二元一次方程组的数学教案(精选17篇)
教案的编写可以帮助教师深入思考和理解教学内容,提高教学能力。教案的编写要注重课堂教学资源的丰富和多样化,为学生的学习提供良好的环境和条件。教案的编写需要根据具体的教学目标和学生的学情进行调整和优化。
二元一次方程组的数学教案篇一
1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型2017年-2017学年七年级数学下册全册教案(人教版)2017年-2017学年七年级数学下册全册教案(人教版)。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
2.彻底理解题意。
1.怎样设未知数?
2.找本题等量关系?从哪句话中找到的?
3.列方程组。
4.解方程组。
5.检验写答案。
思考:怎样用一元一次方程求解?
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
2.p38练习第1题。
p42。习题2.3a组第1题。
后记:
二元一次方程组的数学教案篇二
学习目标:
学习重点:
学习难点:
1.做图像时要标准、精确,近似值才接近。
学习方法:
先自学课本,用心思考自主学习部分,努力独立完成,再与其他同学讨论未明白的内容。课上展示,针对自己不明白问题多听多问。
自主学习部分:
问题1.(1)方程x+y=5的解有多少组?写出其中的几组解。
(3)在一次函数y=5-x的图像上任取一点,它们的坐标适合方程x+y=5吗?
(5)由以上的探究过程,你发现了什么?
(3)由以上探究过程,我们发现解二元一次方程组的方法除了加减消元法和代入消元法,还可以用法解方程组;我们还发现可以利用解二元一次方程组的方法求两条直线交点的坐标。
合作探究:
(1)用做图像的方法解方程组。
(2)用解方程的方法求直线y=4-2x与直线y=2x-12交点。
二元一次方程组的数学教案篇三
一、精心选一选!一定能选对!(每小题3分,共30分)。
(a)(b)(c)(d)。
2.方程组解的个数有().
(a)一个(b)2个(c)3个(d)4个。
3.若方程组的解是,那么、的值是().
(a)(b)(c)(d)。
4.若、满足,则的值等于().
(a)-1(b)1(c)-2(d)2。
(a)(b)(c)(d)。
6.下列说法中正确的是().
(b)方程的解、为自然数的有无数对。
7.在等式中,当时,,当时,,则这个等式是().
(a)(b)(c)(d)。
(a)(b)(c)(d)。
9.(20宁夏)买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元,乙种水的`桶数是甲种水的桶数的75%,设买甲种水x桶,乙种水y桶,则所列方程组中正确的是()。
(a)(b)(c)(d)。
10.(年福建福州)如图,射线oc的端点o在直线ab上,1的度数比2的度数的2倍多10,则可列正确的方程组为().
(a)(b)(c)(d)。
二、耐心填一填!一定能填对!(每小题3分,共30分)。
11.已知方程,用含的式子表示的式子是____,用含的式子表示的式子是___________.
12.已知是方程的一个解,那么__________.
13.已知,,则________.
14.若同时满足方程和方程,则_________.
16.(2005年江苏盐城)若一个二元一次方程的一个解为,则这个方程可以是_______________(只要求写出一个)。
17.已知方程组与的解相同,那么_______.
18.若,都是方程的解,则______,________.
19.(山东潍坊)蔬菜种植专业户王先生要办一个小型蔬菜加工厂,分别向银行申请甲、乙两种贷款,共13万元,王先生每年须付利息6075元,已知甲种贷款的年利率为6%,乙种贷款的年利率为3.5%,则甲、乙两种贷款分别是________________.
20.(2005年南宁)根据下图提供的信息,求出每支网球拍的单价为。
元,每支乒乓球拍的单价为元.
200元160元。
三、用心想一想!一定能做对!(共60分)。
21.(本小题8分)(2005年江苏苏州)解方程组:
26.(本小题12分)(,黄冈)已知某电脑公司有a型、b型、c型三种型号的电脑,其价格分别为a型每台6000元,b型每台4000元,c型每台2500元.我市东坡中学计划将100500元钱全部用于从该公司购进其中两种不同型号的电脑共36台,请你设计出几种不同的购买方案供该校选择,并说明理由.
参考答案:
一、1~10daaacdbcbb。
二、11.,;12.0;13.-42;14.4;15.加减消元,;16.等;17.1.5;18.2,1;19.6.1万元,6.9万元;20.80,20.
三、
21.;22.;23.;24.54人挖土,18人运土;。
25.解:设这种矿泉水在甲、乙两处每桶的价格分别为元,根据题意,得。
解这个方程组,得。
因为.
所以到甲供水点购买便宜一些.
26.解:设从该电脑公司购进a型电脑x台,购进b型电脑y台,购进c型电脑z台.则可分以下三种情况考虑:
(1)只购进a型电脑和b型电脑,依题意可列方程组解得不合题意,应该舍去;。
(2)只购进a型电脑和c型电脑,依题意可列方程组解得。
(3)只购进b型电脑和c型电脑,依题意可列方程组。
解得。
二元一次方程组的数学教案篇四
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型20xx年-20xx学年七年级数学下册全册教案(人教版)20xx年-20xx学年七年级数学下册全册教案(人教版)。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
2.彻底理解题意。
一、情境引入。
二、建立模型。
1.怎样设未知数?
2.找本题等量关系?从哪句话中找到的?
3.列方程组。
4.解方程组。
5.检验写答案。
三、练习。
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
2.p38练习第1题。
四、小结。
五、作业。
二元一次方程组的数学教案篇五
学生的知识技能基础:在学习本节之前,学生已经掌握了有理数、合并同类项、去括号等法则,能熟练的进行简单的整式的加、减法运算整式的运算,知道方程的解的意义,能熟练的求解一元一次方程,了解了二元一次方程以及解的意义、二元一次方程组及其解的意义,能通过代人消元法求解二元一次方程组.
学生活动经验基础:在相关知识的学习过程中,学生已经经历了列整式、列一元一次方程并求解,列二元一次方程组解决了一些简单的现实问题,感受到了方程是刻画现实世界数量关系的有效模型,通过解一元一次方程和用代入消元法解二元一次方程组获得了解二元一次方程的基本经验和基本技能;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力.
二、教学任务分析。
教科书基于学生对前面解一元一次方程和用代入消元法解二元一次方程组基础之上,提出了本课的具体学习任务:会用加减消元法解二元一次方程组,了解解二元一次方程组的“消元”思想,初步体现数学研究中“化未知为已知”的化归思想.
《课程标准(2011年版)》把方程与方程组的重点放在解法和应用上,特别强调体会方程是刻画现实世界数量关系的有效模型,如何解方程与方程组时方程与方程组教学的主体和重点.对于二元一次方程组来讲,强调“消元”的思想和方法,应是贯穿于始终的一条主线,通过“消元”,将二元一次方程转化为一元一次方程实现求解的目的,体现了化繁为简,以简驭繁的基本策略,对促进了学生理性思维的发展具有重要意义.通过第一课时是学习,学生已经能够解一般的二元一次方程组,但对于有些方程用代人消元法解可能比较繁杂,用加减消元法要简单一些,同时加减消元法在学生将来的矩阵运算中有广泛的应用。因此这个课时就进一步学习二元一次方程组的加减消元法.
加减消元法是解二元一次方程组的基本方法之一,它要求两个方程中必须有某一个未知数的系数的绝对值相等(或利用等式的基本性质在方程两边同时乘以一个适当的不为0的数或式,使两个方程中某一个未知数的系数的绝对值相等),然后利用等式的基本性质在方程两边同时相加或相减消元.
为此,本节课的教学目标是:
本节课的教学重点是:
本节课的教学难点是:
在解题过程中进一步体会“消元”思想和“化未知为已知”的化归思想.
三、教学过程设计。
本节课设计了五个教学环节:第一环节:情境引入;第二环节:讲授新知;第三环节:巩固新知;第四环节:课堂小结;第五环节:布置作业.
第一环节:情境引入。
内容:巩固练习,在练习中发现新的解决方法。
怎样解下面的二元一次方程组呢?(学生在练习本上做,教师巡视、引导、解疑,注意发现学生在解答过程中出现的新的想法,可以让用不同方法解题的学生将他们的方法板演在黑板上,完后进行评析,并为加减消元法的出现铺路.)。
二元一次方程组的数学教案篇六
(学生活动)解下列方程:
(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)。
老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解。
(学生活动)请同学们口答下面各题。
(老师提问)(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解。
因此,上面两个方程都可以写成:
(1)x(2x+1)=0(2)3x(x+2)=0。
因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.
(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)。
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法。
例1解方程:
思考:使用因式分解法解一元二次方程的条件是什么?
解:略(方程一边为0,另一边可分解为两个一次因式乘积。)。
c.(x+2)2+4x=0,∴x1=2,x2=-2。
d.x2=x,两边同除以x,得x=1。
教材第14页练习1,2.
本节课要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用。
(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.
教材第17页习题6,8,10,11。
二元一次方程组的数学教案篇七
(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力。
(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。
(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。
(1)二元一次方程和一次函数的关系;
(2)二元一次方程组和对应的两条直线的关系。
数形结合和数学转化的思想意识。
教具:多媒体课件、三角板。
学具:铅笔、直尺、练习本、坐标纸。
第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)。
内容:
1、方程x+y=5的解有多少个?是这个方程的解吗?
2、点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?
3、在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?
4、以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?
由此得到本节课的第一个知识点:
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程。
第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)。
内容:
1、解方程组。
2、上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。
(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。
(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。
第三环节典型例题(10分钟,学生独立解决)。
探究方程与函数的相互转化。
内容:例1用作图像的方法解方程组。
例2如图,直线与的交点坐标是。
第四环节反馈练习(10分钟,学生解决全班交流)。
内容:
1、已知一次函数与的图像的交点为,则。
2、已知一次函数与的图像都经过点a(—2,0),且与轴分别交于b,c两点,则的面积为()。
(a)4(b)5(c)6(d)7。
3、求两条直线与和轴所围成的三角形面积。
4、如图,两条直线与的交点坐标可以看作哪个方程组的解?
第五环节课堂小结(5分钟,师生共同总结)。
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
1、二元一次方程和一次函数的图像的关系;
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程。
2、方程组和对应的两条直线的关系:
(1)方程组的解是对应的两条直线的交点坐标;
(2)两条直线的交点坐标是对应的方程组的解;
(1)代入消元法;
(2)加减消元法;
(3)图像法,要强调的是由于作图的不准确性,由图像法求得的解是近似解。
第六环节作业布置。
习题7.7a组(优等生)1、2、3b组(中等生)1、2c组1、2。
附:板书设计。
六、教学反思。
二元一次方程组的数学教案篇八
1.有一个两位数,个位数比十位数大5,如果把这两个数的位置对换,那么所得的新数与原数的和是143.求这个两位数.
3.甲、乙两人练习跑步,如果甲让乙先跑10米,甲跑5秒就追上乙;如果甲让乙先跑2秒,那么甲跑4秒就追上乙.若设甲、乙两人每秒分别跑x、y米,列出的方程组为.
7.甲、乙两人分别从相距30千米的a、b两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到b地所剩路程是乙到a地所剩路程的2倍,求甲、乙两人的速度.
二元一次方程组的数学教案篇九
(学生活动)解下列方程:
(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)。
(学生活动)请同学们口答下面各题。
(老师提问)(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解。
因此,上面两个方程都可以写成:
(1)x(2x+1)=0(2)3x(x+2)=0。
(2)3x=0或x+2=0,所以x1=0,x2=-2(以上解法是如何实现降次的?)。
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法。
例1解方程:
思考:使用因式分解法解一元二次方程的条件是什么?
解:略(方程一边为0,另一边可分解为两个一次因式乘积)。
练习:下面一元二次方程解法中,正确的是()。
c.(x+2)2+4x=0,∴x1=2,x2=-2。
d.x2=x,两边同除以x,得x=1。
教材第14页练习1,2。
本节课要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用。
教材第17页习题6,8,10,11。
二元一次方程组的数学教案篇十
本节课通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的教学目标为:
1.初步理解二元一次方程和一次函数两种数学模型之间的关系;
3.发展学生数形结合的意识和能力,使学生在自主探索中学会不同数学模型间的联系.。
二元一次方程和一次函数的关系,二元一次方程组和对应的两条直线交点之间的关系;
通过对数学模型关系的探究发展学生数形结合和数学转化的思想意识.。
1.教法学法。
启发引导与自主探索相结合.。
2.课前准备。
教具:多媒体课件、三角板.。
学具:铅笔、直尺、练习本、坐标纸.。
1.某水箱有5吨水,若用水管向外排水,每小时排水1吨,则x小时后还剩余y吨水。
(1)请找出自变量和因变量。
(2)你能列出x,y的关系式吗?
(3)x,y的取值范围是什么?
(4)在平面直角坐标系中画出这个函数的图形。(注意xy的取值范围).
2.(1)方程x+y=5的解有多少个?你能写出这个方程的几个解吗?
(3).在一次函数y=?x?5的图像上任取一点,它的坐标适合方程x+y=5吗?
x+y=5与y=?x?5表示的关系相同。
探究方程与函数的相互转化。
1.两个一次函数图象的交点坐标是相应的二元。
(2)两个函数的交点坐标适合哪个方程?
xy5(3).解方程组?验证一下你的发现。2xy1。
练习:随堂练习1。巩固由一次函数的交点坐标找相应的二元一次方程组的解。
2.二元一次方程组的解是相应的两个一次函数图象的交点坐标。
xy2(1)解?
2xy5(2)以方程x+y=2。
(3)以方程2x+y=5(4)方程组的解为坐标的点在图象上是哪个点?
练习:知识技能1。巩固由方程组的解求相应的一次函数的交点坐标。更深入的体会二元一次方程组的解与一次函数交点坐标之间的对应关系。
1.某公司要印制产品宣传材料。
印刷厂的费用。
(1)请分别表示出两个印刷厂费用与x的关系式。
(2)在同一直角坐标系中画出函数的图象。
(3)如何根据印刷材料的份数选择印刷厂比较合算?
想一想。
内容:在同一直角坐标系内,一次函数y=x+1和y=x-2的图象(教材。
么?
二元一次方程的解和相应的两条直线的关系2.。
(1)观察发现直线平行无交点;
(2)小组研究计算发现方程组无解;
(3)从侧面验证了两直线有交点,对应的方程组有解,反之也成立;
(4)归纳小结:两平行直线的k相等;方程组中两方程未知数的系数对应成比例方程组无解。
进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.进一步挖掘出两直线平行与k的关系。
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
1.二元一次方程和一次函数的图像的关系;
一次函数图像上的点的坐标都适合相应的二元一次方程.。
2.方程组和对应的两条直线的关系:
方程组的解是对应的两条直线的交点坐标;
两条直线的交点坐标是对应的方程组的解;
第六环节作业布置。
习题5.7。
旧书不厌百回读,熟读精思子自知。以上就是给大家分享的13篇七年级数学二元一次方程组解法教案,希望能够让您对于二元一次方程的解法的写作更加的得心应手。
二元一次方程组的数学教案篇十一
知识与技能:
2培养学生分析问题,归纳问题的能力。
情感态度与价值观。
让学生体会到数学在实际生活中的有用之处。
让学生积极投入到数学学习中去。
2培养学生分析问题,归纳问题的能力。
2培养学生分析问题,归纳问题的能力。
预习提示。
通过预习你能说出利用二元一次方程组解决实际问题的关键和基本步骤吗?
教学过程:试一试。
探究一。
分析:题中包含的基本等量关系式是1——。
2——。
对小牛的食量估计——。
检测题。
探究2。
分析:甲作物的总产量=甲作物的种植面积单产量。
乙作物的总产量=乙作物的种植面积单产量。
过长方形土地长端约——米把这块土地分成两块,较大的一块种——,较小的一块种——。
检测题。
课堂小结。
通过本节课的学习,我们学会了利用二元一次方程组解决实际问题,其关键是找准等量关系,列方程组。
作业。
108页4,9。
二元一次方程组的数学教案篇十二
《二元一次方程组的解法(5)》是在前面学习了列一元一次方程解应用题及二元一次方程组的解法(代入消元法和加减消元法)基础上的一节综合实际应用课。借助二元一次方程组解决一些简单的实际问题,这是数学联系实际的一个重要方面。对于含有多个未知数的实际问题,利用方程组去解决,其分析方法和解题步骤与列一元一次方程类似,而在列方程方面常比列一元一次方程容易些。教材在让学生在掌握了二元一次方程组的解法后,再次体验二元一次方程组与现实生活的联系和作用。通过本节课的教学,可使学生领悟到数学来源与实践,又反过来作用于实践的辨证唯物主义思想。这对学生进一步学习数学,将起到积极的作用。
(一)目标分析。
知识和技能目标:
2、能检验结果是否符合实际意义。
过程和方法目标。
1、通过使用代数中的方程去反映现实中的相等关系,体会代数方法的优越性。
2、在列方程组解应用题的过程中,体会列方程组往往比列一元一次方程容易。
情感与态度目标。
1、学生在与同伴交流的学习过程中,形成良好的学习方式和学习态度,树立学习数学的自信心。
2、通过列方程组解应用题的学习,认识到数学的价值。
(二)重难点分析。
教学重点:根据实际问题的数量关系,找出两个等量关系,列出二元一次方程组。
教学难点:正确找出两个实际问题中的两个等量关系,并把他们列成两个方程。
难点突破采取的措施:
2、用填空和选择的多种题型来寻找题目中的等量关系。
3、例题中两个问题将它们分列开,将难点分散。
从一题多解的和尚吃馒头的引入开始,引导学生寻找等量关系,在合作中寻找解题途径,教师在此过程中做好一个组织者,合作者,引导者的作用,关注学生在此过程中的生命成长。帮助学生在方程探案中寻找等量关系,然后找到等量关系后,让学生尝试根据等量关系来列二元一次方程组解决问题,接着让学生在填空和选择中寻找等量关系,列方程组,最后是课本例题的教学,让学生自己寻找问题和分析问题,课外,让学生自己编题,领悟方法,这种教学方法符合以下教育过程的规律:
1、遵循由旧引新,由浅入深,由特殊到一般再到特殊。体现掌握知识和发展智力相统一的规律。
2、创设问题情境,教师不断启发和引导学生思考,由易到难,化整为简,体现教师在教学过程中的组织者、合作者和引导者的作用。
(二)学法分析。
这种教学方法实际上也教给了学生一种学习方法,使学生学会观察,注意生活中的实际问题,学会自己探究知识分析问题,解决问题,学会寻找、发现,学会归纳总结,逐步掌握获取知识的能力。
(三)教学手段。
通过多媒体辅助教学,扩大教学容量,提高课堂教学效率。
(一)导入设计。
先用轻松的师生对白,让学生进入问题,讨论多种方法解决实际问题,激活学生的思维细胞,让学生进入学习的状态,通过体验新知识的优越性,激发学生学习新知识的积极性。
(二)尝试练习。
通过导入中的体验,让学生初步尝试解决问题的能力,在此过程中,有学生成功了,他们尝到了学习新知识的一种成就感,有学生失败了,鼓励他们继续学习,培养克服困难的信心和勇气。
尝试练习。
1、方程探案记:你知道盗贼如何分赃吗。
大家一起探讨。
(三)范例设计。
通过对课本例题的难点进行分解,把一个较复杂的问题,分解成两个小问题,将难点分解。
某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售。该公司的加工能力是:每天可以精加工6吨或粗加工16吨。现计划用15天完成加工任务。
问:1、该公司应安排几天粗加工,几天精加工,才能按期完成任务?
(四)反馈练习。
通过多种题型:填空、选择及问答的多种形式,培养学生从多角度地分析问题、解决问题的能力。最后,让学生根据课题来自编应用题,体现了数学在实际中的应用价值。
(五)归纳小结。
教师启发,学生归纳列二元一次方程组解应用题的一般步骤和方法。
二元一次方程组的数学教案篇十三
(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力.
(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.
(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.
数形结合和数学转化的思想意识.
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
内容:
1.方程x+y=5的解有多少个?是这个方程的解吗?
2.点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?
3.在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?
4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?
由此得到本节课的第一个知识点:
(2)一次函数图像上的点的坐标都适合相应的二元一次方程.
内容:
2.上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像.
(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.
(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.
探究方程与函数的相互转化。
内容:
例1用作图像的方法解方程组。
例2如图,直线与的交点坐标是.
内容:
1.已知一次函数与的图像的交点为,则.
2.已知一次函数与的图像都经过点a(—2,0),且与轴分别交于b,c两点,则的面积为.
(a)4(b)5(c)6(d)7。
3.求两条直线与和轴所围成的三角形面积.
4.如图,两条直线与的交点坐标可以看作哪个方程组的解?
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
(2)一次函数图像上的点的坐标都适合相应的二元一次方程.
2.方程组和对应的两条直线的关系:
(1)方程组的解是对应的两条直线的交点坐标;。
(2)两条直线的交点坐标是对应的方程组的解;。
(1)代入消元法;。
(2)加减消元法;。
(3)图像法.要强调的是由于作图的不准确性,由图像法求得的解是近似解.
习题7.7a组(优等生)1、2、3b组(中等生)1、2c组1、2。
二元一次方程组的数学教案篇十四
首先谈谈我对教材的理解,《二元一次方程组》是人教版初中数学七年级下册第八章第一节的内容,本节课的内容是二元一次方程组的概念以及二元一次方程组的解。在此之前学习了一元一次方程和解方程的步骤,为本节课打下了良好的基础。学了本节课为后面的解二元一次方程的方法做下铺垫。因此本节课有着承上启下的作用。
二、说学情。
接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,与类比学习能力。而且在生活中也为本节课积累了很多经验。所以,学生对于二元一次方程组概念理解较为容易,找出方程组的解,相对来说有难度,需要教师多引导。
三、说教学目标。
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能。
掌握二元一次方程与二元一次方程组的概念,并了解它们的解,能正确地找出二元一次方程组的解。
(二)过程与方法。
通过类比学习、自主探究、合作交流的过程,提升类比学习的能力、培养探究的意识。
(三)情感态度价值观。
感受数学与生活的密切联系,培养学习数学的兴趣。
四、说教学重难点。
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:二元一次方程与二元一次方程组的概念以及方程与方程组的解。教学难点是:二元一次方程组解的探究。
五、说教法和学法。
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
六、说教学过程。
下面我将重点谈谈我对教学过程的设计。
(一)新课导入。
这样设计的好处是:利用篮球联赛的图片导入,并讲清楚评分规则,不仅可以吸引学生探索的兴趣,还可以培养学生的数学应用意识。
(二)新知探索。
接下来是教学中最重要的新知探索环节,主要通过三个活动展开学习。
活动一:学生尝试列方程解决问题,看看在列方程过程中遇到了什么困难?同桌之间互相交流。
学生分析题意,发现有未知数,可以使用列方程的方法解决问题。当让学生自己动手练习时,他们会发现,胜负的场数都是未知的。
此时教师可以引导学生发现和思考:要求的是两个未知数,能不能根据题意直接设两个未知数,使列方程变得容易呢?学生在这样的提示下会有一定的想法,但对于列出二元一次方程组来说还是比较困难的。
教师板书表格示意图,引导学生通过题意,发现题干中包含的必须同时满足的条件,得到两组关系式并设出未知数完成表格。
活动二:学生观察两个方程特点,与一元一次方程有什么不同?并试着下定义。
在这里学生通过类比学习,能够归纳出二元一次方程的概念:每个方程都含有两个未知数,并且含有未知数的项的次数都是1。了解了二元一次方程后,对于二元一次方程组的概念就可以很好的展开了,对于本题列了两个二元一次方程解决问题,像这样的方程组叫做二元一次方程组。
师生共同总结出二元一次方程与二元一次方程组的定义。
列出了二元一次方程组,要解决篮球联赛的问题,就要求出方程组的解,接下来进行第三个活动。
活动三:完成表格,以二元一次方程组中的一个方程为例。小组合作,找出几组整数解,并观察哪一组解也符合另一个方程。
在这里解二元一次方程组,可以先将问题简单化,先研究一个方程的解,找到几组解后,再看哪一组解也符合第二个方程。也就是两个方程的公共解。教师给出表格,小组在进行合作时,教师应引导学生思考结合题意,两个未知数应取正整数。填完表格后,师生共同总结出二元一次方程解的定义。
教师继续追问,哪一组的值也满足第二个方程。师生共同总结出什么叫做二元一次方程组的解。
得到方程组的解,回归情景得出实际问题的答案。
设计意图:通过三个活动展开本节课,不仅符合新课改的理念:学生是学习的主体,教师是教学活动中的组织者、引导者、合作者,还能通过小组活动、类比学习等活动丰富课堂。
(三)课堂练习。
接下来是巩固提高环节。
练习:对下面的问题,列出二元一次方程组,并根据问题的实际意义,找出问题的解。
设计这道题可以让学生感受数学与生活的密切联系,学以致用。教师可以及时掌握学生本节课的学习情况,给予补充纠正。
(四)小结作业。
在课程的最后我会提问:今天有什么收获?
引导学生回顾:二元一次方程组的定义与二元一次方程组的解。
本节课的课后作业我设计为:
思考除了用列表找二元一次方程组的解,还有什么方法能找出解,能不能将它变成我们熟悉的一元一次方程求解。
设计意图:本节课学生通过列表观察得到了方程组的解,作业设计为让学生思考解二元一次方程组的方法,并提示能不能把它变成熟悉的一元一次方程求解,为下节课的学习做下铺垫。
七、说板书设计。
xy=222xy=40。
二元一次方程组的数学教案篇十五
开始引入了名人迪卡儿的数学思想,学生崇拜名人相信名人于是以名人名言给这节课定了基调,那就是数学与实际有密切的关系以及用方程思想解决实际问题的总方针。结合现实生活中的身边事例篮球赛为引例巧妙引导到新课。其中张老师设计了学生用原来解二元一次方程组的方法解时太麻烦,不好解,产生了困惑,学生自然而然就会想到有没有解决问题的好方法的猜想。这样就让学生产生了认知上的冲突,从而激发了学生的好奇心和求知欲,提高了学生的热情和兴趣,学生就会拼命地去探究科学奥秘。此时张老师抓住时机引导学生要探究好方法首先要有预备知识,抛出一个量来表示另一个量的探究内容。给学生指明了方向,使学生不至于太漫无边际的探究。也为接下来的自学铺平了道路。紧接着出示自学目标和指导。
二、师生活动融为一体民主气氛浓。
自学指导学生自主探究,先个人独立思考后合作交流展示汇报。老师巡视,指导学困生,积极组织学生活动并参与其中,及时评价学生,关注每个学生的发展。这个过程学生提高了合作、交流能力,也展示了学生的表现能力,并锻炼了学生归纳总结能力,培养学生会听取别人的意见及看法,并给予承认、表扬和鼓励的情感意识,课堂上的掌声不由自主的响起,提升了个人的思想品质和为人素养,思想性很强,情感意识很浓。
三、技能训练及时跟上。
学生一旦获得了探究的新知,马上进行训练和提高,练习中有生趣,有关注学生的严密细致的科学态度,学生练的热情高。其中有一个学生的不同解法,张老师利用的惟妙惟肖,有效地开发和利用了课堂的生成性资源,启迪了学生的智慧,激励了他们的发散思维,培养了他们的创新能力,肯定了学生的一题多解,举一反三的学法,使我们的课堂异彩纷呈。
四、消元思想,代入消元,化归思想,让学生充分体会到化归思想的神奇魅力,从而把数学思想贯穿在教学中,让学生能力得到提高,以后可持续发展自己,一生有用。
总之本节课清晰明了,行如流水,结构严谨,一环扣一环,步步深入。板书设计精细,清晰,具有高度的概括性和逻辑性,学生好记,印象深。学生学习既紧张又活泼,既有常规思维又有创造思维,既学得了知识,又锻炼了各种能力,还随时培养了学生的好习惯。整个课堂始终以学生为主,老师为辅,老师的引导恰如其分,很好的组织了课堂,激发了学生,把时间和空间还给了学生,体现了教育教学的新理念,传播了数学思想和方法,是一堂意味深长的好课,值得研究。不过教学的探究是无止境的,有些地方可以探讨和提升,现在在这里不细说了,以后再个别交流。
二元一次方程组的数学教案篇十六
看一看:课本99页探究2。
问题:1“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?
2、“甲、乙两种作物的总产量比为3:4”是什么意思?
3、本题中有哪些等量关系?
提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?
思考:这块地还可以怎样分?
练一练。
一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:
农作物品种每公顷需劳动力每公顷需投入奖金。
水稻4人1万元。
棉花8人1万元。
蔬菜5人2万元。
问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?
二元一次方程组的数学教案篇十七
分析:本题可以用一元一次方程解得,等量关系是:一等奖学金+二等奖学金=20xx元,据此列方程求解.
解答:解:设获一等奖学金的x名学生.
则200x+50(22-x)=20xx。
解得x=6。
答:该校获得一等奖的学生有6人.
点评:解题关键是要读懂题目的意思,找出合适的等量关系:一等奖学金+二等奖学金=20xx元.列出方程,再求解.