节课制定的目标,再从教法、学法上谈一谈。
我会坚持以学生为主体,教师为主导的原则,根据学生的心理发展规律,采用参与度高的学导式讨论教学法,让学生探究体验、参与合作、互动讨论。
引导学生用动手实践、自主探究、合作交流的学习方式,让学生在体验中感悟情感、态度、价值观,在活动中归纳知识,在参与中培养能力,在合作中学会学习。
结合学生提问,解决第一个问题:一共用了这张纸的几分之几。
引出算式1/2+1/4(板书算式)。
此环节抓住切入点生成本节课的问题,分母不相同的分数相加怎样计算让学生体会异分母分数加减计算的必要性,在生活中确实需要。从而产生强烈的问题意识,使学生因猜想而紧张的沉思,从而达到风起云生的`效果。
(一)解决异分母分数加法。
1、独立思考——投石问路。
在提出1/2+1/4得多少后,让学生独立思考,让全体学生在独立思考的基础上自己的通过画图、折纸、探索计算的算法。
2、合作交流——曲径通幽。
算完后在小组内说一说自己的想法,并展示自己的操作过程。
3、汇报交流——水到渠成。
小组说完后,哪组的同学起来汇报一下你们小组的想法其他还有别的想法吗。
引导学生说出计算法,可能会有以下几种请况。
1/2+1/4=1/6。
1/2+1/4=2/6。
1/2+1/4=2/4+1/4=3/4。
重点引导学生不仅说出得多少,更应结合图形、画图说明为什么先通分的道理,进一步加深对算理的理解。
(二)异分母分数减法。
出示提出的问题:你能计算小红比小明多用了这张纸的几分之几吗学生独立探索异分母分数的减法。然后出示试一试两题,让学生独立解答,集体订正。
观察算式,小组讨论,怎样计算分母不同的分数的加减法。
让学生思考、交流、汇报,师生共同小结优化,重点引导学生说出算法——先通分、化成分母相同的分数,再加减。你还有什么要提醒同学的吗引导学生总结提醒大家注意的事项。
此环节抓住问题的的着力点讨论,让学生探究有实效,探索异分母分数加减的方法,汇报交流抓住知识的突破点,以求达到由“投石问路——曲径通幽——水到渠成”的效果。
三、巩固应用,内化提高。
此环节抓住盲点练习,让学生自觉运用所学知识解决问题。
这节课你有什么收获引导学生说出学到的知识,还有情感体验。
此环节抓住新知识增长点,把学到的知识转化为学生的素质,更深刻地运用数学思考解决问题。
五年级数学积的近似数教案篇九
(1)请同学们认真观察,同桌之间说一说这三个图形的涂色部分分别表示什么意义,并用分数表示出来。
(3)观察,说说你发现了什么?==(课件揭示)。
(4)交流:你还有什么发现?
分数的分子和分母变化了,分数的大小不变。
分数的分子和分母都乘以相同的数,分数的大小不变。
(板书:都乘以相同的数)(课件演示)。
3、出示做一做图片(2),学生独立填写分数。
(1)说说你是怎么想的?
(2)交流,你发现了什么?(分数的分子和分母都除以相同的数,分数的大小不变。)(板书:都除以相同的数)。
4、想一想:引导归纳分数的基本性质。
(1)从刚才的演示中,你发现了什么?
板书:分数的分子、分母都乘以或除以相同的数,分数的大小不变。
(2)补充分数的基本性质:课件出示两个式子,问学生对不对?讲解关键词“都”、
“相同的数”、“0除外”。“都”可以换成哪个词?——“同时”。
板书:分数的分子、分母都乘以或除以相同的数(0除外),分数的大小不变。
(3)揭题:分数的基本性质。先让学生在课本中找出分数基本性质中的关键字词并做上记号(画起来或圈出来),要求关键的字词要重读。(课件揭示)。
5、梳理知识,沟通联系:分数基本性质与学过的什么知识有联系?你能举例说说吗?师:我们学习了分数与除法的关系,知道分数可以写成除法的形式。现在我们把商不变性质,分数基本性质,分数与除法的关系这三者联系起来,你发现了什么?(生举例验证,如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12)(课件揭示)。
6、趣味比拼,挑战智慧。
给你们一分钟时间,写出几个相等的分数,看谁写得既对又多。
交流汇报后,提问:如果给你时间,你还能不能写,到底能写几个?
三、多层练习,巩固深化。
1、考考你(第43页试一试和练一练第2题)。
2/3=()/186/21=2/()。
3/5=21/()27/39=()/13。
5/8=20/()24/42=()/7。
4/()=48/608/12=()/()。
2、涂一涂,填一填。(练一练第1题)。
3、请你当法官,要求说出理由.(手势表示。)。
(1)分数的分子、分母都乘或除以相同的数,分数的大小不变。()。
(2)把15/20的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。()。
(3)3/4的分子乘3,分母除以3,分数的大小不变。()。
(4)10/24=10÷2/24÷2=10×3/24×3()。
(5)把3/5的分子加上4,要使分数的大小不变,分母也要加上4。()。
(6)3/4=3×0/4×0=3÷0/4÷0()。
4、找一找:课件出示信息:请帮小熊和小山羊找回大小相等的分数。
5、(1)把5/6和1/4都化成分母是12而大小不变的分数;。
四、拾捡硕果,拓展延伸。
(或用分数表示这节课的评价,快乐和遗憾各占多少?)。
2、学了这节课,现在你知道阿凡提为什么会笑,如果你是阿凡提,你会对三兄弟说些什么?从这个故事中,你还知道了什么?师总结:看来学好数学还是很重要的!祝贺同学们都跟阿凡提一样聪明!(献上有节奏的掌声)。
3、拓展延伸。
五、动脑筋退场。
让学生拿出课前发的分数纸。要求学生看清手中的分数。与1/2相等的,报出自己的分数后站在教室的前面,与2/3相等的站在教室的后面,与3/4相等的站在教室的左边,与4/5相等的站在教室的左边。
五年级数学积的近似数教案篇十
书第54――55页,有趣的测量及试一试第1、2题。
1.知识与技能:结合具体活动情境,经历测量石头的试验过程,探索不规则物体体积的测量方法。
2.过程与方法:在实践与探究过程中,尝试用多种方法解决实际问题。
3.情感、态度与价值观:在观察、操作中,发展学生空间观念。
用多种方法解决实际问题。
探索不规则物体体积的测量方法。
不规则石头、长方体或正方体透明容器、水。
一、导入新课
老师出示准备好的不规则石快。
师:这个石块是什么形状的?(不规则)
什么是石块的体积?
你有什么困难?
二、教学新知
1.测量石块的体积
(1)小组讨论方案
师:我们不能直接用公式计算出石块的体积,可以怎么办呢?你有什么好的方法吗?
(2)小组制定方案
(3)实际测量
方案一:找一个长方体形状的容器,里面放一定的水,量出水面的高度后把石头沉入水中再一次量出水面的高度。这时计算一下水面升高了几厘米,用“底面积×高”计算出升高的体积。也可以分别计算放入石头前的体积与放入石头之后的总体积之差。
师:为什么升高的那部分水的体积就是石块的体积?
方案二:将石头放入盛满水的容器中,并将溢出的水倒入有刻度的量杯中,然后直接读出的水的体积,就是石头的体积。
师:为什么会有水溢出来?
这两种方案实际上都是把不规则的石头的体积转化成了可测量计算的水的体积。让学生说出“石块所占空间的大小就是石块的体积”。
1.实际应用
(1)读题,理解题意。
(2)分析:你是怎么想的?
(3)学生尝试独立解答。
(4)集体反馈,订正。
让学生运用在探索活动中得到测量的方法,即“升高的水的体积等于土豆的体积”,然后用“底面积×高”的方法计算。2×1.5×0.2=0.6(立方分米)
三、课堂小结
学习了这节课,同学们有什么感受和体会?有什么提高?
1.书第55页第2题。
本题引导学生开展测量不规则物体体积的活动。一粒黄豆比较,先测量100粒黄豆的体积,再计算出一粒黄豆的体积。
2.学生再找一些实物,测量出体积。
板书设计:
有趣的测量
方案一:
方案二:
“底面积×高”的方法计算。
2×1.5×0.2=0.6(立方分米)
五年级数学积的近似数教案篇十一
1.理解和掌握循环小数的概念.
2.掌握循环小数的计算方法.
理解和掌握循环小数等概念.
理解和掌握循环小数等概念.
(一)口算。
0.8times;0.5=4times;0.25=1.6+0.38=。
0.15divide;0.5=1-0.75=0.48+0.03=。
(二)计算。
教师提问:通过计算,你发现了什么?
(一)教学例7。
例710divide;3。
1.列竖式计算。
教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)。
使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.
所以10divide;3=3.33……。
(二)教学例8。
例8计算58.6divide;11。
1.学生独立计算。
2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,
所以58.6divide;11=5.32727……。
教师提问:你有什么发现?
(小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)。
4.一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.
教师板书:循环小数.像3.33……和5.32727……是循环小数.
5.简便写法。
3.33……可以写作;。
5.32727……可以写作。
6.练习。
把下面各数中的循环小数用括起来。
1.5353……0.19292……8.4666……。
(三)教学例9。
例9一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了.大约用去了多少千克汽油?(保留两位小数)。
1.学生独立列式计算。
130divide;6=21.666……。
asymp;21.67(十克)。
答:小汽车大约装21.67千克汽油.
2.集体订正。
重点强调:保留两位小数,只要除到小数点后第三位即可.
3.练习。
计算下面各题,除不尽的先用循环小数表示所得的`商,再保留两位小数写出它的近似值.
28divide;182.29divide;1.1153divide;7.2。
(四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?
1.除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的也就是被除数能够被除数除尽.如3divide;2=1.5.小数部分的位数是有限的小数,叫做有限小数.
2.除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的如10divide;3=3.33……,小数部分的位数是无限的小数,叫做无限小数,循环小数是无限小数.
(一)计算下面各题,哪些商是循环小数?
(二)下面的循环小数,各保留三位小数写出它们的近似值.
1.29090……0.0183838……。
0.4444……7.275275……。
(一)计算下面各题,除不尽的用循环小数表示商,再保留两位小数写出它们的近似值.
(二)一列火车从南京到上海运行305千米,用了3.5小时,平均每小时行多少千米?(保留两位小数)。
五年级数学积的近似数教案篇十二
1、学生借助生活中的实例,学会用字母表示数,体会用字母表示数的必要性和重要性。在具体的情境中能利用字母表示数进行数学表达和交流。
2、在探索现实世界数量关系的过程中,体验用字母表示数的简明性,增强数学意识,初步体会归纳猜想、数形结合等数学思想方法在数学中的应用。
3、学生在自主探索、合作交流中获得成功的体验。
理解字母表示数的意义。
探索规律,并用字母表示简单的数学规律。
今天我们要上一节与字母有关的数学课,生活中你见到过与字母有关的事物吗?(出示下列图案。)。
(音乐课本中“1=f”表示f大调f音唱“1”;扑克牌中的字母表示固定的数……)。
字母的用处非常大,数学上我们经常用字母运算或表示数学规律,今天我们就来研究字母在数学中的运用。
设计思路:出示图案,联系乐理知识,在于激活学生的思维,实现学生生活经验与学习内容的和谐统一。
活动(一):儿歌接龙,初次尝试用字母表示数。
1、由儿歌“1只青蛙1张嘴,2只青蛙2张嘴,3只青蛙3张嘴……”让学生说说发现了什么。
2、(师生)由慢到快儿歌接龙,引出“n只青蛙n张嘴”。
师:n是什么?它表示什么?
3、板书课题:用字母表示数。
设计思路:用字母表示数意味着将把学生从数的领域领入代数的世界,这将促使学生的数学知识结构和数学观念、方法产生质的飞跃,同时用字母表示数又是用代数方法解决问题的基础。因此,设计这样的活动,自然而然引出用字母表示数;通过活动,让学生初步感知字母在不同的情况下可以表示一个确定的数,还可以表示任意数(甚至式)。下一个活动还将渗透字母也可以表示一个在一定范围内的数。
活动(二):推想(师生)年龄,体验字母的妙用。
1、猜年龄。
(1)让我猜猜你们今年有多大了?(大多数同学今年10岁。)。
(2)那你们知道刘老师今年有多大吗?猜猜看。
2、推想师生年龄。
(1)想一想当你们1岁时,刘老师有几岁?怎样列式?
(2)下面我们来做个游戏。让我们进入时空隧道:大家可以回到从前,也可以展望未来,推算当你几岁时,刘老师是多少岁。
(3)交流汇报,教师板书。
(4)用字母表示师生的年龄。
(5)讨论a和取值范围。
(6)如果用字母b表示老师的`年龄,那么同学们的年龄可以怎样表示呢?你是怎么想的?与同桌说一说。
设计思路:这一教学环节设计从具体的算式抽象出用字母表示数量关系,使学生感受到数学的符号语言比文字语言更为简洁明了,体现用字母表示数的概括性、简洁性。通过积累、体验和认识,不断提高学生的学习兴趣和理解所学知识的能力。
活动(三):数数猜猜,发现规律。
出示三角形图。
(1)搭一个三角形,要用几根小棒?搭两个互不连接(下同)的三角形呢?
(2)如果也让你搭三角形,你准备搭几个?要用几根小棒?
(3)观察:搭了这么多三角形,你有什么发现吗?
(4)我们知道m在这里表示三角形的个数,那么m可以表示几个这样的三角形?(m在这里表示除0外的任意自然数。)。
(5)自学教材“小博士的话。”(字母表示数时的简写方法。)。
设计思路:安排学生自学课本,培养学生的自学能力,逐渐养成阅读教材的习惯。
活动(四):小小“审判官”(判断下列各式的写法是否正确。)。
a×4可写成a4()(数与字母相乘时,数一般写在字母前面。)。
5×6可写成56()(数与数相乘时,乘号不能省略不写。)。
b+2可写成2b()(数与数相加时,加号不能省略不写。)。
a×b=ab()(字母与字母相乘时,乘号可以省略不写。)。
1×d=d()(1与任何数相乘得原数。)。
活动(一):续儿歌。
1只青蛙1张嘴,2只眼睛4条腿;
2只青蛙2张嘴,4只眼睛8条腿;
3只青蛙3张嘴,6只眼睛12条腿;
……。
()只青蛙()张嘴,
()只眼睛()条腿。
小组交流:你能用一句话说一说这首儿歌吗?
师:26个英文字母都可以用来表示数,但由于英文字母“o”在书写形式上非常接近阿拉伯数字“0”,所以在用字母表示数时,通常不选择英文字母“o”。
活动(二):一段有趣的话。
小明和妈妈乘公交车去商场购物,车上原有30人,汽车靠站时,下去x人,又上来y人;汽车继续行驶,小明和妈妈来到商场,一双袜子8元钱,妈妈买了a双,小明买了m米彩带,回家做手工时把它平均剪成6段。
小组讨论:根据这段话可以提出哪些数学问题?怎样解答?
设计思路:设计有价值的讨论题,让学生有话想说,使学生在自主探究的空间中达到对本节课所学知识的应用与巩固。
1、在古代埃及《兰特纸草书》中用x代表数,这是目前已知的人类最古老的使用字母的记载。
2、介绍数学家。
五年级数学积的近似数教案篇十三
1、让学生通过找次品的操作活动和分析、归纳的理性思考,发现解决这类问题的最佳策略-把待测物品平均分3组。
2、以“找次品”活动为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。
3、让学生体会用缩小范围逐步逼近的方法来解决问题的数学思想,培养学生思考问题的严密性和口头语言表达的逻辑性。
解决问题的策略研究学生已经不是第一次接触,此前学习过的“沏茶”、“田忌赛马”、“打电话”等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。本节课学生的探究活动中要用到天平,在以往学习等式的性质时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。新课程实施以来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,学生已具备一定的合作能力,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。
发现解决这类问题的最佳策略。
理解并认可最佳策略的有效性。
活动1【导入】创设情境、激发兴趣
1、看视频,谈感受。
播放美国“挑战者”号航天飞机失事的视频。看后你从中了解到什么信息?你有什么感受?
2、发现次品。
生活中经常会有一些产品与合格产品不一样。有的是外观瑕疵,有的是成分不过关,还有的是产品的质量与正常的不同……我们把这些不合格的产品称为“次品”。(板书:次品。)你身边有哪些次品?和同学交流。
今天我们要找的次品的就是外观一样,质量不同,或轻一些、重一些的次品。(板书:找)
活动2【讲授】初步感知、寻找方法
1、出示例题。
有81瓶木糖醇,其中有一瓶少了10片,可以用什么办法把它找出来呢?
数一数,掂一掂,摇一摇等方法,选择最优化的方法,用天平。
2、天平的原理。
如果两端重量相等,天平就平衡;如果不相等,重的一端下沉,轻的一端上扬。
3、华罗庚的数学思想。
让学生自由猜测称的次数。
师:同学们猜的结果不一样,可能是数量太大了。数学中有种方法叫做“化繁为简”,这正和华罗庚思想不谋而合,让我们从数量较小的来研究吧!
活动3【活动】自主探究、方法多样
1.研究2瓶
师:如果利用天平来测量,至少需要几次可以找出次品呢?板书做好记录:2次(1,1)
2.讨论3瓶的问题
如果利用天平来测量,至少要称多少次才能保证找出来呢?生叙述称球的过程。板书记录:3(1,1,1)
注重天平一共有3个空间可以利用,这样节省次数。 生将探究结果填入导学案中。
3.研究4-8瓶的问题
如果利用天平来测量,至少要称2次才能保证找到次品的可以是几瓶?
学生以小组为单位,运用手中的小圆片动手操作,并记录在导学案中。
4.重点汇报8瓶的设计方案。
(2)师小结:所以我们在找物品的次品时,把待测的物品平均分成3份是最好的。板书:把待测物品分3份。
(4)师小结:所以我们在找物品中的次品时,只要把物品平均分成3份,如果不能平均分成3份,就尽量平均分成3份。每份之间的差尽可能少。板书:每份之间的差尽可能少。
5.研究9瓶
学生根据总结的方法直接说出次数,小组验证。
活动4【练习】拓展提高,优化方案
1.运用掌握的方法找方法:12瓶、15瓶、24瓶需要几次能找到次品?
2.举一反三: 从26瓶木糖醇中,找到一个次品,至少称几次一定能找出次品?在导学案上完成。
五年级数学积的近似数教案篇十四
教学目标:
使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。
教学过程:
练习四
一、第2题让学生先在小组里说说怎样找出面积相等的梯形。由于这4个梯形的高相等,只要比较它们的商、下底的和是否相等。这几个梯形中,除左起第3个梯形之外,其余的面积都是相等的。
二、第3题右图是直角梯形,可以通过讨论使学生明白:直角梯形中与上、下底垂直的那条腰的长度就是梯形的高。
三、第5题要注意两个问题:1、统一面积单位;2、讲清楚数量关系。
四、第6题先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些。在此基础上,再让学生分别进行计算。
五、针对学生在学习过程中出现的问题适当的进行补充和强化。
五年级数学积的近似数教案篇十五
1、进一步熟练长方体、正方体表面积的计算方法。
2、通过解决粉刷墙壁的活动,提高学生对知识的综合运用能力和解决问题的灵活性。
通过解决粉刷墙壁的活动,提高学生对知识的综合运用能力和解决问题的灵活性。
结合生活实际,利用所学知识,灵活选择信息,解决实际问题。
今天,就让我们一起利用我们所学知识来解决粉刷墙壁的生活问题。(板书课题:粉刷墙壁)
2、提供信息,明确问题:
(1)出示信息。
课前经过实际测量和调查,同学们搜集了以下信息:
五年级一班的教室长8米,宽6米,高3米(每间教室门窗的面积大约19.3 2)我校有20间这样的教室。
品
种 规
格 价
格 粉刷
面积使用
年限人工
费用
仿瓷
涂料 20l/桶30元/桶0.5l/25年1元/2
多乐士乳胶漆易洗:10l/桶300元/桶0.2l/212年4元/2
普通:20l/桶400元/桶0.2l/212年4元/2
(2)明确信息的含义:请同学们,仔细观察这些信息,有不明白的地方吗?
(3)明确任务:选择哪种涂料呢?粉刷20间这样的教室至少准备多少钱?请同学们根据这些信息,在小组内一起讨论一下,把你们的想法说给同学听一听。
3、小组合作,解决问题。
学生小组讨论交流,解决一共需要花多少钱,从哪几个方面思考。注意了解学生的交流情况。
4、班级交流:要算一共需要多少钱?也就是算哪几个方面的费用?你们是怎样想的?引导学生,明确也就是算人工费和涂料费,但都应该先算出粉刷墙壁的面,再算出人工费和涂料费,后计算一共需要花多少钱。
6、交流汇报,比较:
学生根据自己选择的涂料,把计算的过程展示给大家。
根据计算结果,引导学生说出自己的想法。
教师小结:奥,同学们从不同的角度思考,制定了自己认为合理的方案!
经过我们粉刷墙壁的活动,你有什么感受?什么收获?
说来听听吧?
我相信大家,在生活的大舞台上,会有更多精彩的表现!
五年级数学积的近似数教案篇十六
1、能直接在方格纸上数出相关图形的面积。
2、能利用分割的方法将较复杂的图形转化为简单图形,并用较简单的方法计算面积。
3、在解决问题的过程中体会策略,方法的多样性。
将复杂图形转化为简单图形,体会解决问题方法的多样性和简便性。
如何将整体图形转化为部分的图形。
多媒体课件,作业纸。
一、复习旧知。
不规则图形通过割补,平移可以转化为规则图形从而计算出它的面积,出示练习,提出问题:每个图形的面积是多少?你是怎么得知的?对于图123学生的方法会有很多,要对学生进行充分的肯定。
(设计意图:这组练习复习了已学过的知识,学生在解决面积是多少的过程中打开了思路,如图1既可以利用轴对称图形的特征先算出左边图形的面积,再乘以2得到整个图形的面积。也可以根据组合图形是平移得到特点,先算出上面一个大三角形的面积再乘2求出整个图形的面积。还可以沿对称轴将图形分割为四个三角形,再旋转平移转化为长方形算出面积,即化不规则为规则图形来计算。孩子们灵活多样的解决问题方法是为后面地毯上图形面积计算方法的多样性做了很好的铺垫。)。
二、新授。
(一)对图形特征的观察。
今天老师带来了一块漂亮的地毯,出示课件。
请同学们用数学的眼光来观察,说说这幅图有什么特点。
生1:这块地毯是轴对称图形,是由许多小正方形组成的。
师问:对称轴在哪里?有几条?
(学生到黑板前演示给全班学生看,目的是提醒孩子可以把整个图形平均分成两份或四份,为化整体到部分,知部分求整体的解题思想做准备。)。
生2:这块地毯是蓝色和白色两种颜色。
师问:能找到这两种颜色的格子与总格子数之间的关系吗?
(学生能说到蓝色格子数加上白色格子数等于总格子数,或者是另外两种变式的数量关系也可以。为用大正方形面积减去空白面积等于蓝色部分的面积这一解决问题策略做准备)。
生3:学生会说到在蓝色格子部分有的是拼成较大的长方形和正方形。
师问:能到前面来指给大家看吗?
(设计意图:注重培养学生的观察能力,能用数学的眼光看待生活问题。这正体现学习内容应当是现实的,有意义的,和富有挑战性的,这更加激起学生主动的进行观察交流等学习活动。学生在指的时候会随着观察的深入发现那些长方形也是轴对称的。当学生把蓝色的格子部分看作是一个个正方形时却发现这些正方形又不是独立的,要想按正方形面积来算就要解决两个正方形之间的重叠部分。学生对以上这些内容的发现与关注激发起学生的探索=,同时也为学生解决问题更加多样化及方法的简洁性埋下了伏笔。)。
(二)提出问题。
1、独立探究。
同学们对地毯图案有了充分的`认识,老师想知道蓝色部分的面积,你认为该怎么算?
同学们手中都有一张和大屏幕上完全一样的图,先独立思考,再把自己的想法和思路写在作业纸上。
(教师巡视学生的活动情况,并留意不同的解决问题的情况)。
2、合作交流。
师:把你自己的想法和思路和小组内成员进行交流,比一比谁发现的方法最多?
(学生小组内进行交流)。
师:大家都讨论得很充分了,谁愿意代表小组与大家分享?
3、展示提高。
生1:数方格的方法,一个一个的数,一共有108个小格,所以蓝色部分面积是108平方米。
生2:我先数出一行有几个蓝色格子,分别是6,6,10,6,10,8,8,8,8,10,6,10,6,6、再把每行的数相加,也是108平方米。
生3:数的方法太麻烦了,这是个轴对称图形,我数出左边一半6+6+10+6+10+8+8是54,再乘2就是全部面积。
生4:我找到这个图案的横竖两条对称轴,这样就把整个图形平均分成四份,我数出它的左上角蓝色格子数是3+3+5+3+5+3+3+2=27个,27乘4也是108平方米。
师:请你上来指一指你所说的左上角。
(学生上台活动)。
师:大家认为这个同学的方法怎样,谁能说说这是一种怎样的方法?
教师引导学生总结出:分整体为部分,知道部分求整体。
师:谁还有不同的方法?
生5:蓝色部分可以看作4个长6宽2的长方形,面积是48平方米。还有4个3乘3的正方形,面积是36平方米。4个4乘1的长方形,面积是16平方米。中间蓝色面积是2×4=8平方米。总面积是48+36+16+8=108平方米。
师:你能把找到的长方形上来指给大家看吗?再写出每一步的算式。
(学生按要求重新说一遍)。
生6:上下左右有4个6乘3的长方形,面积是72平方米。每个角还有7格,再乘4是28平方米。加上中间8个,蓝色部分面积也是108平方米。
生7:我是把整个图案均分成四份,每一份是边长为7的正方形,面积是7×7=49平方米,空白部分可以看作5个边长是2的正方形,面积是2×2×5等于20平方米。一份面积是用49—20—2=27平方米,再乘4得到蓝色部分面积是108平方米。
生8:如果把最中间的2个向上平移,空白部分就是2个4乘2的长方形,外加6个白色格子,用每一分面积27乘4得到蓝色面积是108平方米。
生9:用大正方形的面积减去空白部分的面积得出蓝色部分的面积,空白部分面积是每个角是12个格子,4个角面积是48平方米,中间部分是5个2乘4的长方形,面积是40平方米。用总面积14×14—12×4—5×2×4,剩下面积是108平方米。
师:谁听明白了,能结合图再具体说一说这种方法是怎样算的吗?
学生重新叙述一遍。
师:这种方法和前面方法有什么不一样?
生10:用的是地毯总面积减去白色部分面积得到蓝色部分面积。
生11:每个角有2乘2的正方形各3个,中间部分的空白可以看作5个4乘2的长方形,用14×14—2×2×3×4—4×2×5,求得蓝色部分面积是108平方米。
生12:把空白部分从上往下看,再把中间的平移,从左往右依次得到11个4乘2的长方形,用14×14—4×2×11。
生13:我和前面同学不一样的是把空白部分看作是边长为2的正方形,共有22个正方形。算式是14×14—2×2×22。
生14:14×14—4×3×4—4×10,用总面积减四个角空白部分面积,再减中间空白部分面积。
生15:我没用总面积减空白面积,当我画出图形的两条对称轴时,我发现蓝色部分都可以看作是正方形。
师用手势示意学生利用大屏幕讲解教师出示课件,引导学生观察。
生16:可这些正方形像拉环一样套在一起。
(细心的学生发现每个正方形都不是各自独立的,而是有重叠部分。)。
生17:先不管重叠部分,共有12个正方形,减去重叠的8格,加上中间8格,算式是3×3×12—8+8。
生18:先按每个正方形是3乘3是9,一共有(3×4)个正方形,用9乘12是108,9个正方形有8处重叠,而中间的8个小正方形正好和重叠的抵消,最后结果仍是108平方米。算式是3×3×(3×4)—8+8。
生19:如果平均分成四份来看的话,每一份是3×3×3=27个蓝色面积是27×4=108。
生20:我在计算过程中这几种方法都用到了,先把整体分做四个小部分,数出一部分蓝色面积是多少,再算出整体蓝色部分的面积。
(考虑到不同方法思维难度的大小与计算时间的长短和学生个体之间存在差异,允许学生有不同的选择)。
(设计意图:学生探索计算方法和书写可能用到的时间较长,因此教师在巡视的同时要关注需要帮助的孩子,同时要留意不同的解决问题的方法并随时板书在黑板上,在学生讲述自己的方法与过程中努力帮助学生寻找简便的方法。学生在这么一场对话之后会从中受益很多,充分发挥班级学习的优势)。
三、小结。
四、综合运用。
课本第一题:选择自己喜欢的方法来解决问题。
(学生汇报,重点让学生说一说运用的方法,谁的方法更简便?)。
第二题:先独立解决,再小组内交流解决方案,并作简单记录,比一比哪组方法多。
(选择自认为最简便的方法汇报)。
第三题独立解决,并对比两组题,把你的发现写在练习本上。
(学生之间进行交流)。
五年级数学积的近似数教案篇十七
2、引导学生利用学生自主折纸得到的算式,经历提出问题、自主探究、得出算法、解决问题的过程。从中渗透转化、建模等教学思想,提高学生解决问题的能力。
3、通过折一折,画一画、说一说,算一算等活动激发学生学习数学的兴趣,并让学生在学习活动中获得积极的、成功的情感体验。
1、重点:通过折纸探索并掌握异分母分数加减法的计算方法。
2、难点:利用折一折,画一画、说一说,算一算等活动理解先通分,再加减的算理。
(一)动手操作,明确目标。
1、谈话导入,开门见山板书课题:
异分母分数加减法,出示学习目标,生齐读。
(1)探索并掌握异分母分数加减法的计算方法。能正确计算异分母分数的。
加减法。
(2)通过直观的操作活动,理解异分母分数加减法的算理。
师:听说咱们班的同学个个都是折纸高手,这节课老师就要和大家一起来通过折。
纸研究解决解决异分母分数加减法的相关知识,有信心吗?
2、请看要求。
3、动手操作。
师:老师已经给每位同学都准备了两张大小一样的正方形纸张,请你拿出其中的一张按照要求动手操作。开始。(学生明确要求后,进行折纸、涂色、交流等活动,教师巡视指导。)。
4、学生汇报展示。
师:谁能说一说自己是怎么折的,涂色部分是这张正方形纸片的几分之几?(学生汇报,老师将学生的折纸和涂色情况贴在黑板上并在纸旁板书相应的分数)。
5、提出问题,明确目标。
师:同学们,如果现在要把黑板上两张纸中的涂色部分加起来你可以列出哪些加法算式?(学生口述算式,教师分别将学生提出的算式书写在黑板上。)。
想一想你能把这些算式分成几类?你是根据什么分的?(同分母、异分母)(教师根据学生的回答,将黑板上的算式进行整理。)。
还记得如何计算同分母分数加减法吗?谁来说说?(齐读同分母分数加减数的计算方法。同时将同分母分数加法让学生进行练习,口算出每道题的结果。)。
师:从学生汇报的'异分母加法算式中任意选择一道问:异分母分数如何加减呢?下面我们就来探索分母不同的分数相加减的计算方法。
(二)自主探索,理解算理。
1、自主探索进行算理探究。
师:出示生自编算式(1/2)+(1/4),请大家猜猜看,这道题的结果会是几呢?独立尝试,汇报各自的计算过程与结果。预设:可能出现的情况如下:
结论1:(1/2+1/4=1/6)。
结论2:(二分之一加上四分之一等于四分之三)。
结论3:(二分之一加上四分之一等于六分之二)。
2、讨论验证。
师:为什么同样的算式,会出现不同的结果呢?到底谁对谁错呢?
生:在全班范围内展开讨论,充分发表各自的意见。
3、理解算理。
师:刚才有人说结果是(---),有人说是(---),还有人说是0.75,到底谁对谁错呢?送给大家一句话“实践是检验真理的唯一标准”,请同学们用手中的纸折一折,一起来验证一下到底谁对谁错。开始。
注意通过展示学生的折纸过程,引导学生观察算式()+()的通分过程,明确()+()=()=()是错误的,感受异分母分数加减法不能将分子分母直接相加减。
师:在做异分母分数加减法,为什么不能直接将分子、分母直接相加或相减呢?
出示小数加法算式“4.21+5.3”,提问:“可不可以将百分位上的1加上十分位上的3”感受为什么异分母分数加减法不能直接将分子、分母相加。
师:可不可以将百分位上的1加上十分位上的3?
生1:不可以。因为相同的数位没有对齐。
生2:小数点没对齐。
师:小数点没对齐也就是什么没对齐?——数位没对齐。
师:数位不同也就是什么不同?(计数单位)。
师:也就是说当单位不同时不能直接相加减。我们在来看这道分数题,他们的什么不同?(分母),分母不同,也就是??(分数单位不同),可以直接相加减吗?(生:不可以。)。
4、小结算理。
谁来说究竟该怎样计算异分母分数的加法呢?
生汇报:先要通分,(也就是统一分数单位),把异分母的分数变成分母相同的分数,再计算,计算结果能约分的要约成最简分数。
(三)迁移应用,巩固提高。
1、迁移应用,解决减法问题:
1/2-1/4=。
2、完成“试一试”
出示试一试的+与-,再次为学生提供尝试机会。
(学生练习后全班回馈交流,并规范书写格式。)。
师:通过刚才的学习,你发现异分母分数加减法应怎样计算?
xx。