整式的加减数学教案(专业21篇)
教案的编写要符合教育教学原理和教育教学实施规范,能够满足学生的学习需求。教案的编写要结合教材的内容和学生的实际情况,灵活运用多种教学手段。通过阅读教案范例,我们可以学习到很多优秀的教学设计和教学方法。
整式的加减数学教案篇一
本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。
针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的'目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础。
但是,课后作业出现了以下错误:
1、忘记圆周率p是常数。
2、忘记次数是字母指数和。
3、忘记字母的指数有一次。
4、加强时没有完善在考虑各种要求。
整式的加减数学教案篇二
本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。
八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。
整式的加减数学教案篇三
24.某市出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米1.3元;超过5千米,每千米2.4元。
(1)若某人乘坐了()千米的路程,则他应支付的费用是多少?
(2)若某人乘坐的路程为6千米,那么他应支付的费用是多少?
26.某单位在2013年春节准备组织部分员工到某地旅游,现在联系了甲乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠措施:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队员工的费用,其余员工八折优惠.
(1)若设参加旅游的员工共有m(m10)人,则甲旅行社的费用为元,
乙旅行社的费用为元;(用含m的代数式表示并化简)。
(2)假如这个单位组织包括带队员工在内的共20名员工到某地旅游,该单位选择哪一家旅行社比较优惠?说明理由.
(3)如果这个单位计划在2月份外出旅游七天,设最中间一天的日期为n,则这七天的日期之和为.(用含有n的代数式表示并化简)
假如这七天的日期之和为63的倍数,则他们可能于2月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程)
整式的加减数学教案篇四
教学目的。
1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。
2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。
教学分析。
难点:括号前是-号,去括号时,括号内的各项都要改变符号。
突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。
教学过程。
一、复习。
1、叙述合并同类项法则。
2、叙述去括号与添括号法则。
3、化简:
y2+(x2+2xy-3y2)-(2x2-xy-2y2)。
二、新授。
1、引入。
整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。
2、例题。
例1(p166例1)。
求单项式5x2y,-2x2y,2xy2,-4xy2的和。
分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。
解:(略,见教材p166)。
例2(p166例2)。
求3x2-6x+5与4x2-7x-6的和。
解:(3x2-6x+5)+(4x2-7x-6)(每个多项式要加括号)。
=3x2-6x+5+4x2-7x-6(去括号)。
=7x2+x-1(合并同类项)。
例3。(p166例3)。
求2x2+xy+3y2与x2-xy+2y2的差。
解:(2x2+xy+3y2)-(x2-xy+2y2)。
=2x2+xy+3y2-x2+xy-2y2。
=x2+2xy+y2。
3、归纳整式加减的一般步骤。
整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。
三、练习。
p167:1,2,3,4。
补:已知:a=5a2-2b2-3c2,b=-3a2+b2+2c2,求2a-3b。
四、小结。
1、文字叙述的整式加减,对每一个整式要添上括号。
2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。
五、作业。
1、p169:a:1(3、4),3,5,6,7,8。b:1,2。
基础训练同步练习1。
教学目的。
1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。
2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。
教学分析。
难点:括号前是-号,去括号时,括号内的各项都要改变符号。
突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。
教学过程。
一、复习。
1、叙述合并同类项法则。
2、叙述去括号与添括号法则。
3、化简:
y2+(x2+2xy-3y2)-(2x2-xy-2y2)。
二、新授。
1、引入。
整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。
2、例题。
例1(p166例1)。
求单项式5x2y,-2x2y,2xy2,-4xy2的和。
分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。
解:(略,见教材p166)。
例2(p166例2)。
求3x2-6x+5与4x2-7x-6的和。
解:(3x2-6x+5)+(4x2-7x-6)(每个多项式要加括号)。
=3x2-6x+5+4x2-7x-6(去括号)。
=7x2+x-1(合并同类项)。
例3。(p166例3)。
求2x2+xy+3y2与x2-xy+2y2的差。
解:(2x2+xy+3y2)-(x2-xy+2y2)。
=2x2+xy+3y2-x2+xy-2y2。
=x2+2xy+y2。
3、归纳整式加减的一般步骤。
整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。
三、练习。
p167:1,2,3,4。
补:已知:a=5a2-2b2-3c2,b=-3a2+b2+2c2,求2a-3b。
四、小结。
1、文字叙述的整式加减,对每一个整式要添上括号。
2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。
五、作业。
1、p169:a:1(3、4),3,5,6,7,8。b:1,2。
基础训练同步练习1。
教学目的。
1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。
2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。
教学分析。
难点:括号前是-号,去括号时,括号内的各项都要改变符号。
突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。
教学过程。
一、复习。
1、叙述合并同类项法则。
2、叙述去括号与添括号法则。
3、化简:
y2+(x2+2xy-3y2)-(2x2-xy-2y2)。
二、新授。
1、引入。
整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。
2、例题。
例1(p166例1)。
求单项式5x2y,-2x2y,2xy2,-4xy2的和。
分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。
解:(略,见教材p166)。
例2(p166例2)。
求3x2-6x+5与4x2-7x-6的和。
解:(3x2-6x+5)+(4x2-7x-6)(每个多项式要加括号)。
=3x2-6x+5+4x2-7x-6(去括号)。
=7x2+x-1(合并同类项)。
例3。(p166例3)。
求2x2+xy+3y2与x2-xy+2y2的差。
解:(2x2+xy+3y2)-(x2-xy+2y2)。
=2x2+xy+3y2-x2+xy-2y2。
=x2+2xy+y2。
3、归纳整式加减的一般步骤。
整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。
三、练习。
p167:1,2,3,4。
补:已知:a=5a2-2b2-3c2,b=-3a2+b2+2c2,求2a-3b。
四、小结。
1、文字叙述的整式加减,对每一个整式要添上括号。
2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。
五、作业。
1、p169:a:1(3、4),3,5,6,7,8。b:1,2。
基础训练同步练习1。
教学目的。
1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。
2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。
教学分析。
难点:括号前是-号,去括号时,括号内的各项都要改变符号。
突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。
教学过程。
整式的加减数学教案篇五
【学习目标】:
1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
【重点难点】重点:掌握单项式及单项式的系数、次数的概念。
难点:区别单项式的系数和次数。
【导学指导】:
一.知识链接:。
1.列代数式。
(1)若边长为a的正方体的表面积为________,体积为_____;。
(3)一辆汽车的速度是v千米/小时,行驶t小时所走的路程是_______千米;。
(4)设n是一个数,则它的相反数是________.
2.请学生说出所列代数式的意义。
3.请学生观察所列代数式包含哪些运算,有何共同运算特征。
整式的加减数学教案篇六
使学生理解多项式、整式的概念,会准确确定一个多项式的项数和次数。
通过实例列整式,培养学生分析问题、解决问题的能力。
培养学生积极思考的学习态度,合作交流意识,了解整式的实际背景,进一步感受字母表示数的意义。
教学重、难点与关键。
1.重点:多项式以及有关概念。
2.难点:准确确定多项式的次数和项。
3.关键:掌握单项式和多项式次数之间的区别和联系。
教具准备投影仪。
一、复习提问1.什么叫单项式?举例说明。
2.怎样确定一个单项式的系数和次数?-的系数、次数分别是多少?
3.列式表示下列问题:
(1)一个数比数x的2倍小3,则这个数为________.
(2)买一个篮球需要x(元),买一个排球需要y(元),买一个足球需要z(元),买3个篮球,5个排球,2个足球共需________元。
(3)如图1,三角尺的面积为________.
(4)如图2是一所住宅的建筑平面图,这所住宅的建筑面积是________平方米。
整式的加减数学教案篇七
甲、乙两个零件截面的面积哪一个比较大?大多少?把结果填在下面的横线上。
a1.5a。
vb2b。
b
甲乙。
截面甲的面积是。
截面乙的面积是。
甲、乙的、两个截面面积的差是()—()=。
本引例让学生思考后回答,教师引导,让学生知道:1、作差法是比较大小的一种很好的方法;2、在解决这个实际问题时,将问题转化成两个整式的差,从而得以解决;3、整式的加减可以归结为去括号和合并同类项。
二、讲授新课。
例1求整式3x+4y与2x-2y-1的和。
教师教会学生1、列式(注意整体性);2、去括号(特别是减法);3、有同类项就合并同类项(至少不能合并为止)。
变式练习:求3x+4y与2x-2y-1的差(学生做,两个学生板演)。
三、课堂练习(课本“做一做”)。
1、填空:
(1)3x与-5y的和是,3x与-5y的差是;。
(2)a-b,b-c,c-a三个多项式的和是。
2、先化简,再求值:3x^2-[x^2-2(3x-x^2)],其中x=-7。
四、典例分析。
这个例题是本节课的难带内,教师可以设置下列问题:
1、分析题目的已知量与未知量,及相互间的关系;。
2、选哪个未知量用字母来表示比较方?其他未知量怎么表示?
3、填空:设小红家今年其他收入为a元,则。
(1)今年农业收入为元;。
(2)预计明年农业收入为元;。
(3)预计明年其他收入为元;。
(4)今年全年总收入为元;。
(5)预计明年全年总收入为元。
4、增加还是减少?怎么判断?
教师总结:在解决实际问题时,我们经常把其中的一个量或几个量先用字母表示,然后列出数式,这是运用数学解决实际问题的一个重要策略。
五、教学反馈(课本“课内练习”)。
1、计算:
(1)3/2x^2-(2x^2)+(-2x^2);。
(2)2(x-3x^2+1)-3(2x^2-x-2).
2、先化简,再求值:
(1)5x-[3x-x(2x-3)],其中x=1/2;。
(2)5(3a^2b-ab^2)—(ab^2+3a^2b),其中a=1/2,b=-1。
3,如果某三角形第一条边长为(2a-b)cm,第二条边比第一条边长(a+b)cm,第三条边比第一条边的2倍少bcm,第三条边比第一条边的2倍少bcm,求这个三角形的周长。
六.探究活动。
猜数游戏:游戏甲方把自己的出生年月份乘以2,加10,再把和乘5,再加上他家的人口数(小于10),将这样所得的结果告诉游戏乙方,乙方就能猜出甲方出生于何月,及他家有几口人。
本题有较大的难度,采取合作学习这种方式进行,启发学生利用本节中例2的解题策略及思想方法来分析这个题目。
教师可作以下工作:
2、组内积极展开游戏,并讨论这个游戏的原理是什么。(设甲方出生月份为x,家中人口数为y人,甲方告诉的结果是k(已知数),则结果k=5(2ax+10)+y=10x+50+y,所以结果k的个位数字是y,则(k-y-50)/10=x)。
七、小结、布置作业。
整式的加减数学教案篇八
会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及其语言表达能力。
通过探索规律的问题,进一步体会符号表示的意义,
通过对整式加减的学习,深入体会代数式在实际生活中的应用,它为后面学习方程(组)、不等式及函数等知识打下良好的基础,同时,也使我们体会到数学知识的产生来源于实际生产和生活的需求,反之,它又服务于实际生活的方方面面.
重点:整式加减的运算。
难点:探索规律的猜想。
摆第1个“小屋子”需要5枚棋子,摆第2个需要枚棋子,摆第3个需要枚棋子。
按照这样的方式继续摆下去。
(1)摆第10个这样的“小屋子”需要枚棋子。
(2)摆第n个这样的`“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问题吗?小组讨论。
例题讲解:
练习:1、计算:
(1)(11x3-2x2)+2(x3-x2)(2)(3a2+2a-6)-3(a2-1)。
(3)x-(1-2x+x2)+(-1-x2)(4)(8xy-3x2)-5xy-2(3xy-2x2)。
2、已知:a=x3-x2-1,b=x2-2,计算:(1)b-a(2)a-3b。
p11随堂训练。
要善于在图形变化中发现规律,能熟练的对整式加减进行运算。
p12习题1.3:1(2)、(3)、(6),2。
整式的加减数学教案篇九
1.经历探索规律并用代数式表示规律的过程,能用代数式表示以前学过的运算律和计算公式.
2.体会字母表示数的意义,形成初步的符号感,提高应用数学的意识,体会数形结合的思想方法.
【学习重点】。
能用代数式表示以前学过的运算律和计算公式,会用字母表示数.
【学习难点】。
体会字母表示数的意义,形成初步的符号感,提高应用数学的意识.
行为提示:点燃激情,引发学生思考本节课学什么.
行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.
情景导入生成问题。
【说明】以学生喜欢的游戏的方式引入,让学生感受数学的奥妙,激发学生的求知欲.
自学互研生成能力。
先认真阅读教材第78页最上方的图3-1及与图相关的内容,然后与同伴进行交流讨论.
【说明】学生通过观察、分析,与同伴进行交流,找出变化的规律.
【归纳结论】许多图形的变化都具有规律性,用字母表示其变化规律更简单明了.在探究图形的变化规律时,往往要找出哪些量发生变化,哪些量不发生变化.
先独立完成下面的问题,然后再与同伴交流.
问题1(1)搭200个这样的正方形需要多少根火柴棒?
【说明】学生通过计算,初步体会用数值代替式子中的字母进行计算,就可以得到对应的式子的值.进一步感受从特殊到一般,从一般到特殊的数学思想方法.
整式的加减数学教案篇十
知识与技能:1.理解同类项的概念,并能正确辨别同类项。
2.掌握合并同类项的法则,能进行同类项的合并。
3.会利用合并同类项将整式化简。
过程与方法:1.探索在具体情境中用整式表示事物之间的数量关系,发展学生的抽象概括能力。
2.通过类比数的运算律得出合并同类项的法则,在教学中渗透类比的`数学思想。
情感、态度与价值观:1.通过参与同类项、合并同类项法则的探究活动,提高学习数学的兴趣。
2.培养学生合作交流的意识和探索精神。
重点:合并同类项法则。
难点:对同类项概念的理解以及合并同类项法则的应用。
四课时第一课时)。
通过实际问题引出同类项和合并同类项概念的探讨,在学习过程中,让学生自己经历探索与交流的活动,自主得到同类项的概念,并利用数的分配律观察并归纳出合并同类项的法则。
讨论及探究式教学方法。
整式的加减数学教案篇十一
首先对本章的主要概念和法则相关知识进行回顾、梳理,使学生整体系统地感悟知识,形成良好的认知结构,重新构建完善的“知识链”;本章主要内容:代数式及代数式的值,单项式与多项式的相关概念,多项式的升降幂排列,同类项、合并同类项、整式加减;二是设计相关的.练习题来综合检查学生掌握知识的情况,加深学生对知识的理解,弥补知识和技能上的缺陷,提高掌握知识的水平和运用知识的能力。
让大部分学生会列代数式及代数式的值,明确代数式的书写要求;通过训练让学生掌握整式、单项式、多项式的相关知识;能熟练地进行合并同类项;掌握去括号、添括号法则,熟练进行整式的加减运算;重点放在:整式的加减运算。
在整式加减的复习课教学中本人通过练习复习知识点,把本章书分成两大部分,一部分是基本概念,一部分是基本运算,再通过各层次练习检查学生掌握知识的情况,加深学生对知识的理解,提高学生灵活运用知识的能力。设计问题具有一定的开放性,可使学生的思维发散,把他们所知道的有关内容都说出来。通过对一个问题的多个侧面地回答,可进一步加深学生对基础知识的理解与重视,又可培养他们主动分析问题的习惯。通过解决几组练习,通过解决具体的应用类题目,强调有关整式加减的问题,给学生留下更深的印象,学习效果会比较好。
整式的加减数学教案篇十二
(1)使学生在掌握合并同类项的基础上,掌握去括号法则。
(2)正确地进行简单的整式加减运算。
培养学生基本的运算技巧和能力。
使学生逐渐形成事物变化、相互联系和相互转化的观点,并在学习中培养学生良好的学习习惯、独立思考、勇于探索的精神。
重点去括号法则。教学。
难点正确运用去括号法则,减少运算中的符号错误。
多媒体。
你出生于8月份,你家有3口人。
2、猜数游戏的数学原理常常与代数式的运算有关。
3、知识梳理。
-2x+3y-4z共有项,其中第三项是:。
1、写出2a2b的`一个同类项:
2、已知4a2b3与a2mbn-1是同类项,则m=____,n=_____.
如图4-7,要计算这个图形的面积,你有几种不同的方法?请计算结果。
2、用分配律计算:
(1)+(a-b+c)。
(2)-(a-b+c)。
3、代数式运算的去括号法则:
4、顺口溜。
去括号,看符号。
是+号,不变号。
是-号,全变号。
5、辩一辩:指出下列各式是否正确?如果错误,请指出原因.
(1)a-(b-c+d)=a-b+c+d。
(2)-(a-b)+(-c+d)=a+b-c-d。
(3)a-3(b-2c)=a-3b+2c。
(4)x-2(-y-3z+1)=x-2y+6z。
6.注意:(1)去括号时应将括号前面的符号连同括号一起去掉.
(3)若括号前面是数字因数时,.应乘以括号里的每一项,不要漏乘.
7:练一练。
整式的加减数学教案篇十三
(1)了解同类项、合并同类项的概念,掌握合并同类项法则,能正确合并同类项。
(2)能先合并同类项化简后求值。
经历类比有理数的运算律,探究合并同类项法则,培养学生观察、探索、分类、归纳等能力。
掌握规范的'解题步骤,养成良好的学习习惯,通过比较两种求代数式值的方法,体会合并同类项的作用。
教学重、难点与关键。
1.重点:掌握合并同类项法则,熟练地合并同类项。
2.难点:多字母同类项的合并。
3.关键:正确理解同类项概念和合并同类项法则。
教具准备。
投影仪。
有理数可以进行加减计算,那么整式能否可以加减运算呢?怎样化简呢?
我们来看本章引言中的问题(2)。
1.类比数的运算,我们应如何化简式子100t+252t呢?
(1)运用有理数的运算律计算:
1002+2522=______;。
100(-2)+252(-2)=________.
1002+2522=(100+252)2=3522。
100(-2)+252(-2)=(100+252)(-2)=352(-2)。
我们知道字母可以表示数,如果用t表示上述算术中的数2(或-2)就有,100t+252t=(100+252)t=352t.
整式的加减数学教案篇十四
教材与学情分析:
本节课的教学内容去括号是中学数学代数部分的基础知识,是以后化简代数式、分解因式、配方法等知识点中的重要环节,对于初一学生来说接受该知识点存在一个思维上的转换过程,所以又是一个难点,因此该知识点在初中数学教材中有特殊的地位和重要作用。
教学目标:
知识目标:
1、学生经过观察、合作交流、讨论总结出去括号的法则,并较为牢固的掌握。
2、能正确且较为熟练地运用去括号法则化简代数式。
能力目标:
1、培养学生观察、分析、归纳能力。
2、培养学生语言概括能力和表达能力。
情感目标:
1、让学生感受知识的产生、发展及形成过程,培养探索精神。
2、通过学生间的相互交流、沟通,培养他们的协作意识。
教学重难点:
重点:去括号时符号的变化规律。
难点:括号外的因数是负数时符号的变化规律。
教法与学法分析:
1、分目标突破法。
2、小组合作探究。
教学过程。
一、目标一:掌握去括号法则。
1、情境引入。
由图书馆人数增减问题得出两个等式。
2、小组探究等式特点,试着找到去括号规律,并理解去括号的依据是乘法分配律。
a+2(b+c)=a+(2b+2c)。
a-2(b+c)=a-(2b+2c)。
从而得出去括号法则。
3、巩固练习去括号法则,找出去括号时的注意事项。
小试牛刀。
去括号。
(1)x+(-y+3)=。
(2)x-2(-3-y)=。
(3)-(x-y)+3=。
(4)3-(x+y)=。
乘胜追击。
判断正误,把错误的改正过来。
(1)x2-(3x-2)=x2-3x-2。
(2)7a+(5b-1)=7a+5b-1。
(3)2m2-3(3m+5)=2m2-9m-5。
二、目标二:会去括号、合并同类项。
1、温故知新。
同类项、合并同类项复习。
2、例题学习。
化简:
a-2(5a-3b)+(a-2b)。
化简下列各式。
(1)-3(1-2a)+3a。
(2)2x2+3(2x-x2)。
(3)5(3a2b-ab2)-4(-ab2+3a2b)。
3、解决问题。
飞机的无风速度为akm/h,风速为20km/h.
则飞机顺风时的`速度为______km/h.
则飞机逆风时的速度为______km/h.
飞机顺风飞行4h和飞机逆风飞行3h的行程差是多少?
三、战无不胜。
当a是整数时,试说明:
(a3-3a2+7a+7)+(3-2a+3a2-a3)一定是5的倍数。
四、总结要点五、巩固提升。
板书设计。
―――去括号。
去括号法则:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
注意:
1、都不变,或都变。
2、别漏乘。
整式的加减数学教案篇十五
1)学生经过观察、合作交流、讨论总结出去括号的法则,并较为牢固地掌握。
2)能正确且较为熟练地运用去括号法则化简代数式。
1)培养学生的观察、分析、归纳能力。
2)锻炼学生的语言概括能力和表达能力。
3)培养学生的知识分解、知识整合能力。
1)让学生感受知识的产生、发展及形成过程,培养其勇于探索的精神。
2)通过学生间的相互交流、沟通,培养他们的协作意识。
难点:括号前面是号,去括号时,应如何处理。
(1)回顾旧知,承前启后。
1、什么叫做同类项?
2、叙述合并同类项的法则。
3、若a、b、c均为有理数,请指出以下代数式中的同类项及其系数,并进行合并。
整式的加减数学教案篇十六
去括号法则,准确应用法则将整式化简。
区别单项式的系数和次数;
区别多项式的次数和单项式的次数;
括号前面是“—”号去括号时,括号内各项变号容易产生错误。
1、单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。
3、多项式:几个单项式的和叫多项式。
4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
5、常数项:不含字母的项叫做常数项。
6、多项式的排列。
(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
7、多项式的排列时注意:
(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:
a、先确认按照哪个字母的指数来排列。
b、确定按这个字母向里排列,还是向外排列。
(3)整式:
单项式和多项式统称为整式。
多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。
9、同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。
10、合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。
整式的加减数学教案篇十七
1、这节的重点为:去括号。因此,本节所学的知识实际上就是对前面所学知识的一个巩固和深化,要突破这个重点,只有在掌握方法的前提下,通过一定的练习来掌握。
2、去括号是整式加减的一个重要内容,也是下一章一元一次方程的直接基础,也是今后继续学习整式的乘除、因式分解、方程,以及分式、函数等的重要基础。
(2)去括号的法则增加了解题长度,降低了学习效率;
(3)用乘法分配律去括号的学习是同化而非顺应,易于理解与掌握;
(4)用乘法分配律去括号是回归本质,返璞归真,且既可减少学习时间,又能提高运算的正确率。
1、熟练掌握去括号时符号的变化规律;
2、能正确运用去括号进行合并同类项;
3、理解去括号的依据是乘法分配律。
重点。
去括号时符号的变化规律。
难点。
括号外的因数是负数时符号的变化规律。
一、创设情景问题。
青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的形式速度可以达到120千米/时。
解:这段铁路的全长为100t+120(t-0.5)(千米)。
冻土地段与非冻土地段相差100t-120(t-0.5)(千米)。
提出问题,如何化简上面的两个式子?引出本节课的学习内容。
二、探索新知。
1、回顾:
1你记得乘法分配率吗?怎么用字母来表示呢?
a(b+c)=ab+ac。
2-(-2)=(-1)*(-2)=2+(-3)=(+1)*(-3)=-3。
2、探究。
计算(试着把括号去掉)。
(1)13+(7-5)(2)13-(7-5)。
类比数的运算,去掉下面式子的括号。
(3)a+(b-c)(4)a-(b-c)。
3、解决问题。
100t+120(t-0.5)=100t-120(t-0.5)=。
思考:
去掉括号前,括号内有几项、是什么符号?去括号后呢?
去括号的依据是什么?
三、知识点归纳。
去括号法则:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.。
注意事项。
(2)括号内原有几项去掉括号后仍有几项.。
四、例题精讲。
例4化简下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b)。
五、巩固练习。
课本p68练习第一题。
六、课堂小结。
1、今天你收获了什么?
2、你觉得去括号时,应特别注意什么?
整式的加减数学教案篇十八
能根据题意列出式子:会进行整式加减运算,并能说明其中的算理。
经历用字母表示实际问题中的数量关系的过程,发展符号感,提高运算能力及综合运用知识进行分析、解决问题的能力。
培养学生积极探索的学习态度,发展学生有条理地思考及代数表达能力,体会整式的应用价值。
教学重、难点与关键
1.重点:列式表示实际问题中的数量关系,会进行整式加减运算。
2.难点:列式表示问题中的数量关系,去掉括号前是负因数的括号。
3.关键:明确问题中的数量关系,熟练掌握去括号规律。
教具准备:投影仪。
1.多项式中具有什么特点的项可以合并,怎样合并?
2.如何去括号,它的依据是什么?
例1.(1)求多项式2x-3y与5x+4y的和。
(2)求多项式8a-7b与4a-5b的差。
整式的加减数学教案篇十九
1、掌握合并同类项的法则,能进行同类项的合并。
2、会利用合并同类项将整式化简。
过程与方法
通过类比数的运算律得出合并同类项的法则,在教学中渗透“类比”的数学思想。
情感态度与价值观
1、通过参与合并同类项法则的探究活动,提高学习数学的兴趣。
2、培养学生合作交流的意识和探索精神。
重点
合并同类项法则。
难点
合并同类项法则的应用。
学生在上一节学习了同类项的概念,这为本节学习奠定了一定的基础,但合并同类项牵扯到抽象的字母,学生难于把握,因此一定要搞清楚字母与数的关系。
问题设计师生活动备注
情景创设
问题1:青藏铁路上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的行驶速度可以达到100千米/时,在非冻土地段的行驶速度可以达到120米/时,请根据这些数据回答下列问题:
学生思考并回答:
100+252
在具体情境中用整式表示问题中的数量关系,利用实际问题吸引学生的注意力。
问题2:式子100+252能化简吗?依据是什么?
提出问题2,让学生带着这个问题来解决探究1、
[学生]独立完成探究1中的(1),并对(2)进行分组讨论、
在探究1的基础上,以原有的关于数的运算律的知识,开展探究2、
观察多项式中各项的特点,得出合并同类项的概念、
合并同类项:把多项式中的同类项合并成一项、
类比数的运算,探究得出合并同类项的法则、
通过对探究1和探究2的探讨,引出同类项的概念、合并同类项概念、
问题2是本节内容的核心,让学生在探究的过程中体会用字母表示数的意义,培养学生的抽象概括能力,在小组合作中体会交流的重要性和必要性。
注意:
1、学生在活动中是否参与到讨论中
2、学生对概念的理解和掌握情况以及对合并同类项法则的总结情况
整式的加减数学教案篇二十
知识与技能:1. 理解同类项的概念,并能正确辨别同类项。
2. 掌握合并同类项的法则,能进行同类项的合并。
3.会利用合并同类项将整式化简。
过程与方法:1. 探索在具体情境中用整式表示事物之间的数量关系,发展学生的抽象概括能力。
2.通过类比数的运算律得出合并同类项的法则,在教学中渗透类比的数学思想。
情感、态度与价值观:1.通过参与同类项、合并同类项法则的探究活动,提高学习数学的兴趣。
2.培养学生合作交流的意识和探索精神。
重点:合并同类项法则。
难点:对同类项概念的理解以及合并同类项法则的应用。
四课时第一课时)
通过实际问题引出同类项和合并同类项概念的探讨,在学习过程中,让学生自己经历探索与交流的活动,自主得到同类项的概念,并利用数的分配律观察并归纳出合并同类项的法则。
讨论及探究式教学方法
整式的加减数学教案篇二十一
【知识与技能】。
在具体情境中认识同类项,通过对具体问题的分析及运用分配律,了解合并同类项的法则,学会进行同类项的合并。
【过程与方法】。
经历观察、类比、思考、探索、交流等教学活动,培养创新意识和合作精神。
【情感态度与价值观】。
在整式加减的学习中培养学生合作交流、勇于探索的学习习惯,发展学生的符号感。
【重点】。
学会进行整式的加减法运算,并能说明其中的.算理;经历字母表示数量关系的过程,发展符号感。
【难点】。
灵活的列出算式和去括号。
通过例题的分析总结:合并同类项。
1.同类项的系数相加;。
2.字母和字母的指数不变。
(五)小结作业。
作业:课本习题,预习下节课学习的知识。