最新离散数学论文小论文(通用16篇)
总结是不断追求进步的过程,也是不断提升自己的机会。总结要尽量简明扼要,不要过分啰嗦,言之有物即可。总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。那么我们该如何写一篇较为完美的总结呢?以下是小编为大家收集的总结范文,仅供参考,大家一起来看看吧。
离散数学论文小论文篇一
摘要:通识教育是我国高等教育研究的热点问题,数学类通识课程把数学作为一种文化,从不同的视角去看数学,有利于提高工科院校学生的文化素养,避免由于只重视技能训练而带来的数学素质结构的片面化,同时也是培养学生良好思维能力、创新能力的重要载体。文章结合桂林电子科技大学开设数学文化课程的教学实践,探讨了通识课改革的方法和措施。
关键词:数学文化;通识教育;教学改革。
“通识教育”一词起源于19世纪,它是一套旨在拓展基础、强化素质的跨学科的教育体系,其目的是让学生从本科教育的基本领域里获取广泛的知识,了解不同学术领域的研究思路和研究方法,同时,借助通识教育开拓学生的眼界,使其对学科整体有所了解,培养学生将各种知识融会贯通的综合能力。自从19世纪初美国博德学院的帕卡德教授第一次把通识与大学教育联系起来,通识教育开始进入人们的视野,在20世纪,通识教育已经广泛成为欧美大学的必修科目。通识教育纳入我国本科教育体系的历史并不长,近年来,结合实现高等教育“内涵式”发展的需求,通识教育逐渐成为高等教育界关注的热点,开设通识课程的高校不断增多,课程的种类也不断增加[1]。纵览各个高校的通识教育课程,大致可以分为社会科学素养、人文素养、自然科学与技术素养、美学艺术素养、实践能力素养等五大模块,力图使学生从不同的角度来认识现象,获得知识,开拓视野,提升能力。笔者长期从事大学数学公共课的教学,认为在自然科学与技术素养类的通识课中,数学类课程无疑是一个很好的载体。以笔者所在桂林电子科技大学为例,高等数学、线性代数、概率论与数理统计是工科学生必修的三门数学基础课,其掌握程度直接影响到学生专业课的学习,以及学生的基本素质和能力[2]。在传统的数学课堂上,由于学时的限制,教师很少能够拓展课本知识,造成重结论轻过程、重理论轻应用的局面,忽略了对学生的数学思维、创新意识和创新能力的培养,因此学生在大一阶段学习完课程以后往往只会计算,不能理解数学概念的背景和应用,只有在后续专业课中用到数学才能粗略体会数学的作用,但仍对一些基本数学原理知其然而不知其所以然。为了解决上述问题,可以考虑适当开设数学通识课,作为大学数学系列课程的有益补充,让学生重新审视数学、认识数学。下面,以笔者所在桂林电子科技大学为例,探讨数学通识课程的改革思路。
一、适应形势,开设数学文化网络课程。
和高校中的其他课程相比较,通识教育更加自由,可以被各个专业的学生学习,学生可以基于兴趣爱好,自由地选择各类通识课程。传统的通识课程通常是以线下课的模式来进行的,一般是安排在晚上,教师在固定的时间内在教室进行授课,课后很少与学生进行交流。笔者所在的学校是工科院校,学生课程较多,而且不少实验课都安排在晚上,所以学校很早就加入了尔雅通识平台,利用网课的形式开设通识课程,方便学生在课余的时间修读课程。对于学习安排而言,网络授课更为自由开放:传统的课堂教育要求学生在固定的时间、固定的地点进行固定的学习安排,但是不同学生的学习习惯和学习能力是不同的,没有学会的学生没有重新学习的机会,这样的安排在某种程度上是不公平的。而网课可以把课程保存在云端,学生可以在任何时间任何地点进行学习,这样一来学生可以更为自由地安排学习时间,并且还可以通过重播反复学习,弥补学习能力不足的缺陷。桂林电子科技大学在2014年启动了校内的网络学习的平台———漓江学堂,笔者所在的教学团队于2017年在该平台上线了“数学文化观赏”课程,这是一门面向高校师生的以介绍数学为目的的通识教育网络课程,课程通过“数学文化”这个载体,以数学思想、数学概念、数学能力、数学历史等作为主要内容,通过25个视频从不同角度揭示了丰富多彩的数学文化与人类社会发展之间的共生与互动。该课程是桂林电子科技大学于2016年开始建设的24门漓江学堂课程之一,2017年9月在漓江学堂正式上线,至今已开课6个学期,累计选课人数约1600人。2020年初,“数学文化观赏”课程二期建设启动,课程视频扩充到50个,并在中国大学mooc上线开设了独立spoc课程。spoc课程作为后mooc时代的产物,采取了实体课堂与在线教育相结合的混合教学模式,融合了mooc的优点,弥补了传统教育的不足。与传统网课相比,教师更容易把控教学,使学生实现课前主动自学、课上积极互动、课下踊跃交流思考的学习模式。
二、精准定位,合理安排教学内容。
一提到数学类的通识课程,很多人想到的可能是“数学建模”“数学思维”等课程,在中国大学mooc上,也有一些主打“数学文化”的通识课,以介绍数学发展史为主,这不免让人思考:到底什么是“数学文化”,应该如何向学生推广“数学文化”?“数学文化”这一概念,最早出现在西方数学哲学的研究当中。19世纪,怀特(white)最早提出了“数学文化”的观点,接着克莱因(kline)的几部代表作,包括《古今数学思想》《西方文化中的数学》《数学:确定性的丧失》,赋予数学文化以浓重的人文色彩[3]。近年来,国内不少学者也对“数学文化”进行了研究,在中学阶段数学教材的编写中,穿插了很多诸如“数学史话”“数学美学”的内容。然而到了大学阶段,数学教材往往理论性较强,联系实际较少,学生在“数学文化”的学习方面反而出现了缺失。因此,对于大学本科生而言,数学文化课的定位是对高等数学课的知识补充,其目标是介绍数学概念的形成背景,以及数学如何与自然科学中其他学科交叉融合,促进其他学科的发展。“数学文化观赏”课程的教学内容约为12周,在中国大学mooc上线后,课程团队重新整合了课程内容,把课程分为5个模块:“数学简史”“数学社会”“数学哲学”“数学概念”和“数学人物”。“数学简史”从古代数学一直串讲到现代数学,追溯数学在内容、思想和方法上的演变、发展过程;“数学社会”模块侧重于介绍数学的应用,从多角度展现数学的实用性,例如数据挖掘、算法设计、数学建模等等;“数学哲学”部分是从哲学的层面探究数学,介绍数学研究中的常规思维和非常规思维,探讨数学中的美学;“数学概念”模块通过生动的例子介绍数学中的抽象概念,比如其中的一课“无穷之旅”,以希尔伯特旅馆为例,帮助学生理解“无穷大”的概念,理解无限与有限的辩证统一;“数学人物”则是通过介绍中外数学家们的数学成就和小故事,让学生明白成功并非一蹴而就,而是需要持久的努力和刻苦的钻研[4]。除了重新编排教学内容以外,我们还充分利用mooc的讨论区,每一章都会发布若干讨论题,鼓励学生积极参与,课程上线仅一学期,学生累积发帖数就达到了2500余条。
三、多元评价,改革课程考核方式。
传统的通识课程,通常是以撰写论文作为考核的方式,而我们的课程则采用灵活多样的考核方式。课程在校内平台上线时,设计了a、b、c三种考核等级,供学生自主选择。三个等级的满分分别为100分、90分和80分。a档考试要求学生把数学与专业相结合,制作与课程相关的微课小视频,重点考查学生查阅文献和归纳整理资料的能力,并要求学生具备一定的ppt制作水平和视频剪辑能力;b档考试要求学生撰写论文,论文的题目应结合数学文化与学生的专业知识,侧重于考察学生对课程相关问题的理解能力以及书面表达能力;c档考试为闭卷考试,要求学生在规定时间内完成简述题的作答,重在考察学生对课程内容的理解和掌握。课程上线几年来,选a档考试的人数通常会占选课人数的65%以上,说明学生对于开放性试题的接受程度更高。课程在中国大学mooc上线后,课程团队除了保留原有的a、b两档考试模式以外,还利用平台增设单元测试和随堂测试。在后续的课程建设中,我们计划增加其他考核模式,例如主观题学生互评、小组讨论与展示等,充分利用mooc平台优势,改革考试模式和评价机制,通过开放性和创造性的考核,考察学生的综合素质能力,凸显通识课作为综合素养课程的价值使命。
四、探索尝试,取得一定教学效果。
本课程自开课以来,选课人数接近1600人,已有1500余名学生完成考试,其中1400余名学生考试合格。在学生的微课作品中,不乏一些优秀作品,在征得学生的同意后,我们制作了优秀作品合集展示在课程qq群里。从课程结束后发放的调查问卷显示,大部分学生对课程的满意程度较高,85%以上的学生认为本课程对学习有帮助,84.95%的学生对课程的总体评价为满意或非常满意,88.17%的学生对教师的总体评价为满意或非常满意。从课程的难度来看,74.19%的学生认为本课程的难度适中;从课程的时长来看,73.12%的学生认为本课程的时长合适;在考核的方式和难度方面,73.12%的学生对课程的考核方式表示满意或非常满意,80.65%的学生认为考核难度适中;总体评价方面,学生对课程评价的分值为4.34分(满分为5分),对教师的评价分值为4.54分(满分为5分)。平时的教学过程也显示出学生参与教学的积极性较高,能够在讨论区积极回帖和发帖,同时学生也对课程提出了一些建议,例如希望能够更好地将数学原理与专业课程结合,把抽象的概念寓于生动有趣的问题中,甚至也有不少学生表示期待能在课程中看到一些数学前沿问题。高等教育的主要任务是培养基础理论扎实、专业知识面广、实践动手能力强、具有较强创新能力的人才,数学文化通识课程也应当从这些方面入手,努力达到学科交叉和素质教育的基本目标,注重“以学生为本”,构建立体的知识网络,从“育人”的角度出发,对数学通识课程进行全方位的改革,提高学生的数学素养和综合素养,从而让学生受益终生。
参考文献:
[2]董亚娟.通识教育与创新型人才培养———兼论通识课“经济生活中的数学”[j].人才培养与教学改革———浙江工商大学教学改革论文集,2014(1).
[3]项晶菁,李琪.高等工科院校开设数学文化通识课的实践与思考[c]//educationandeducationmanagement(eem2011v2):113-117.
[4]赵琪,张久军,姚成贵.大学数学文化课教学的实践与探索[j].辽宁大学学报(自然科学版),2016(3).
将本文的word文档下载到电脑,方便收藏和打印。
离散数学论文小论文篇二
摘要:离散数学是高校计算机类专业的必修课程之一,但由于课程本身的特点使得这门课程的学习有一定的难度,本文主要针对教授这门课程提出了几点具体的方法。
离散数学是现代数学的一个重要分支,是研究离散的结构和相互间关系的学科,是计算机科学技术的支撑学科之一。离散数学的教学由于知识点较多,课时有限,课容量大,教师注重严密性与逻辑性,强调对概念、原理的掌握,导致学生学习的过程中感觉枯燥无味,记不住太多的知识点,会有捡了芝麻又丢了西瓜的感觉。这些客观原因对教师提出了严格的要求,必须充分准备采用多种教学方法,使抽象的概念形象化,帮助学生的理解和记忆,以便于学生在有限的时间内掌握更多的知识点。
教师要想上好一节课,必须拿出上课时间三倍的时间来备课。教师首先要吃透教材,只有熟悉了教材才能顺利完成教学任务,熟悉教材不仅包括掌握课本上的内容,而且要深入到更深的`层次上。
比如在讲欧拉图和哈密顿图的过程中,教师可以在上课前通过上网查资料,弄清楚欧拉图是欧拉通过哥尼斯堡七桥问题抽象出来的。尼斯堡是位于普累格河上的一座城市,它包含两个岛屿和连接它们的七座桥,该河流经城区的这两个岛,岛与河岸之间架有六座桥,另一座桥则连接着两个岛。星期天散步已成为当地居民的一种习惯,但试图走过这样的七座桥,而且每桥只走过一次却从来没有成功过,但直至引起瑞士数学家欧拉注意之前,没有人能够解决这个问题。通过这样一个有意思的小故事引出欧拉图,学生就很容易记住欧拉图讲的是边不能重复的问题。在讲哈密顿图时,教师可以介绍一下哈密顿周游世界问题,从正十二面体的一个顶点出发,沿着正十二面体的棱前进,要把十二面体顶点无一遗漏地全部通过,而每个顶点恰好只通过一次,最后回到出发点。在这个问题刚提出来时,生产商以为这是一个难题,专为此设计了一个玩具,以为可以吸引消费者,谁知当这玩具推出市场时,这个问题立刻被人解决了,令生产商损失了一大笔钱。学生可以在笑声中很容易地记住哈密顿图是点不重复问题,知道这两个图的区别。这些都要求教师在备课的过程中要充分准备各种资料。
教师在开始离散数学的教学之前应先简单介绍一下这门课程的重要意义及作用,点明离散数学对其后续课程的基础作用,让学生意识到这门课程在整个专业课程中的地位。学生只有提高了学习的积极性,才会主动地去学习,而不是被动地接受老师填鸭式的教学。教师应先把整个教材的内容分成几个小部分,把每一部分的结构帮学生梳理清楚,简单介绍一下每部分的主要内容。以耿素云的《离散数学》为例,教师可以通过列表的方法把整个教材分成五个部分,这样子可让学生在学习之前就大体了解离散数学的框架。
在上课的过程中,教师要采用多种教学方法。离散数学定义特别多,不太适用传统教学手段像黑板板书之类的,这就要求教师采用现代化的教学方法多媒体,而对数学来讲单纯多媒体教学效果不是特别好,所以应该将这两种教学方法相结合。在课堂上教师应注意学生对这节课教学内容的反馈,多问几个“听明白了吗”,“有没有问题”,不能只注重教,要注重教学效果,要重视学生的情绪,及时调整教学进度,把学生的思路引进到教学活动中来,使之兴趣盎然。比如在讲数理逻辑这一部分内容时,教师可以多举几个实际问题的例子,以便引起学生的兴趣。在讲关键路径时,在定义描述中最早完成时间是沿最长路径到达目的地所需要的时间,大部分学生对这个最长路径不理解。我给学生举了个简单的例子:在工程的盖楼过程中,假设盖好一层楼需要两个必须步骤,一是买水泥做钢筋混凝土,二是打木桩,在盖楼的过程中,买水泥需要两周的时间,做混凝土需要三周,而打木桩需要四周,那么现在盖起楼的最早完成时间是五周,取决于时间最长的那个步骤。这样通过一个简单的例子,学生就记住最早完成时间的概念。教学方法只是一种手段,而不是教学目的,甚至可以对某些内容设计几套方案,以防止种种可能出现的结果,做到有备无患。
在离散数学的教学过程中要讲求教学的针对性,离散数学是计算机类专业普遍开设的一门专业基础课,这就决定了其面向特定的学生,这要求教师要注重学生的学科特点和内容的针对性。计算机学科的发展速度很快,课本的内容可能有些已经跟不上时代的发展,教师需要在教学过程中多去查资料,运用互联网的资源,把最先进最前沿的学科知识介绍给学生,不断更新引例,使授课内容更具时代特色和生活气息。比如在讲最短路径时,教师可以找一个运用到最短路径的实际例子,把这个问题的程序给学生运行一下,让学生明白所学到的知识点和实际问题有什么联系。另外一个问题是在讲特殊的图时,可以结合实际,比如说教务处安排考试的问题,要求教务处七天安排七门考试,同一个老师担任的几门课程不能排在相邻的两天,并且已知一个老师最多担任四门课程,问题是教务处能否安排出可行的考试方案。我在讲课的过程中提到这个问题时,本来已经介绍过几种特殊的图,但学生感觉内容太多接受不了,可是一听考试并且和自己密切相关,顿时打起精神,纷纷讨论怎么安排可行,这就把课堂气氛搞活跃了。最初学生并不能联想到把这个转化成图的问题,我就一步一步地引导,告诉他们先把实际问题转化成图的问题画在纸上,然后看看题目要求的这个图具有什么特性。最后学生才恍然大悟,原来是哈密顿通路问题,这样子这一节课的教学效果就会比较好。
检查学生掌握程度的手段是测试,但是不能让测试成为学生的压力,让他们对离散数学的学习产生抵触程序。考试是衡量学生学习水平的重要手段,应该为教学而考试,而不是为考试而教学,学生掌握这门课程才是教师教的目的。
学习知识的目的是为了培养学生动手能力,同时也加深他们对该课程在专业教学中地位的理解和认识。在离散数学的教学过程中,教师应尝试在传统教学内容的基础上,适当增加上机实验操作的教学模式。教师在探索的基础上,应不断丰富实验内容,在量的积累的基础上达到质的飞跃,从而建立一套完备的离散数学的教学方法,进一步提高离散数学在计算专业中的地位。
参考文献:。
离散数学论文小论文篇三
摘要:起初,集合论主要是对分析数学中的“数集”或几何学中的“点集”进行研究。但是随着科学的发展,集合论的概念已经深入到现代各个方面,成为表达各种严谨科学概念必不可少的数学语言。随着计算机时代的到来,集合的元素已由传统的“数集”和“点集”拓展成包含文字、符号、图形、图表和声音等多媒体信息,构成了各种数据类型的集合。
关键词:集合论、计算机、应用。
1、集合论的历史。
集合论是一门研究数学基础的学科。集合论是现代数学的基础,是数学不可或缺的基本描述工具。可以这样讲,现代数学与离散数学的“大厦”是建立在集合论的基础之上的。21世纪数学中最为深刻的活动,就是关于数学基础的探讨。这不仅涉及到数学的本性,也涉及到演绎数学的正确性。数学中若干悖论的发现,引发了数学史上的第三次危机,而这种悖论在集合论中尤为突出。
集合论是德国著名数学家康托尔()于19世纪末创立的。
十七世纪数学中出现了一门新的分支:微积分。在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果。其推进速度之快使人来不及检查和巩固它的理论基础。十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动。正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端。
经历二十余年后,集合论最终获得了世界公认。到二十世纪初集合论已得到数学家们的赞同。数学家们乐观地认为从算术公理系统出发,只要借助集合论的概念,便可以建造起整个数学的大厦。在19第二次国际数学大会上,著名数学家庞加莱就曾兴高采烈地宣布“??数学已被算术化了。我们可以说,现在数学已经达到了绝对的严格。”然而这种自得的情绪并没能持续多久。
这一仅涉及集合与属于两个最基本概念的悖论如此简单明了以致根本留不下为集合论漏洞辩解的余地。号称“天衣无缝”、“绝对严密”的数学陷入了自相矛盾之中。从此整个数学的基础被动摇了,由此引发了数学史上的第三次数学危机。
危机产生后,众多数学家投入到解决危机的工作中去。19,德国数学家策梅罗(o)提出公理化集合论,试图把集合论公理化的方法来消除悖论。他认为悖论的出现是由于康托尔沒有把集合的概念加以限制,康托尔对集合的定义是含混的.策梅罗希望简洁的公理能使集合的定义及其具有的性質更为显然。策梅罗的公理化集合论后来演变成zf或zfs公理系统。从此原本直观的集合概念被建立在严格的公理基础之上,从而避免了悖论的出现。这就是集合论发展的第二个阶段:公理化集合论。与此相对应,在1908年以前由康托尔创立的集合论被称为朴素集合论。
2、集合论在计算科学中的应用。
可以用于非数值信息的表示和处理,如数据的增加、删除、排序以及数据间关系的描述,有些很难用传统的数值计算来处理的问题,却可以用集合来处理。因此,集合论在程序语言、数据结构、数据库与知识库、形式语言和人工智能等领域得到了广泛应用。2)关系关系也广泛地应用于计算机科学技术中,例如计算机程序的输入和输出关系、数据库的数据特性关系和计算机语言的字符关系等,是数据结构、情报检索、数据库、算法分析、计算机理论等计算机领域中的良好数据工具。另外,关系中划分等价类的思想也可用于求网络的最小生成树等图的算法中。3)函数函数可以看成是一种特殊的关系,计算机中把输入、输出间的关系看成是一种函数。类似地,在开关理论、自动机原理和可计算性理论等领域中,函数都有极其广泛的应用,其中双射函数是密码学中的重要工具。
起初,集合论主要是对分析数学中的“数集”或几何学中的“点集”进行研究。但是随着科学的发展,集合论的概念已经深入到现代各个方面,成为表达各种严谨科学概念必不可少的数学语言。
广泛的应用,而且还得到了发展,如扎德(zadeh)的模糊集理论和保拉克(pawlak)的粗糙集理论等等。集合论的方法已经成为计算科学工作者不可缺少的数学基础知识。
参考文献:〔1〕屈婉玲,耿素云,等。离散数学[m]。北京:高等教育出版社,。
〔2〕kennethh。rosen。离散数学及其应用[m]。北京:机械工业出版社,。
〔3〕陈敏,李泽军。离散数学在计算机学科中的应用[j]。电脑知识与技术,。
〔4〕龚静,王青川。数理逻辑在计算机科学中的应用浅析[j]。青海科技,。
离散数学论文小论文篇四
摘要:离散数学是研究散量的结构及其相互关系的数学学科,是现代数学的重要分支,通过离散数学的学习,不但可以掌握处理离散结构的描述工具和方法,为以后续课创造条件而且可以提高抽象思维和逻辑推理能力,为将来参加与创新性的研究和开发工作打下坚实基础。离散从字面上理解好像是一门很散的学科,但我觉得离散字面散而其内神不散。
正文:在中学我们学习了一些简单逻辑,那些都是一些与生活有关或是学习中一些常识就可判断命题真假的命题。这些简单逻辑对学生的思维逻辑推理能力有一定的训练作用,但中学中的简单逻辑没有严格的证明和公式的推导。一些问题都是凭借日常生活经验或学习中的一些常识就能把命题的正确性作出判断。数理逻辑是以散量为主要载体,通过一系列逻辑连接词来演绎命题并用一定公式判断命题的正确性。数理逻辑对公式有严格的证明,并把命题符号化,使得推理更有序,更可靠。数理逻辑是简单逻辑的提高和精神的升华。数理逻辑提出简单逻辑并未有的散量及一系列公式。数理逻辑为解决简单逻辑的解法提出多样化,为简单逻辑提供更严谨有效的解题途径。
数理逻辑是数学的一个分支,也是逻辑学的分支。是用数学方法研究逻辑式形式逻辑的学科。其研究对象是对证明和计算这两个直观慨念进行符号化以后的形式系统。数理逻辑是数学基础的一个不可缺少的组成部分。数理逻辑是离散数学的主要组成部分,也是现代科学理论的重要组成部分。现代的电子计算机大多是以散量为基数以数理逻辑的方法而运行的,数理逻辑对计算机技术的发展起到举足轻重的作用,不仅如此,在日常生活中人们学习数理逻辑会对人们在生活中分析一些事物形成独特见解。数理逻辑可以提高抽象思维和逻辑推理能力,为将来参与创新性的研究和开发工作打下结实基础。
一阶逻辑等值演算与推理,是数理逻辑的重要组成部分,在一阶逻辑中引入了个体词、谓词和量词的一阶逻辑命题符号化的三个基本要素。这在数理逻辑前几章的学习中都是未提到的,然而有了这些基本要素就把数理逻辑所研究的内容加以拓宽,思维的要求也有所提高。一些逻辑等值演算与推理也大大的增加了数理逻辑的推理方式,为数理逻辑在科学理论中的应用添上了浓墨重彩的一笔。对于一阶逻辑等值演算是数理逻辑前几章的延伸,也是前几章的提高。一阶逻辑为以后续课打下了各方面的条件,使得数理逻辑更加完美。
图论是以图为基本元素,而图的定义是:人们常用点表示事物,用点与点之间是否有某种关系,这样构成的图形就是图论中的图。从这种定义可把数理逻辑的每一个章节的推理公式分为不同的点,而每一章就相当于图论中的图。数理逻辑的各章间的关系就是图与图之间的关系,形成图论的基本要素。从点与点的紧密联系,图与图之间的各项关系,可以看出离散数学是一门严谨的学科,虽然离散字面散而其内神不散。
参考文献:屈婉玲、耿素云、张立昂编《离散数学》。
完成时间:2010年6月10日。
离散数学论文小论文篇五
摘要:离散数学是高校计算机类专业的必修课程之一,但由于课程本身的特点使得这门课程的学习有一定的难度,本文主要针对教授这门课程提出了几点具体的方法。
关键词:大学离散数学教学方法课堂教学。
离散数学是现代数学的一个重要分支,是研究离散的结构和相互间关系的学科,是计算机科学技术的支撑学科之一。离散数学的教学由于知识点较多,课时有限,课容量大,教师注重严密性与逻辑性,强调对概念、原理的掌握,导致学生学习的过程中感觉枯燥无味,记不住太多的知识点,会有捡了芝麻又丢了西瓜的感觉。这些客观原因对教师提出了严格的要求,必须充分准备采用多种教学方法,使抽象的概念形象化,帮助学生的理解和记忆,以便于学生在有限的时间内掌握更多的知识点。
教师要想上好一节课,必须拿出上课时间三倍的时间来备课。教师首先要吃透教材,只有熟悉了教材才能顺利完成教学任务,熟悉教材不仅包括掌握课本上的内容,而且要深入到更深的`层次上。
比如在讲欧拉图和哈密顿图的过程中,教师可以在上课前通过上网查资料,弄清楚欧拉图是欧拉通过哥尼斯堡七桥问题抽象出来的。尼斯堡是位于普累格河上的一座城市,它包含两个岛屿和连接它们的七座桥,该河流经城区的这两个岛,岛与河岸之间架有六座桥,另一座桥则连接着两个岛。星期天散步已成为当地居民的一种习惯,但试图走过这样的七座桥,而且每桥只走过一次却从来没有成功过,但直至引起瑞士数学家欧拉注意之前,没有人能够解决这个问题。通过这样一个有意思的小故事引出欧拉图,学生就很容易记住欧拉图讲的是边不能重复的问题。在讲哈密顿图时,教师可以介绍一下哈密顿周游世界问题,从正十二面体的一个顶点出发,沿着正十二面体的棱前进,要把十二面体顶点无一遗漏地全部通过,而每个顶点恰好只通过一次,最后回到出发点。在这个问题刚提出来时,生产商以为这是一个难题,专为此设计了一个玩具,以为可以吸引消费者,谁知当这玩具推出市场时,这个问题立刻被人解决了,令生产商损失了一大笔钱。学生可以在笑声中很容易地记住哈密顿图是点不重复问题,知道这两个图的区别。这些都要求教师在备课的过程中要充分准备各种资料。
教师在开始离散数学的教学之前应先简单介绍一下这门课程的重要意义及作用,点明离散数学对其后续课程的基础作用,让学生意识到这门课程在整个专业课程中的地位。学生只有提高了学习的积极性,才会主动地去学习,而不是被动地接受老师填鸭式的教学。教师应先把整个教材的内容分成几个小部分,把每一部分的结构帮学生梳理清楚,简单介绍一下每部分的主要内容。以耿素云的《离散数学》为例,教师可以通过列表的方法把整个教材分成五个部分,这样子可让学生在学习之前就大体了解离散数学的框架。
在上课的过程中,教师要采用多种教学方法。离散数学定义特别多,不太适用传统教学手段像黑板板书之类的,这就要求教师采用现代化的教学方法多媒体,而对数学来讲单纯多媒体教学效果不是特别好,所以应该将这两种教学方法相结合。在课堂上教师应注意学生对这节课教学内容的反馈,多问几个“听明白了吗”,“有没有问题”,不能只注重教,要注重教学效果,要重视学生的情绪,及时调整教学进度,把学生的思路引进到教学活动中来,使之兴趣盎然。比如在讲数理逻辑这一部分内容时,教师可以多举几个实际问题的例子,以便引起学生的兴趣。在讲关键路径时,在定义描述中最早完成时间是沿最长路径到达目的地所需要的时间,大部分学生对这个最长路径不理解。我给学生举了个简单的例子:在工程的盖楼过程中,假设盖好一层楼需要两个必须步骤,一是买水泥做钢筋混凝土,二是打木桩,在盖楼的过程中,买水泥需要两周的时间,做混凝土需要三周,而打木桩需要四周,那么现在盖起楼的最早完成时间是五周,取决于时间最长的那个步骤。这样通过一个简单的例子,学生就记住最早完成时间的概念。教学方法只是一种手段,而不是教学目的,甚至可以对某些内容设计几套方案,以防止种种可能出现的结果,做到有备无患。
在离散数学的教学过程中要讲求教学的针对性,离散数学是计算机类专业普遍开设的一门专业基础课,这就决定了其面向特定的学生,这要求教师要注重学生的学科特点和内容的针对性。计算机学科的发展速度很快,课本的内容可能有些已经跟不上时代的发展,教师需要在教学过程中多去查资料,运用互联网的资源,把最先进最前沿的学科知识介绍给学生,不断更新引例,使授课内容更具时代特色和生活气息。比如在讲最短路径时,教师可以找一个运用到最短路径的实际例子,把这个问题的程序给学生运行一下,让学生明白所学到的知识点和实际问题有什么联系。另外一个问题是在讲特殊的图时,可以结合实际,比如说教务处安排考试的问题,要求教务处七天安排七门考试,同一个老师担任的几门课程不能排在相邻的两天,并且已知一个老师最多担任四门课程,问题是教务处能否安排出可行的考试方案。我在讲课的过程中提到这个问题时,本来已经介绍过几种特殊的图,但学生感觉内容太多接受不了,可是一听考试并且和自己密切相关,顿时打起精神,纷纷讨论怎么安排可行,这就把课堂气氛搞活跃了。最初学生并不能联想到把这个转化成图的问题,我就一步一步地引导,告诉他们先把实际问题转化成图的问题画在纸上,然后看看题目要求的这个图具有什么特性。最后学生才恍然大悟,原来是哈密顿通路问题,这样子这一节课的教学效果就会比较好。
检查学生掌握程度的手段是测试,但是不能让测试成为学生的压力,让他们对离散数学的学习产生抵触程序。考试是衡量学生学习水平的重要手段,应该为教学而考试,而不是为考试而教学,学生掌握这门课程才是教师教的目的。
学习知识的目的是为了培养学生动手能力,同时也加深他们对该课程在专业教学中地位的理解和认识。在离散数学的教学过程中,教师应尝试在传统教学内容的基础上,适当增加上机实验操作的教学模式。教师在探索的基础上,应不断丰富实验内容,在量的积累的基础上达到质的飞跃,从而建立一套完备的离散数学的教学方法,进一步提高离散数学在计算专业中的地位。
参考文献:
离散数学论文小论文篇六
摘要:起初,集合论主要是对分析数学中的“数集”或几何学中的“点集”进行研究。但是随着科学的发展,集合论的概念已经深入到现代各个方面,成为表达各种严谨科学概念必不可少的数学语言。随着计算机时代的到来,集合的元素已由传统的“数集”和“点集”拓展成包含文字、符号、图形、图表和声音等多媒体信息,构成了各种数据类型的集合。
关键词:集合论、计算机、应用。
1、集合论的历史。
集合论是一门研究数学基础的学科。集合论是现代数学的基础,是数学不可或缺的基本描述工具。可以这样讲,现代数学与离散数学的“大厦”是建立在集合论的基础之上的。21世纪数学中最为深刻的活动,就是关于数学基础的探讨。这不仅涉及到数学的本性,也涉及到演绎数学的正确性。数学中若干悖论的发现,引发了数学史上的第三次危机,而这种悖论在集合论中尤为突出。
集合论是德国著名数学家康托尔()于19世纪末创立的。
十七世纪数学中出现了一门新的分支:微积分。在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果。其推进速度之快使人来不及检查和巩固它的理论基础。十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动。正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端。
经历二十余年后,集合论最终获得了世界公认。到二十世纪初集合论已得到数学家们的赞同。数学家们乐观地认为从算术公理系统出发,只要借助集合论的概念,便可以建造起整个数学的大厦。在1900年第二次国际数学大会上,著名数学家庞加莱就曾兴高采烈地宣布“??数学已被算术化了。我们可以说,现在数学已经达到了绝对的严格。”然而这种自得的情绪并没能持续多久。
这一仅涉及集合与属于两个最基本概念的悖论如此简单明了以致根本留不下为集合论漏洞辩解的余地。号称“天衣无缝”、“绝对严密”的数学陷入了自相矛盾之中。从此整个数学的基础被动摇了,由此引发了数学史上的第三次数学危机。
危机产生后,众多数学家投入到解决危机的工作中去。1908年,德国数学家策梅罗(o)提出公理化集合论,试图把集合论公理化的方法来消除悖论。他认为悖论的出现是由于康托尔沒有把集合的概念加以限制,康托尔对集合的定义是含混的.策梅罗希望简洁的公理能使集合的定义及其具有的性質更为显然。策梅罗的公理化集合论后来演变成zf或zfs公理系统。从此原本直观的集合概念被建立在严格的公理基础之上,从而避免了悖论的出现。这就是集合论发展的第二个阶段:公理化集合论。与此相对应,在1908年以前由康托尔创立的集合论被称为朴素集合论。
2、集合论在计算科学中的应用。
可以用于非数值信息的表示和处理,如数据的增加、删除、排序以及数据间关系的描述,有些很难用传统的数值计算来处理的问题,却可以用集合来处理。因此,集合论在程序语言、数据结构、数据库与知识库、形式语言和人工智能等领域得到了广泛应用。2)关系关系也广泛地应用于计算机科学技术中,例如计算机程序的输入和输出关系、数据库的数据特性关系和计算机语言的字符关系等,是数据结构、情报检索、数据库、算法分析、计算机理论等计算机领域中的良好数据工具。另外,关系中划分等价类的思想也可用于求网络的最小生成树等图的算法中。3)函数函数可以看成是一种特殊的关系,计算机中把输入、输出间的关系看成是一种函数。类似地,在开关理论、自动机原理和可计算性理论等领域中,函数都有极其广泛的应用,其中双射函数是密码学中的重要工具。
起初,集合论主要是对分析数学中的“数集”或几何学中的“点集”进行研究。但是随着科学的发展,集合论的概念已经深入到现代各个方面,成为表达各种严谨科学概念必不可少的数学语言。
广泛的应用,而且还得到了发展,如扎德(zadeh)的模糊集理论和保拉克(pawlak)的粗糙集理论等等。集合论的方法已经成为计算科学工作者不可缺少的数学基础知识。
参考文献:〔1〕屈婉玲,耿素云,等。离散数学[m]。北京:高等教育出版社,2008。
〔2〕kennethh。rosen。离散数学及其应用[m]。北京:机械工业出版社,2006。
〔3〕陈敏,李泽军。离散数学在计算机学科中的应用[j]。电脑知识与技术,2009。
〔4〕龚静,王青川。数理逻辑在计算机科学中的应用浅析[j]。青海科技,2004。
离散数学论文小论文篇七
摘要:起初,集合论主要是对分析数学中的“数集”或几何学中的“点集”进行研究。但是随着科学的发展,集合论的概念已经深入到现代各个方面,成为表达各种严谨科学概念必不可少的数学语言。随着计算机时代的到来,集合的元素已由传统的“数集”和“点集”拓展成包含文字、符号、图形、图表和声音等多媒体信息,构成了各种数据类型的集合。
关键词:集合论、计算机、应用。
1、集合论的历史。
集合论是一门研究数学基础的学科。集合论是现代数学的基础,是数学不可或缺的基本描述工具。可以这样讲,现代数学与离散数学的“大厦”是建立在集合论的基础之上的。21世纪数学中最为深刻的活动,就是关于数学基础的探讨。这不仅涉及到数学的本性,也涉及到演绎数学的正确性。数学中若干悖论的发现,引发了数学史上的第三次危机,而这种悖论在集合论中尤为突出。
集合论是德国著名数学家康托尔()于19世纪末创立的。
十七世纪数学中出现了一门新的分支:微积分。在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果。其推进速度之快使人来不及检查和巩固它的理论基础。十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动。正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端。
经历二十余年后,集合论最终获得了世界公认。到二十世纪初集合论已得到数学家们的赞同。数学家们乐观地认为从算术公理系统出发,只要借助集合论的概念,便可以建造起整个数学的大厦。在1900年第二次国际数学大会上,著名数学家庞加莱就曾兴高采烈地宣布“??数学已被算术化了。我们可以说,现在数学已经达到了绝对的严格。”然而这种自得的情绪并没能持续多久。
这一仅涉及集合与属于两个最基本概念的悖论如此简单明了以致根本留不下为集合论漏洞辩解的余地。号称“天衣无缝”、“绝对严密”的数学陷入了自相矛盾之中。从此整个数学的基础被动摇了,由此引发了数学史上的第三次数学危机。
危机产生后,众多数学家投入到解决危机的工作中去。1908年,德国数学家策梅罗(o)提出公理化集合论,试图把集合论公理化的方法来消除悖论。他认为悖论的出现是由于康托尔沒有把集合的概念加以限制,康托尔对集合的定义是含混的.策梅罗希望简洁的公理能使集合的定义及其具有的性質更为显然。策梅罗的公理化集合论后来演变成zf或zfs公理系统。从此原本直观的集合概念被建立在严格的公理基础之上,从而避免了悖论的出现。这就是集合论发展的第二个阶段:公理化集合论。与此相对应,在1908年以前由康托尔创立的集合论被称为朴素集合论。
2、集合论在计算科学中的应用。
可以用于非数值信息的表示和处理,如数据的增加、删除、排序以及数据间关系的描述,有些很难用传统的数值计算来处理的问题,却可以用集合来处理。因此,集合论在程序语言、数据结构、数据库与知识库、形式语言和人工智能等领域得到了广泛应用。2)关系关系也广泛地应用于计算机科学技术中,例如计算机程序的输入和输出关系、数据库的数据特性关系和计算机语言的字符关系等,是数据结构、情报检索、数据库、算法分析、计算机理论等计算机领域中的良好数据工具。另外,关系中划分等价类的思想也可用于求网络的最小生成树等图的算法中。3)函数函数可以看成是一种特殊的关系,计算机中把输入、输出间的关系看成是一种函数。类似地,在开关理论、自动机原理和可计算性理论等领域中,函数都有极其广泛的应用,其中双射函数是密码学中的重要工具。
起初,集合论主要是对分析数学中的“数集”或几何学中的“点集”进行研究。但是随着科学的发展,集合论的概念已经深入到现代各个方面,成为表达各种严谨科学概念必不可少的数学语言。
广泛的应用,而且还得到了发展,如扎德(zadeh)的模糊集理论和保拉克(pawlak)的粗糙集理论等等。集合论的方法已经成为计算科学工作者不可缺少的数学基础知识。
参考文献:〔1〕屈婉玲,耿素云,等。离散数学[m]。北京:高等教育出版社,20xx。
〔2〕kennethh。rosen。离散数学及其应用[m]。北京:机械工业出版社,20xx。
〔3〕陈敏,李泽军。离散数学在计算机学科中的应用[j]。电脑知识与技术,20xx。
〔4〕龚静,王青川。数理逻辑在计算机科学中的`应用浅析[j]。青海科技,20xx。
离散数学论文小论文篇八
离散数学是现代数学的重要分支,是计算机科学与技术专业的重要基础课,主要研究离散结构和离散数量的关系。随着计算机科学技术的迅猛发展,离散数学越来越重要,其基本理论在计算机理论研究以及计算机软件、硬件开发的各个领域都有广泛的应用[1]。
离散数学的授课内容主要分为数理逻辑,集合论,代数结构、图论,组合分析以及形式语言与自动机等几大分支,课程概念较多,定义及定理比较抽象,理论性较强[2]。在教学过程中,如果只从数学方面讲授定义定理,学生理解起来比较困难,容易对本课程的学习失去兴趣。因此,设计精彩的教学内容,改进教学方法,探讨教学手段,以提高学生学习的主动性和积极性,具有重要的意义。
2.1精选教学内容。
离散数学是计算机科学与技术本科专业的一门基础课,众多本科高校均开设此课程,其教材也非常丰富。因此,需要教师在符合学校自身办学方略和培养目标的基础上,精选教学内容。笔者工作单位上海电机学院是一所具有技术应用型本科内涵实质和行业大学属性特征的全日制普通本科院校,办学方略注重技术立校,应用为本,因此从学校学生培养方案和学校特色出发,对本课程的教学不能照搬研究型大学的授课方式和教学内容。应该从学生的自身素质以及课程应用性的角度出发精选授课内容,培养学生对课程内容的实际应用能力,让学生从枯燥的数学概念中走出来,达到学以致用的目的。
2.2改变教学观念。
在离散数学课程的教学过程中,如果采取传统的教师讲授,学生课堂听课的方式,学生普遍觉得内容枯燥,提不起学习兴趣。因此教师应在传统课堂教学方法的基础上,注重学生的发展和参与,应以教师为主导,以学生为主体,在授课过程中从教师为主体变为以学生为主体,在教学过程中设置问题情境,启发学生主动思考,激发学生学习兴趣。
如在讲授图论中最短路径的dijkstra算法时,如果只是教师讲授算法,学生理解起来比较困难,对算法的具体应用也无法熟练掌握。教师在授课中可结合计算机网络实例,从实际问题出发,让学生根据实际案例探索算法,发表自己的观点,主动的参与到学习过程中。教师在这个过程从讲台走入到学生中间,与学生交流,引导学生对知识从浅到深的分析和理解,并控制学生探讨时间,最后带动学生归纳总结,让学生作为主体参与在课堂教学过程中,培养学生掌握完整的知识体系。
在教学过程中,运用好的教学方法和教学手段,可以激发学生学习离散数学的兴趣,提高授课质量,帮助学生系统性的掌握所学知识并加以运用。
3.1注重课程引入。
离散数学的定义比较多,学生在学习过程中经常觉得课程的概念非常多,很难掌握并很容易忘记。这就需要教师在讲授定义和定理时,注重知识引入的过程,启发学生学习兴趣并留下深刻的印象。如在讲授命题符号化时,如果直接给出命题符号化的定义,学生不知道这个定义在实际问题如何应用。在讲解过程中,可首先给出一些大家在日常生活中常见的语句,让学生判断语句真假,往往会引起学生的兴趣,在此之后引导学生思考如何将这些语句用数学方式描述,进而给出命题符号化的概念。通过这样的引入,学生对定义的理解会比较透彻,可以做到知其然并知其所以然。
教师还可以在课堂最后,提出趣味性的问题,让学生课下思考,作为下一堂课的引入。如在讲解欧拉图的概念之前,可画一幅图让学生思考是否可以一笔画成,学生会非常踊跃的回答并在课下做出思考,这样在下节课讲授时,学生会非常感兴趣,促进了学生对知识的渴求和理解。
3.2课堂讨论分析。
在离散数学教学过程中,如果教师在讲台上一味的讲解,学生听课时很容易觉得枯燥和疲劳。在授课过程中,教师可以围绕授课内容,提出一些问题进行讨论,带动学生思考。同时,鼓励学生在课堂上提出问题,教师可以安排学生之间互相讨论。如在讲授谓词逻辑中的推理理论时,可以举实际生活中趣味推理的例子,让学生理解知识如何运用,并让学生思考自己在平时遇到的推理问题是否可以用课上的知识解决。通过这样的启发讨论,学生对知识的学习兴趣很高并可以做到举一反三,透彻掌握知识内容。
3.3加强实验教学。
离散数学的基本理论在计算机领域内有着广泛应用,因此在授课过程中应避免单一的理论教学,逐步加强实验教学,将离散数学的理论与计算机实践及其他课程有机结合[3]。如在讲授最优树的huffman算法时,可以开展实验课,在讲授算法原理的同时,将学生带入实验机房,让学生自己设计算法流程图,并编写程序,通过上机的方式掌握算法的本质。通过实验教学,学生可将所学理论应用于实际案例中,加深对知识的理解,还可以提高学生的学习兴趣和编程能力,并掌握所学内容与其他相关计算机知识的联系,培养了学生综合运用知识的能力。
3.4注重类比归纳总结。
离散数学的概念较多,内容抽象,学生难以理解,但是很多内容之间则存在一定的联系,教师可通过类比归纳的方式,帮助学生理解。如数理逻辑中,谓词逻辑的推理理论和命题逻辑的推理理论,在理解上有一定的联系,因此在讲授谓词逻辑的过程中,可以与命题逻辑的推理论相比较,分析异同。再如图论中的欧拉图和哈密尔顿图的定义,可以用类比的方法,让学生直观理解二者的含义和区别[4]。同时,教师可以在授课过程中适时的归纳总结。比如学完数理逻辑后,可以对数理逻辑的两章内容进行归纳,提取出知识主线,加强学生对知识由浅入深的掌握。
3.5多媒体辅助教学。
在离散数学的教学过程中,可以灵活的采取多媒体辅助教学。教师可根据教学内容的不同增加趣味性的背景知识,通过图像、声音和动画,使学生直观的接受新内容。采用多媒体辅助教学,不是意味着教师用ppt把授课的内容逐行展示,这样和传统的板书教学差别不大。教师应该将传统的教学方式与多媒体教学相结合,如图论部分,在讲授欧拉图,哈密尔顿图,最小生成树等内容时,可将重要内容用flash动画的形式进行动态展示,在做动画的过程中从学生的角度出发,灵活的加入声音、图像,吸引学生兴趣,这样学生可以很容易的理解算法,增加了学习的直观性。
作为计算机专业重要的基础课,离散数学广泛应用于计算机的各个领域。因此,提高教学质量,改进教学手段,探讨教学方法,成为教师在授课过程中一直不断探索的课题。本文根据笔者的教学经验,从教学内容、教学观念、教学方法和教学手段几个方面进行了探讨。在今后的课程教学中,我们还需不断创新教学方法,使离散数学课程的教学质量和效果进一步提高。
[1]耿素云,屈婉玲,张立昂。离散数学[m].第四版。北京:清华大学出版社,20xx.
[2]左孝凌,李为鑑,刘永才。离散数学[m].上海:上海科学技术文献出版社,1982.
离散数学论文小论文篇九
认识本身就是一个激发生动的、不可熄灭的兴趣的最令人赞叹、惊奇的奇异的过程。自然界的万物,它们的关系和相互联系,运动和变化,人的思想,以及人所创造的一切,——这些都是兴趣的取之不竭的源泉。但是,在一些情况下,这个源泉像潺潺的小溪,就在我们的眼前,你只要走近去看,在你面前就会展示一幅令人惊异的大自然的秘密的图画;而在另一些情况下,兴趣的源泉则藏在深处,你得去攀登、挖掘,才能发现它;而很常见的情况是,这个“攀登”、“挖掘”自然万物的实质及其因果联系的过程本身,这是兴趣的重要源泉。
教学不是教的问题,而是让学生如何学的问题。研究性学习正是充分发挥了学生的主体作用,在充分培养学生的动手能力、科学探究能力、观察实验能力、获取信息、传递信息、处理信息的能力、分析和判断的'能力及团结协作的能力的同时,也能充分培养学生的创新意识和创造才能。
总之,兴趣是学习的关键。我们要为激发学生的兴趣而努力,让每一个孩子把兴趣作为点燃智慧火花的导火索,充分发挥学生内在的潜力,使之对学习产生浓厚的兴趣。
离散数学论文小论文篇十
摘要:阐述教学实践与信息化的教育环境的关系,在这样的前提下,信息化已在教师教学的过程中,以及学生们学习的过程中,有了直观的体现。教学策略应该转变,使学生适应信息化环境的学习要求。
关键词:信息化环境,数学教学,函数教学,教学策略。
引言。
在初中阶段的学科中,数学是其中的基础学科之一,而函数教学的内容,在初中数学的教学中,又是极为重要的学习内容。并且,在初中阶段的数学教学学中,函数是每一名学生都一定要熟练掌握,学生对函数有较熟练的掌握,才能够为学生日后其他学科的学习,打下比较坚实的基础。尤其是在当今时代,信息技术已经普及开来,初中数学教师,一定要对函数的教学,予以充分的重视,并将函数教学,与当前信息化的大环境,进行更加充分的融合,只有这样,才能够让初中函数教学的整体效果,得到大幅度的提升。
1信息环境下的初中函数教学中的问题。
(1)信息资源。对于学生的学习与成长而言,一个好的环境,足够造成直接的影响。而在现阶段,绝大多数初中的数学教师,在向学生讲解函数教学的内容的时候,在一定程度上,缺乏信息化的环境,以及可以进行信息化教学的资源,对教师教学的整体效果,以及教学任务的进一步开展,造成了较为直接的影响。现如今,大部分的初中学校,学习数学的地点,基本都是在教室中,学生很少在多媒体教室进行课堂学习[1]。并且,即使是在多媒体教室,可以供教师们使用的教学资源也是少之又少。在教育教学的过程中,学生可以学习到的函数知识,基本上都是通过教师讲授之后才得知的,在课后,也只是单纯的通过教材与作业巩固学生的知识。
(2)传统教学理念的影响。现阶段,大部分初中数学教育工作者,在讲解数学函数知识的时候,始终沿用以往的传统教学法。在这个过程当中,教师除了能够进行枯燥的讲解,就是通过黑板来让学生理解,类似于此的教育手法,很无法将学生们的主观能动性调动起来的,不仅如此,还会让学生对于数学函数的学习,产生严重的倦怠,以及抵触的心理。由于函数知识其自身的内容,相对来说是比较复杂的,在这个过程当中,教师如果依旧坚持传统教学法的话,势必会降低函数知识教学的效果,教师事先准备好的教案,也不能达到教师自己预期的效果[2]。
(3)教师素质参差不齐。在初中阶段的教育教学,属于我国九年义务教学的阶段中,数学教师对于信息技术的了解,更是少之又少的。其中一些学校也由于自身条件的限制,无法为学生们配置一些与之相应的教学设备,这对于教师信息化教学的开展,会产生更大的不良影响。除此之外,即使学生所处的学校经济条件相对较好,其中大部分的老教师,也会因为自己对信息化教学的掌握较低,在教学的过程中,依旧更愿意采用传统教学的方式,影响信息化教学的开展。
2信息化环境下的函数教学设计。
(1)设置教学情境。如今,随着我国各个领域的高速发展,信息技术也在各行各业中逐渐崛起,教育领域也不例外。所以,面对这种现状,教师一定要对自己原有的传统教学方式进行适当的转变,采用一些与现阶段学生们学习需求较为相符,还可以提升学生学习兴趣的方法与策略。以学生们的兴趣爱好为根本依据,设置教育教学的情境,是一个行之有效的教学策略,它能够对学生进行更好的帮助,使其可以对函数知识进行灵活的应用,提高学生们学习的积极性。例如,教师在对二次函数图像相关的知识进行讲解时,可以在课前先将学生们分成几个学习小组,然后,再给每组一个二次函数的解析式,在这之后,让学生通过对计算机几何画板的利用,画出与之相应的函数图像。并让学生们对自己所画图像的性质,进行一定的观察与总结,在这之后,相邻的小组在进行交换讨论,通过这种教育教学的方式,不仅可以对学生们自我动手的能力进行锻炼,还可以帮助学生们,使其能够更快速、更准确,对函数知识进行理解,在提升函数学习的兴趣的同时,也可以为教师们减轻大量画图的负担。除此之外,教师也可以让学生自己进行选择,选择应该怎样沿x轴与y轴移动函数,促使学生对于二次函数基本的性质有一个更好地了解。在如今信息化的大环境之下,初中数学教师必须对自己的角色进行转变,充分尊重学生在课堂教学中的主体地位,让学生们自主进行学习与思考,初中数学教师,在更多的时间里,是作为一名引导者,或是合作者的角色,为学生们讲解学习过程中的重难点知识,这样一来,学生们不仅可以对函数知识进行更好地掌握,还可以有效激发学生们对于信息技术的浓厚兴趣,与此同时,还能够拉近教师与学生之间的距离。
(2)合理应用多媒体课件。在以往的教育教学过程中,教师们更多使用的都是传统的教学方式,以至于初中阶段的数学教师,在教授函数知识的过程中,不能很好地将内容传授给学生,只能依靠嘴说的授课形式,极易导致学生,在学习的过程中不知所云[3]。此外,函数知识教学的内容,本身就存在着一定的抽象性,而传统的教育教学的方式,只会在不知不觉中消磨学生们的学习兴趣。因此,在信息化大环境的影响之下,对现有的多媒体教学设备,进行较为有效的利用,以上的大部分问题都能够迎刃而解。例如,初中数学教师,在进行二次函数相关内容的讲解的时候,可以将一些需要进行教学内容,通过多媒体教学设备,制作成课件,并在课堂教学的过程中,通过幻灯片等形式,进行教学。在此过程中,首先就要是在幻灯片上,向学生们展示二次函数的定义,并为学生们进行讲解。接着对多媒体课件进行再次利用,进行二次函数图像特征的进一步演示。由于二次函数图像的表现为“升起”,在这个时候,通过对多媒体设备的合理运用,就可以让学生们看到,并感受到更加直观的现象。其次,在教师事先准备的多媒体课件上,向学生们展示二次函数的性质。在这其中,数字、字母以及其他的特殊内容,都可以通过不同颜色的字体,来进行展示。这样能够有效突出教育教学的重点,以及教学的难点,这样的教学方式是过去的传统教学方式,无法提供给学生[4-7]。
(3)实现信息化函数教学与传统函数教学的互补。在初中数学函数教学中,必须加以强调的是,信息化的教学方式,是将来数学学科教学的整体发展方向,但是,这也并不意味着,教师们应该完全抛弃掉传统的教学模式,因为,无论是哪一种教学模式,都有其的优势与弊端,因此,初中数学教师,在实际的教学过程当中,应“去其糟粕,取其精华”。可以采用将信息化的函数教学,与传统的教学方式进行有机结合的教学方式。但在实际上,这无疑是增加了对教师教育教学的硬性要求,因为,教师们不仅要对信息化下的辅助教学工具进行了解,还要一直保持一种引导者的角色,为学生们制定出更加合适的学习方法,以此来最大限度减少学生在学习时的盲目性,给予学生更加充足的进行自我思考,以及自我探索的时间与空间,积极的鼓励学生,并对学生们提出的一些疑问,在第一时间进行详细的解答,从而帮助学生们,使他们可以对函数的知识进行更好地了解。
3结语。
随着现代科技的不断发展,信息技术逐渐普及,并且,已经在教育领域中得到了较为广泛的应用。虽然,在前进的道路当中,依旧有非常多的制约因素,但是,在教育教学的过程中,合理的融入信息技术,已经是一件大势所趋的事情了。初中数学教师,在进行数学函数的教学过程当中,一定要以当前的信息环境为基本的平台,将教育教学的内容和信息技术,进行有机结合,以此来让数学函数教学的整体效果,得到一定程度上的提升。
参考文献。
[1]商兆杰.信息化环境下初中数学教学的策略分析[j].课程教育研究,2013(32):166.
[3]姬映斗.信息化环境下初中数学函数教学的策略研究[j].课程教育研究,2019(42):53.
[4]金英.信息化环境下数学函数教学的策略研究[j].成才之路,2017(06):38.
[5]郭信.浅谈信息化环境下初中数学教学的策略[j].华夏教师,2015(02):43.
[6]张丽华.信息化环境下初中数学教学的策略研究[j].数学学习与研究,2016(04):40.
[7]钟飞跃.信息化环境下的数学函数教学[j].语数外学习(高中数学教学),2014(01):37.
离散数学论文小论文篇十一
今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄是小华的'3倍?我百思不得其解。
后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸爸和小华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关系,画张图试试。我们俩就开始画了起来。
画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是24岁。再根据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。
解是:26-2=24(岁)。
24÷(3-1)=12(岁)。
12-2=10(年)。
答:10年后爸爸的年龄是小华的3倍。
妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。
离散数学论文小论文篇十二
摘要:小学数学是我国义务教育中的重要课程,帮助激发学生潜能,提高学生的数学学习、应用等多方面能力。在小学数学教学中将多元化教学进行充分的体现,能够更好的将小学数学的教学方式进行深度优化,是义务教育的未来发展趋势。
关键词:小学数学;多元化教学;教学方式。
前言:
随着教育改革的不断深入,多元化教学已经成为了大势所趋,打破了传统教学弊端的同时,还能更好的适应现代化的教育理念。小学数学教学中运用多元化的教学方式,能够让学生在轻松愉快的氛围中得到良好的教育,提升了学习的积极性,增强课堂教学效率和质量。
1小学数学教学现状。
1.1教学方式单一:目前小学数学教学的方式较为简单,大多为灌输式的方式进行教学,教师为课堂主体,学生多是被动式的学习,导致课堂教学质量严重下降,学生也会产生厌烦感,对学习的积极性不高,导致学生成绩不理想。1.2较少课堂互动环节:在小学数学课堂中,教师只是单方面讲解教材的内容,缺少课堂互动,导致学生产生学习盲点,缺乏学习的着手点,从而致使学生的学习成绩较差,课堂教学效率低下等问题。1.3缺少实践环节:教师在课堂教学时,对公式以及例题进行讲解后,只是给予学生几道习题进行练习,却并没有针对课堂讲授内容留下相应的课后作业,帮助学生进行有效巩固,随着课程越来越多,学生容易将所学内容全部忘记,最终无法达到数学教学的有效性。
2多元化教学在小学数学教学中的意义。
2.1有利于掌握学生心理特征:运用多元化教学方式能够更好的帮助教师制定不同的教学方案进行教学,从而更好地了解学生的心理特征。教师在课前要制定良好的教学方案以及拥有充足的知识量,通过将不同的教学方案应用在课堂中可以及时的发现学生更喜欢的教学方式,帮助教师了解学生心理特征,尽快的找到适合学生的教学方式进行教学,提升课堂教学效率,保证教学质量。2.2有利于营造良好的课堂氛围:传统的课堂教学方式十分单一,课堂氛围呆板,对学生的小学数学学习的影响并不大。通过运用多元化教学的方式能够帮助教师在教学方式上进行转变,例如在进行图形计算公式的教学中加入相应的动画和文字,能够让学生拥有直观感受的同时,更好的引起他们的学习兴趣,从而活跃课堂氛围,调动学习积极性,而且,还对学生的智力开发有着良好的作用。2.3有利于教学手段的充分利用:随着科技的不断发展,越来越多的科技技术与现代教育相融合,由于教育本身就具有多样性,通过将科技技术加入到课堂教学中,能够更好的达到教学的目的,而且教师在利用多媒体、网络等手段可以找到不同的教学资源,再结合全新的教学设备,能够将教学的多样性得以充分的体现,因此,运用多元化教学的方式,能够更好地帮助教师不断的掌握各种教学手段,并加以有效的利用,提升了自身教学能力的同时,也促进了小学数学的发展。
3多元化教学在小学数学教学中的具体体现。
3.1情境教学法的应用:情景教学法能够通过形象生动的方式来对教材的内容进行教学,情景教学的方式有很多,可以根据学生的具体情况来选择,不过在情景教学法运用前要了解学生的心理特征,找到他们感兴趣的东西,才能够充分的调动他们的学习积极性,也便于他们能够很快的进入课堂学习状态。情景教学法可以通过图文并茂的方式进行教材内容的展示,再配合教师的语言讲述,来达到情境教学目的,然而这种教学方式缺少一定的互动性,教学的有效性不能够得到充分体现,所以教师可以通过将教学内容与实际的事件相结合,即将教学内容与实际生活中相结合的方式进行教学,这样不仅可以调动学生的积极性,同时还能够很好的活跃课堂气氛,例如教师可以采取游戏的方式进行教学内容的情景展现,能充分的调动学生的兴趣,积极地参与到教学中去,在轻松的游戏环节中实现教学目的。3.2合作学习法的应用:合作学习法就是学生之间通过相互配合、合作的方式进行数学内容学习的过程。合作学习法的优势在于能够充分的调动学生的积极性,能够很快让学生融入到相互合作的氛围中,从而更好的实现教学的目的。在合作教学中教师只要针对合作学习的过程进行指导即可,帮助学生解决在合作学习的过程当中遇到的`问题即可,剩下的内容全部由学生们进行完成才能达到真正的效果,例如:在求圆形的面积教学时,教师可以根据学生的具体情况进行有效分组,将不同学习能力的学生进行平均分配,并且在学习中可以让学生进行有效的分工,也就是分别对圆形的直径、周长等进行计算,求出各自的对应值后,再进行面积的计算。通过合作学习法不仅能够提升课堂教学质量,还能够促进学生的全面发展。3.3学案导学法的应用:学案导学法在小学数学教学中的应用也能够更好的提升教学质量。即教师可以通过针对教材的内容进行相应的教学学案的设计,然后引导学生利用教学学案来进行自我学习、相互讨论以及知识巩固等方式,进而达到真正的学习目的。学案导学法中教师是教学过程中的载体,学生则为主体,通过适当难易程度的教学学案,可以促进学生将自身的学习能力进一步展现,学生也可以通过积极地讨论与研究,确定最终知识内容。教师在过程中可以对学生进行指导,帮助解决遇到的问题即可。在教师指导完毕后,再配以课堂教学的练习,能够对学生学习到的内容进行有效的巩固,从而便于学生更好的掌握知识重点。结束语:相比传统的教学方式,多元化教学能够更好的提升教学质量,让学生对小学数学教学拥有新的认知,所以在运用多元化教学时,一定要将“多元化”的特点在教学中得到充分体现,有效的挖掘学生的潜质,提升小学数学方面的学习能力,推动小学数学教学顺利进行,促进学生的全面发展。
离散数学论文小论文篇十三
如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。
再仔细观察,不难发现有许多艺术品也成轴对称。举个最简单的例子:桥。它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥。个个都呈轴对称。中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称。再说个有名的:北京城的布局。这可是最典型的轴对称布局了。它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称。将轴对称用在艺术上,能使艺术品看上去更优美。
轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的。耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确。可见我们的.生活离不开轴对称。
数学离我们很近,它体现在生活中的方方面面,我们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完。我认为,生活中的数学能给人带来更多地发现。
离散数学论文小论文篇十四
阐述教学实践与信息化的教育环境的关系,在这样的前提下,信息化已在教师教学的过程中,以及学生们学习的过程中,有了直观的体现。教学策略应该转变,使学生适应信息化环境的学习要求。
在初中阶段的学科中,数学是其中的基础学科之一,而函数教学的内容,在初中数学的教学中,又是极为重要的学习内容。并且,在初中阶段的数学教学学中,函数是每一名学生都一定要熟练掌握,学生对函数有较熟练的掌握,才能够为学生日后其他学科的学习,打下比较坚实的基础。尤其是在当今时代,信息技术已经普及开来,初中数学教师,一定要对函数的教学,予以充分的重视,并将函数教学,与当前信息化的大环境,进行更加充分的融合,只有这样,才能够让初中函数教学的整体效果,得到大幅度的提升。
(1)信息资源。对于学生的学习与成长而言,一个好的环境,足够造成直接的影响。而在现阶段,绝大多数初中的数学教师,在向学生讲解函数教学的内容的时候,在一定程度上,缺乏信息化的环境,以及可以进行信息化教学的资源,对教师教学的整体效果,以及教学任务的进一步开展,造成了较为直接的影响。现如今,大部分的初中学校,学习数学的地点,基本都是在教室中,学生很少在多媒体教室进行课堂学习[1]。并且,即使是在多媒体教室,可以供教师们使用的教学资源也是少之又少。在教育教学的过程中,学生可以学习到的函数知识,基本上都是通过教师讲授之后才得知的,在课后,也只是单纯的通过教材与作业巩固学生的知识。
(2)传统教学理念的影响。现阶段,大部分初中数学教育工作者,在讲解数学函数知识的时候,始终沿用以往的传统教学法。在这个过程当中,教师除了能够进行枯燥的讲解,就是通过黑板来让学生理解,类似于此的教育手法,很无法将学生们的主观能动性调动起来的,不仅如此,还会让学生对于数学函数的学习,产生严重的倦怠,以及抵触的心理。由于函数知识其自身的内容,相对来说是比较复杂的,在这个过程当中,教师如果依旧坚持传统教学法的话,势必会降低函数知识教学的效果,教师事先准备好的教案,也不能达到教师自己预期的效果[2]。
(3)教师素质参差不齐。在初中阶段的教育教学,属于我国九年义务教学的阶段中,数学教师对于信息技术的了解,更是少之又少的。其中一些学校也由于自身条件的限制,无法为学生们配置一些与之相应的教学设备,这对于教师信息化教学的开展,会产生更大的不良影响。除此之外,即使学生所处的学校经济条件相对较好,其中大部分的老教师,也会因为自己对信息化教学的掌握较低,在教学的过程中,依旧更愿意采用传统教学的方式,影响信息化教学的开展。
(1)设置教学情境。如今,随着我国各个领域的高速发展,信息技术也在各行各业中逐渐崛起,教育领域也不例外。所以,面对这种现状,教师一定要对自己原有的传统教学方式进行适当的转变,采用一些与现阶段学生们学习需求较为相符,还可以提升学生学习兴趣的方法与策略。以学生们的兴趣爱好为根本依据,设置教育教学的情境,是一个行之有效的教学策略,它能够对学生进行更好的帮助,使其可以对函数知识进行灵活的应用,提高学生们学习的积极性。例如,教师在对二次函数图像相关的知识进行讲解时,可以在课前先将学生们分成几个学习小组,然后,再给每组一个二次函数的解析式,在这之后,让学生通过对计算机几何画板的利用,画出与之相应的函数图像。并让学生们对自己所画图像的性质,进行一定的观察与总结,在这之后,相邻的小组在进行交换讨论,通过这种教育教学的方式,不仅可以对学生们自我动手的能力进行锻炼,还可以帮助学生们,使其能够更快速、更准确,对函数知识进行理解,在提升函数学习的兴趣的同时,也可以为教师们减轻大量画图的负担。除此之外,教师也可以让学生自己进行选择,选择应该怎样沿x轴与y轴移动函数,促使学生对于二次函数基本的性质有一个更好地了解。在如今信息化的大环境之下,初中数学教师必须对自己的角色进行转变,充分尊重学生在课堂教学中的主体地位,让学生们自主进行学习与思考,初中数学教师,在更多的时间里,是作为一名引导者,或是合作者的角色,为学生们讲解学习过程中的重难点知识,这样一来,学生们不仅可以对函数知识进行更好地掌握,还可以有效激发学生们对于信息技术的浓厚兴趣,与此同时,还能够拉近教师与学生之间的距离。
(2)合理应用多媒体课件。在以往的教育教学过程中,教师们更多使用的都是传统的教学方式,以至于初中阶段的数学教师,在教授函数知识的过程中,不能很好地将内容传授给学生,只能依靠嘴说的授课形式,极易导致学生,在学习的过程中不知所云[3]。此外,函数知识教学的内容,本身就存在着一定的抽象性,而传统的教育教学的方式,只会在不知不觉中消磨学生们的学习兴趣。因此,在信息化大环境的影响之下,对现有的多媒体教学设备,进行较为有效的利用,以上的大部分问题都能够迎刃而解。例如,初中数学教师,在进行二次函数相关内容的讲解的时候,可以将一些需要进行教学内容,通过多媒体教学设备,制作成课件,并在课堂教学的过程中,通过幻灯片等形式,进行教学。在此过程中,首先就要是在幻灯片上,向学生们展示二次函数的定义,并为学生们进行讲解。接着对多媒体课件进行再次利用,进行二次函数图像特征的进一步演示。由于二次函数图像的表现为“升起”,在这个时候,通过对多媒体设备的合理运用,就可以让学生们看到,并感受到更加直观的现象。其次,在教师事先准备的多媒体课件上,向学生们展示二次函数的性质。在这其中,数字、字母以及其他的特殊内容,都可以通过不同颜色的字体,来进行展示。这样能够有效突出教育教学的重点,以及教学的难点,这样的教学方式是过去的传统教学方式,无法提供给学生[4-7]。
(3)实现信息化函数教学与传统函数教学的互补。在初中数学函数教学中,必须加以强调的是,信息化的教学方式,是将来数学学科教学的整体发展方向,但是,这也并不意味着,教师们应该完全抛弃掉传统的教学模式,因为,无论是哪一种教学模式,都有其的优势与弊端,因此,初中数学教师,在实际的教学过程当中,应“去其糟粕,取其精华”。可以采用将信息化的函数教学,与传统的教学方式进行有机结合的教学方式。但在实际上,这无疑是增加了对教师教育教学的硬性要求,因为,教师们不仅要对信息化下的辅助教学工具进行了解,还要一直保持一种引导者的角色,为学生们制定出更加合适的学习方法,以此来最大限度减少学生在学习时的盲目性,给予学生更加充足的进行自我思考,以及自我探索的时间与空间,积极的鼓励学生,并对学生们提出的一些疑问,在第一时间进行详细的解答,从而帮助学生们,使他们可以对函数的知识进行更好地了解。
随着现代科技的不断发展,信息技术逐渐普及,并且,已经在教育领域中得到了较为广泛的应用。虽然,在前进的道路当中,依旧有非常多的制约因素,但是,在教育教学的过程中,合理的融入信息技术,已经是一件大势所趋的事情了。初中数学教师,在进行数学函数的教学过程当中,一定要以当前的信息环境为基本的平台,将教育教学的内容和信息技术,进行有机结合,以此来让数学函数教学的整体效果,得到一定程度上的提升。
[1]商兆杰.信息化环境下初中数学教学的策略分析[j].课程教育研究,2013(32):166.
[3]姬映斗.信息化环境下初中数学函数教学的策略研究[j].课程教育研究,2019(42):53.
[4]金英.信息化环境下数学函数教学的策略研究[j].成才之路,2017(06):38.
[5]郭信.浅谈信息化环境下初中数学教学的策略[j].华夏教师,2015(02):43.
[6]张丽华.信息化环境下初中数学教学的策略研究[j].数学学习与研究,2016(04):40.
[7]钟飞跃.信息化环境下的数学函数教学[j].语数外学习(高中数学教学),2014(01):37.
离散数学论文小论文篇十五
摘要:数学是一门基于工具和应用程序的专业课程。它是人们最基本的专业知识和专业技能,也是经济学发展趋势的关键。本文从数学在经济预测与决策中的重要性、应用以及经济决策与预测在经济活动中的重要作用三个方面着手进行分析。
关键词:数学;经济预测与决策;应用;重要性。
随着中国经济发展出现新形势,产业结构改革创新水平不断提高,经济研究中数学知识和基础数学理论的必要性日益突出,经济预测和决策成为经济研究的关键内容,在经济主题活动中起着关键作用。如今,数学在经济预测和决策中的应用不断发展,数学在经济预测和经济决策中的应用具有广阔的市场前景。
一、数学在经济预测与决策中的重要性。
(一)数学与经济行为密切相关、相互促进当谈到经济学和数学之间的联系时,它有着悠久的历史。在早期,每个人都学习了业务服务中加、减、乘、除的基本数学。一方面,经济活动是人们最重要、最基本的化学物质生产和制造主题活动。在实践活动和经济活动的探索中,每个人都必须具备数学知识,促进对数学定律的讨论和科学研究,并促进数学基础理论的深入发展趋势。另一方面,数学知识的不断提高,数学基础理论的不断改进,经济活动不断发展的趋势,数学知识和基础数学理论的广泛应用,已经逐渐潜移默化地改变了每个人的生活习惯和主题活动的逻辑思维。因此,数学与经济个体行为之间的关系是密切相关的。
(二)数学课是金融研究的重要途径经济学是一门与科研资源分配和社会经济发展有关的课程。当前的经济发展管理计划中广泛使用数学思维训练,在将基础数学课程和基础经济发展理论转变为经济发展实践方面起着主导作用。最重要的方面之一是数学课明确提出了重要的金融研究方法。数学课作为纵横比定性分析、逻辑思维、准确性和封闭式的重要语言,在描述、分析、显示信息以及显示信息经济发展、经济关系和价值规律的整个过程中得到了充分利用。它有效地提高了经济发展中专业技能积累的速度和效率,并扩大了经济发展信息和经济发展学术研讨会,突出了数学的独特作用和风格,为经济研究的发展做出了杰出贡献。
二、经济预测与决策在经济活动中的重要作用。
经济预测和经济管理决策,是经济科学研究的关键步骤和重要内容。它在经济状况的分析和通过科学研究掌握经济规律、预警信息和预测经济状况以及对生产和经营主题活动的具体指导方面起着关键性的作用。具体来说,就是经济发展预测和分析以及经济发展管理决策在经济活动中起着关键作用。
(一)经济预测的重要作用无论是促进商业实体的管理方式改善还是促进社会经济发展,都离不开准确的经济发展趋势分析和社会经济发展预测分析研究的科学研究分析,从而有助于对社会经济发展主体进行科学研究。总体而言,经济发展预测分析是指基于对某些社会现象的统计数据信息和经济信息的调查,以及对个体行为的客观经济发展进行准确计算和科学研究的基本理论方法,经济预测叙述和分析了经济发展全过程与经济发展因素之间的过渡特征和发展趋势。此外,全面区分了一系列个人行为,例如:预测分析以及对未来社会和经济发展趋势和概率的预测。在当代经济环境分析和金融研究中,经济发展预测分析起着越来越重要的作用。它对于解决经济发展市场前景的变化,减少经济发展中个人行为的风险,减少对中国实体经济的可能损害具有重要的现实意义和使用价值。
(二)经济决策的重要作用经济活动通过促进经济发展得以实现经济利益并且使得利益能够最大化,因此,必须在经济活动中做出努力,以改善经济发展管理决策。经济发展管理决策是指调整和促进综合经济发展的个人行为,对经济发展机构和产业结构主体的经济发展个体行为的分析和辨别是应用科学研究和客观分析的结果,并且是区分相对于经济发展总体目标和主导管理决策个人行为的基本方法经济指标和经济信息。经济发展管理决策在社会经济发展中具有十分关键的作用和十分重要的影响,这是决定市场竞争在经济发展中的成败和经济回报水平的主要条件。因此,经济决策在经济活动中的地位越来越重要,也越来越被重视。
三、数学在经济预测与决策中的应用。
数学课与经济发展之间有着天然的联系。如今,当人们越来越重视定量分析和合理性时,在经济发展实践活动和经济发展理论基础研究中改进数学思维训练和数学基础理论的应用已成为共识。为了应对日益复杂的全球经济环境,并继续改进数学在经济发展预测分析和管理决策中的应用,它越来越受到各界人士的关注。
(一)数学在经济预测与决策中的应用范围不断扩大如今,全球数学课程的发展趋势已经达到一个非常高的水平。数学应用与服务领域的总体发展趋势以及数学分支机构管理方法的日益多样化和完善,使其在社会经济发展、战略决策分析等方面的表现更加突出。经济研究的数学过程已经成为经济研究的一个重要特征。随着数学基础理论的发展趋势和金融研究的深入发展,数学在经济发展预测分析和管理决策中的应用逐渐从工具性发展趋势向逻辑有用应用转变。此外,当代信息技术的发展为每个人提供了一个更强的标准,使人们能够更方便地运用数学基本理论和方法来进行经济发展预测分析和管理决策。因为对现代网络技术的应用,可以更轻松地进行经济指标的数学分析,可以使用公式更方便快捷地分析和预测社会现象,并且可以更轻松地使用数学分析模型来构建投资模型,然后可以理性地处理社会现象和社会经济学科学研究中的各种各样的复杂问题。因此,在当今社会的发展中,数学知识已经被用于更加广泛的经济发展预测分析和管理决策中,并且应用频率更高,还有基本理论的使用价值以及社会经济发展的使用价值的现实意义也都呈现出了逐步增长的发展趋势。
(二)数学在经济预测中的应用分析社会经济发展预测分析是基于数学的基本理论和客观性,对未来经济形势进行科学研究预测分析。它通常接近定性研究和定性分析的中间,并且不能与普遍的应用思维分开。其中,社会经济发展的分布与融合是分析社会经济发展趋势的关键一步。发展要素项目投资实体模型本质上是一项科学研究,它将社会问题的科学研究转化为社会经济发展要素的替代和组成,然后以数学课程基础知识中自变量、变量、基本参数和化学方程式为基础,进行分析和科学研究讨论。例如离散数学就是一种重要的特殊工具,它可以解决许多复杂和多样化的数学方程。离散数学经常被引入社会经济学的研究中,基于多个变量的特征和许多未知的基本参数,房地产价格变化趋势无法用于成本预算。
(三)数学在经济决策中的应用分析科学研究的社会经济发展和战略决策尤为重要,但不能以科学研究方法为基础。当今的经济运行分析和科学研究创造了许多不同类型的经济发展管理决策方法,包括明确的管理决策方法(例如损益分析和线性规划问题),以及社会管理决策方法和效果。战略决策法律法规和其他可变战略决策方法还包括基于风险的战略决策方法,例如边际分析战略决策方法和估计利润表战略决策方法。无论选择哪种社会经济发展战略方法,都必须基于客观经济发展和发展状况中所包括和包括的社会经济发展因素,并且有许多数学原理适用于到达站。根据具体情况,有必要建立一种适当、科学的数学分析方法描述和反映不同的社会经济发展要素的分布和构成。另外,博弈论作为现代数学的重要基础知识,不仅涉及数学的外部效应产业链,而且还超越了数学的宏观经济政策产业链,与社会经济决策密切相关。从外部性的角度来看,与社会和经济发展战略决策密切相关的产品质量问题、产品保质期问题、佣金问题、商业保险选择问题、潜在的市场需求问题以及市场销售谈判问题相互关联。它已应用于许多相关的专业技能和博弈论思维逻辑。从微观经济学的角度,无论是对现代企业整个产业链组织理论的科学研究还是对社会经济学的讨论,都可以从博弈论的角度进行分析和表达。
四、结语。
只有科学研究成功地应用了数学,所有科学研究才能真正卓有成效。数学是现代科学和技术的一门重要课程,这是社会经济学科学研究的基础课程。思维训练和数学工作能力有利于社会经济学学者提高科学研究水平,掌握价值规律,指导个人经济发展。追求完美、精确和客观是经济发展预测分析和管理决策的关键特征。在进行社会经济分析科学研究时,每个人都只站在数学的“肩膀”上,塑造科学研究的思想训练,充分利用数学课,这是一种合理的分析科学研究工具和科学研究方法。只有通过科学研究,我们才能合理地理解和掌握社会经济发展的规律,才能更好地进行经济发展预测分析和经济发展管理决策。如今,越来越多的经济学家将传统数学课程的基础理论和数学课程的新科学研究成果应用到经济发展预测分析和管理决策科学研究中,并获得了许多新的社会经济科学研究成果,这些成果得到了越来越多的证实。因此,在当代教育的发展趋势中,必须重视数学学科的基础建设和学生数学思维逻辑的塑造,大量的高级数学人才进行经济发展预测分析和管理决策,促进我国当代经济发展。
参考文献:
离散数学论文小论文篇十六
摘要:小学数学不会自发产生与现实生活的联系。运用数学知识和方法解决一些简单的实际问题,需要采用切实可行的方法。本文围绕小学数学生活化策略展开,旨在进一步拓宽小学数学教学思路,创新教学方法。
关键词:小学数学生活化策略研究。
数学作为小学生感知世界的重要方式,不会孤立于生活之外产生作用,也不能从教材和课堂教学中与现实生活自发产生直接的联系。显然,对《数学课程标准》的解读,不能只是明确“使学生感受数学与现实生活的密切联系,是学生初步学会运用所学的数学知识和方珐解决一些简单的实际问题”。而是要从这样的教学目标定位中,寻找切实可行的方法。如何真正让数学贴近学生生活,让数学与学生生活触觉碰撞和交融,让他们真正的在生活中学数学,在学数学中了解感触生活,这是数学教师应该探究的课题,笔者认为这些问题的解决需要我们数学教师采用生活化教学策略。因此,笔者结合长期的小学数学教学实践和当前教改的要求。提出以下设想以求教于方家。
数学教学生活化是指数学课堂教学与学生实际生活相联系,把数学知识转化为学生的实际生活情境,在实际生活情境中学习数学的一种教学方式。这里所指的学生实际生活并不单是单纯学生生活情境在数学课堂教学中的完全再现,而是一种数学化的生活情境。小学数学教材是实现课程目标、实施教学的重要资源,也是进行学习活动的基本线索。学习材料生活化可以依托现行教材,加强“书本世界”与学生“生活世界”的沟通,改变数学学习生活苍白无为的状态。和许多研究者的认识一致的是,目前小学数学教材内容仍然缺乏时代气息和生活色彩,缺少学生喜闻乐见的内容。学习材料生活化就是要切合学生生活实际。将数学学习材料的呈现方式多样化,激发学生的学习兴趣,鼓励学生积极思考、合作交流,丰富学生的情感体验。建构属于学生自己的数学知识体系。
例如在教学“百分数”一般应用题时,笔者这样重组材料:一是收集信息。上课一开始就请学生描述学校周边道路环境状况。二是选择信息。在学生所列举的众多信息中选择出一条“为绿化道路环境,在校外公路栽种树木,一共栽了500棵,成活了490棵,让学生提出数学问题。三是自主探究。学生提出问题中很多是学生已知领域,让学生自己解决。四是教师引导。告诉同学们“这批树木的成活率是98%。”从而提问“成活率”和“98%”的含义,让同学们先独立思考后小组交流讨论。这样重组,贴近学生所关注的现实生活,学习材料来自师生的熟知信息,体现了生活数学的现实性。这样就能很好地解决“死知识”适应“对话教学”之间的矛盾。因此,教师在教学中要善于处理教材、调整教材。重组教材内容,给数学课本增加“营养”。让教学根植于生活,将枯燥乏味的教学内容设计成生活中看得见,摸得着、听得到的有价值的案例,从而适合学生发展的数学学习过程,让学生真正感受到数学的魅力。体验到学数学的乐趣。
数学知识最终服务于生活,回归于社会生活。教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到现实生活中去,解决身边的数学问题,以体会数学在现实生活中的应用价值。我积极鼓励学生收集、整理、加工生活中的数学问题,获得解决简单实际问题的活动经验和方法,感受到生活与数学知识间的联系,不断提高他们的数学应用能力。
数学教学不应该是个只注重求知过程、只注意引导学生学习数学知识、训练数学技能,而应该积极引导学生用数学的眼光观察世界、认识世界、掌握分析问题的方式方法。在学生学习数学过程中,教师要尽可能使每一个学生拥有一双能用数学视角观察生活的眼睛,让学生带着数学问题接触实际。加深对数学问题的理解,进而懂得身边处处有数学。数学总能找到与人和现实生活的联系,抓住了联系,就能把活学到的知识进行活用。但这种思维习惯也需要我们一步一步地培训。如学习比例应用后,我们设计了一个将配液加水或加盐的实验操作活动:“要把10%盐水50千克,配制成20%的盐水。该怎么办?学生通过精确计算,动手测量得出使盐变多(加盐)或使水变少(蒸发)的规律。再如在学习“百分数意义”后,我出示了这样一道题让学生进行思考:我们班有30%左右的学生在家使用电脑上网,其中2/3的学生是利用网络进行学习,而1/3的学生却在玩网络游戏。看到这一现象,谈谈你的看法。这样让学生用学到的数学知识去思考、解决身边的问题,在课堂教学中渗透了思想教育。适当地进行一些小学生日常行为规范的养成教育,使学生自觉地把所学到的知识与现实生活中的事物联系起来,培养学生用数学的情感,培养学生把所学到的知识运用于实际的`意识。
数学来源于生活,生活中处处有数学,到处存在数学问题。数学的身影在生活中每个角落,数学的价值来自日常生活。数学教学重视学生的生活体验,把数学问题与生活情景相结合。通过生活问题的解决达到巩固数学知识,提高数学技能。技巧的目的。对小学生而言,在生活中形成的常识、经验是他们学习数学的基础。在日常教学中,教师要善于引导学生观察生活中的实际问题。感受数学与生活的密切联系,拓展学生认识数学,发现数学的空间,重视学生对数学体验的积累。让学生在数学知识之前尽早感受这种做法,在课堂中往往能收到事半功倍的效果。例如,教学厘米、米等长度单位时,可以从比高矮实际事例人手使学生明白了长度单位对于精确测量的意义,再让学生通过测量工具认识这些长度单位。然后动手测量图钉的长度、食指的宽度、书本长度、平伸两臂的长度、给爸爸妈妈测量坐高,黑板的长度、教室的长度等。
这些知识是学生喜闻乐见、易于接受的,在不知不觉中学习了数学,让学生深切的体会到了原来数学就自己的身边,身边就有数学,数学不再是抽象,枯燥的课本知识,而是充满魅力与灵性。与现实生活息息相关的活动。同时也增强了数学的亲和力,激发了学生学习数学的积极性和主动性,使课堂教学焕发了生命的活力。
学习数学最终目的就是要把学到的知识应用到实际生活中去。教师要千方百计地创造生活情境,让学生运用所学的知识和方法研究、探索,解决一些简单的实际问题。不但可以帮助学生增进对知识的理解,了解知识的价值,而且可以增强学生学习和应用数学知识的信心。例如,在讲授“利息”的知识点后,笔者安排了这样的课外作业“自己做一次小小会计员”,让学生去银行了解现在的利率,然后让他们把积攒的零用钱存起来,怎样存最合算?这样的作业学生极有兴趣。在这一系列的调查、分析、计算、反复比较的实践中,学生对利率、利息这一知识的理解更为深刻。而且此次活动。还可以是对学生不乱花钱的思想教育,实现教知识和育人的统一。这样联系实际的教学,将学生在课堂中学到的知识返回到生活中,又从生活实践中弥补课堂内学不到的知识。自然满足了学生求知的心理愿望,产生了强烈的教与学的共鸣,同时在生活实践中学会了解决问题。
综上所述,实施小学数学教学生活化策略必须能符合学生的认知规律。注重知识的形成过程,注重学生能力的培养,能引导学生把数学知识运用于实践,符合素质教育的要求,使学习变得通俗、有趣、生动,使数学教学实践变得更有活力。