圆的初步认识的教学设计(优质19篇)
总结是对过去时光的回顾,是对经历的提炼与总结。在写总结时,可以借鉴一些范文,但也要保持自己的独立思考。以下是我在各个领域搜集整理的一些总结范文,希望对大家有所帮助。
圆的初步认识的教学设计篇一
教学目的:1.使学生了解圆是一种曲线图形。
2.使学生理解和掌握圆的各部分名称及圆的特征。
3.会用圆规画园。
4.培养学生的观察比较、分析推理,抽象概括等能力。
教学重点:圆的各部分名称及圆的特征。
教学难点:圆的特征。
教具准备:多媒体课件一套、圆规等。
学具准备:圆形纸片、圆规、直尺等。
教学过程:
1.复习。
(课件显示由平面图形构成的自行车示意图,根据学生的回答,同步闪亮)。
2.设疑。
你们知道自行车架为什么要做成三角形?
(根据学生回答:三角形具有稳定性,课件闪亮自行车三角形的框架部分。)。
而自行车的轮胎为什么要做成圆形的呢?
(课件闪动自行车的轮胎后圆跳出,师在黑板上贴上圆形纸片,然后学生试回答)。
3.揭题。
大家现在知道的只是其中的一些表面原因,其实这里面具有一定的科学知识,你们想知道吗?学完了这节课,我们就会知道的。(板书课题)。
4.量标。
同学们,看到课题你想知道些什么呢?
(根据生答,师概括板书:图形、名称、特征、画圆)。
(一)直观比较、了解概念。(圆)。
圆跟我们已学过的平面图形有什么不一样呢?
(课件出示,先闪动围成三角形和四边形的线段,再将围成圆的曲线用红线走了一圈。根据学生的回答,师板书:圆是曲线图形)。
你能举出日常生活中哪些物体上有圆吗?(生举例)。
(二)操作引路,感知概念(名称、特征)。
1.折圆。
请同学们拿出你们课前准备好的圆形纸片,象老师这样对折。打开,再换个方向对折、再打开,反复折几次,你可以发现什么?(有许多痕交于中间一点)。
2.量折痕。
再请同学们用直尺量一量刚才折的每一条痕的长度,你又发现了什么?(折痕长度相等)。
3.量点到圆上距离。
最后请同学们再用直尺量一量,中间这个点到圆任意一点的距离,你还可以发现什么?(距离也都相等)。
(三)自学交流,理解名称。
1.自学课本,初知名称。
同学们通过刚才动手发现圆里的知识还真不少,数学家们把这些知识都规定为不同的名称,你们想知道吗?请同学们自学课本的第4-9小节。
2.交流消化,理解名称。
(1)圆里各部分的名称有哪些?
(根据学生的回答师板书:圆心、直径、半径)。
(2)什么叫圆心?圆心就是我们刚才折圆时所发现的什么?
(3)数学家又是如何规定圆的直径的呢?
(随生答,媒体同步动画直径的过程,先后出示直径d及直径概念)。
那么,直径就是我们刚才折圆时的什么?(折痕)。
(4)什么叫半径?圆上任意一点是什么意思?(随生答,课件闪烁圆周上的许多点再动画出半径。)。
半径就是我们在量圆时所发现的什么?
(5)(课件显示出圆的圆心、直径、半径的整体图及概念,学生齐读概念一遍)。
3.练习。下面哪些是圆的半径或直径?为什么?
(四)猜想验证,概括特征。
1.分组讨论,进行猜想。
同学们,你能根据我们刚才折圆、量圆时所发现的,以及我们已学习的什么叫直径、半径来想一想、猜一猜,圆可能会有哪些特征呢?(学生分小组讨论)。
2.交流讨论,提出猜想。
请各小组把讨论情况在全班交流一下。
(根据交流情况,师板书猜想内容)。
3.各自验证,全班交流。
同学们真爱动脑筋,猜想了圆有这么多的特征。但是你们的猜想都对吗?你自己能不能想一个办法来验证一下,试试看。
(全班学生各自想法验证:有的折圆,有的量折痕,有的在圆中画直径、半径,有的量直径、半径,有的列表记录量的数据,有的嘴里在不停地唠叨着概念……)。
请同学们把你验证的方法和得出的结果告诉大家。
4.媒体演示,加深理解。
(多媒体将学生验证的圆的特征运用了旋转、重合等声像并茂的手段,进行了动态演示)。
5.学生概括,总结特征。
谁能把圆的特征用自己的语言来归纳概括一下。
(随生答,师板书:所有直径都相等,所有半径都相等,d=2,t=d/2)。
这就是我们验证出来的圆的特征,同学们同意吗?
(异口同声:同意。一生提反对意见:这些特征必须在同一个圆里才能成立。)。
哎呀,你真聪明,把大家容易疏忽的问题给提出来了,真了不起。(师边说边板书:在同一个圆里)。
6.对照验证,完善猜想。那么,你们的猜想有问题吗?(生:有,必须强调在同一个圆里)其实,你们刚才的猜想与验证,都是在自己手中同一个圆里进行折圆,量圆的,那么你们猜想对所说的圆里,就是指自己手中的同一个圆里。(师在猜想内容的"圆里"前补上"同一个")。
这样,你们的猜想内容与验证结果意思就怎么样?
(随生答,师在"猜想"与"验证"之间连线同时板书:正确)。
7.练习,填空。
(五)自我实践,学会画圆。
1.自学画法,实践画圆。
(学生结合课本108页圆的画法,边看边学会用圆规画圆)。
2.学生自己介绍画圆步骤。
(随生介绍,师分步板书:定距、定点、旋转)。
怎样定距?(学生边介绍边演示)这个圆规两脚之间的距离就是什么?(生:圆的半径)。
在画圆时,你发现固定的一点与旋转一周各是圆的什么?
3.(师揭下贴在黑板上的圆形纸片,在贴纸片的地方示范画圆,小结画圆步骤)。
1.填空。
(1)圆是平面上的一种()。
(2)左图圆内固定的一点o是这个圆的();线段ob是这个圆的(),用字母()表示;线段ac叫做圆的(),用字母()表示。
(3)在同一个圆里,直径与半径的比是()。
(4)把一个圆规的两脚张开4厘米,画一个圆,它的直径是()。
2.判断。
(1)两端都在圆上的线段叫做直径。()。
(2)圆里有无数条半径,无数条直径。()。
(3)所有的半径都相等,所有的直径都相等。()。
(4)半径决定着圆的大小,圆心决定着圆的位置。()。
(5)画直径5厘米的圆,圆规两脚间的距离是2.5厘米。()。
(6)直径6厘米的圆比半径4厘米的圆大。()。
3.操作。
学会量没有圆心的圆的直径。(课本练习二十五第1题)。
1.现在,大家一定能运用这节课所学的知识,解释一下"为什么车轮都要做成圆形,车轴应装在哪里?"。
(多媒体放完车轮分别是正方形、椭圆形、圆形的行进动画后,给学生直观给予提示,学生各抒己见,直对中心。)。
2.学了"圆的认识"这节课,你还想知道些什么?
(生甲:圆也有周长和面积吗?生乙:怎样在操场上画一个很大的圆?……)。
圆的周长和面积以后会学到的。谁见过怎样在操场上画一个很大的圆?(学生互相释疑)。
这节课你自己运用了哪些学习方法,学到了哪些知识?
1.课堂作业:练习二十五第3.4题。
2.课后实践:量自行车轮胎外直径。
圆的初步认识的教学设计篇二
圆的认识是在学生认识了长方形、正方形、平行四边形、三角形,梯形等平面图形和初步认识圆的基础上进行学习的。这是研究曲线图性的开始。是学生认识发展的一次飞跃。我们应注重从学生的已有经验和知识背景出发,结合具体情景和操作活动激活已经存在于学生头脑中的经验,促使学生逐步归纳内化,上升到数学层面来认识圆,体会圆的本质特征:到定点的距离等于定长的点的集合。
探索出圆各部分的名称、特征及关系。
通过动手操作体会圆的特征。
(1)六个同学站成一条线。
师问:公平吗?
生:不公平,他们到红旗的距离不一样。(师引导学生用数学语言“距离不相等”)。
(2)八个学生站成一个正方形。
师问:这次公平吗?
生:还是不公平,站在角上的远。
(3)八个同学站成一个圆。
师:这次呢?
生:公平。因为他们到红旗的距离都相等。(到定点的距离等于定长)。
(4)八个同学围成圈之后不动,再去八个同学插到里面。(多八个人还是这个圆)再去八个(拥挤,但还是这个圆。)。
引导学生感受集合的概念。
让学生拿出事先准备好的圆形物体,让学生先对折,再换不同的方向对折,对折几次后,把交点画出来。并告诉学生,每条折痕都是圆的直径。(引出直径的定义:通过圆心并且两端都在圆上的线段,叫做直径。)。
让学生用直尺量出每条直径的长度。
师:在同一个圆里,直径会有怎样的特点?三人小组讨论后,得出。
生1:在同一个圆里,所有的直径长度都是一样的。生2:在同一个圆里,有无数条直径。
师:在同一个圆里,有无数条直径,所有的直径的长度都是相等的。
师:在同一个圆里,所有的半径又有怎样的特点呢?(引出半径的定义:连接圆心和圆上任意一点的线段,叫做半径)。
生经过自己动手量,得出的结论是:在同一个圆里,有无数条半径,所有的半径都是相等的。
1、利用工具画圆介绍圆规:前面我们用不同的方法画出了圆,但通常我们会借助一个专门的工具来画圆。这个工具就是圆规。圆规有两只脚,一只脚是针尖,另一只脚是用来画圆的笔。两只脚可随意叉开。
2、你能试着用圆规画出一个圆吗?边画边想,圆规画圆一般分哪几步?需要注意什么?
3、交流。
(1)让学生说说自己画圆的过程,教师示范画圆。适时板书:两脚叉开、固定针尖、旋转画圆。
(2)小组交流画圆的情况,以及出现的问题,反思画圆应注意什么。同时出示书中的四幅插图。
(3)小结:画圆时要注意针尖必须固定一点,不可移动,两脚间的距离必须保持不变;要旋转一周。
5、学习圆心、半径和直径。
介绍圆心、半径和直径的同时,在图中画出相应的线段,标出相应的字母。然后让学生在自己画的圆中标出圆心、画一条半径和一条直径,并分别用字母表示。
《圆的认识一》这节课属于概念教学,我在设计本课时想到的是不仅仅要让学生知道圆各部分的名称、掌握圆的特征,更要让学生通过亲身感受去认识圆,我让他们不仅要动脑筋想,动口说,还要动手折、画,提高他们的自学能力和空间观念。
圆是一种常见的图形,在此之前学生就已经对圆有了初步的感性认识。这节课,我根据新课程所倡导的教育理念,利用课程资源,注意教师和学生互动交流,尊重学生已有的生活经验,让学生充分表达自己的意见,在活动中生成知识,使课堂气氛和谐、活跃。但是学生的思维和言语是无法预测的,在把圆对折时,预习过的同学直接把折痕说成了直径,我就马上肯定了他们的说法,问他们什么是直径,这样处理使教学的进行更顺畅,更容易与学生产生共鸣;在研究同一个圆里直径的长度和半径的长度之间的关系时,让学生小组讨论得出结论后,再通过演示让他们直观的感受到在同一个圆里两条半径的长度等于一条直径的长度,加深了他们的理解。
圆的初步认识的教学设计篇三
1、使学生认识圆,掌握圆的特征,理解直径与半径的关系,学会用圆规画圆。
2、使学生初步学会运用所学知识解决简单实际问题,培养学生观察、分析、抽象概括能力及初步的空间观念。
3、创设民主和谐的课堂氛围,培养学生的探索意识、合作意识及创新意识和创造能力,促进其非认知品质的健康发展。
圆规、三角板、大小不同的圆形纸片、多媒体教学软件、正方形纸片。
学生回答后,揭示课题:圆的认识。
1、结合实例,感知特点。
生:硬币表面是平的,乒乓球的表面是弯的。硬币只有正面看才是圆的,乒乓球不管从哪个方向看都是圆的。
师:说得好!足球、乒乓球这一类物体,我们把它叫做球形物体,硬币是圆形物体,它的正面的圆形是平面图形。
请同学们摸一摸你们手中的书和圆形学具的边缘,看有什么不同的感觉?
生:长方形的边是直的,圆的边是弯的。
2、巧设疑问,激发兴趣。
师:有同学举例说车轮是圆的,那么车轮不做成圆的会怎么样呢?动画演示:车轮为椭圆的轿车上下颠簸着驶入画面。(生哄笑)。
师:车轮做成圆的为什么就会平稳行驶呢?——这节课我们就来探索一下圆的奥秘。
3、操作讨论,发现特点。
师:现在四人一组,用发下的圆形纸片来研究圆的特点。
屏幕显示:“折一折、量一量、议一议,看有什么发现?”
生操作,讨论。教师巡视。
4、汇报讨论结果。
师:说一说你们有什么发现?
生1:我们发现多次对折后,折痕都通过同一个交点,这个交点在圆的中心。
师:真聪明!我们把圆中心的这一点叫做圆心,用字母o表示。(在黑板上贴出圆,画出圆心并标出字母o。)。
生2:我通过测量还发现了对折后的折痕长度都相等,每条都是10厘米。
生3:我这个圆的每条折痕都是8厘米,我共测量了4条。
……。
师:(板书:都相等)可以折出多少条折痕?(学生回答后板书:有无数条)我们把对折后的折痕叫做直径,用字母d表示。(在黑板上的圆中画出直径并标上字母)请同学们在自己的圆上画出直径。
屏幕显示图形:下面圆中的线段是直径吗?说出理由。
在此基础上引导学生概括出直径的意义。
生4:通过测量,我还发现直径的一半也相等。
师:很好!我们把这条线段叫做半径,用字母r表示。(在黑板上的圆中标出半径及字母。)请大家在圆形纸片上画出半径。
屏幕显示图形:下面的线段是半径吗?(回答后引导学生概括半径的意义。)。
师:“所有的半径都相等,所有的直径都相等。”这句话对不对?(学生回答后板书:在同圆或等圆中)。
6、小结。
今天我们学习了圆的什么知识?
圆的初步认识的教学设计篇四
1.引导学生在观察、画圆、测量等活动中感受并发现圆的有关特点,知道什么是圆心、半径和直径,能用圆规画指定大小的圆。
二、教学线索。
(一)在活动中整体感知。
1.思考:如何从各种平面图形中摸出圆?
2.操作并体会:圆与其它图形有怎样的区别?在交流中整体感知圆的特征。
(二)在操作中丰富感受。
1.交流:圆规的构造。
2.操作:学生尝试画圆,交流中归纳用圆规画圆的一般方法。
4.引导(教师示范画圆):使学生将思维聚焦于圆规两脚之间的距离,体会到圆规两脚距离的恒等,恰是“圆之所以为圆”的内在原因。
(三)在交流中建构认识。
1.引导:引导学生将上述距离画下来,由此揭示圆心及半径,进而介绍各自的字母表示。
2.思考:半径有多少条、长度怎样,你是怎么发现的?
3.概括:介绍古代数学家的相关发现,并与学生的发现作比较。
4.类比:学生尝试猜直径,进而引导学生借助类比展开思考,发现直径的特征,并提出同一圆中直径与半径的关系。
5.沟通:圆的内部特征与外部形象之间具有怎样的有机联系?
(四)在比较中深化认识。
2.沟通:这些正多边形与圆这一曲线图形之间又有着怎样的内在联系?
(五)在练习中形成结构。
1.寻找:给定的圆中没有标出圆心,半径是多少厘米?
2.想象:半径不同,圆的大小会怎样?圆的大小与什么有关?
3.猜测:不用圆规,还可能怎样画出一个圆?在交流中进一步丰富学生对半径、直径之间关系的认识。
4.沟通:用圆规如何画出指定大小的圆?
(六)在拓展中深化体验。
1.渗透:在与直线图形的对比中,揭示圆的旋转不变性。
2.介绍:呈现直线图形旋转后的情形,再一次引导学生感受圆与直线图形的联系,体会圆与旋转的内在关联,丰富对圆这一曲线图形内在美感的认识。
圆的初步认识的教学设计篇五
1、体验用不同的工具画圆。
2、认识圆,了解圆各部分的名称。
3、掌握圆的特征,理解和掌握在同一个圆或者在等圆中半径和直径的关系。
4、培养学生的观察能力,动手操作能力以及抽象概括能力,增强学生的合作意识。
5、让学生感受数学的美以及数学在生活中的应用,了解数学传统文化知识,培养学生的爱国热情。
掌握圆各部分的名称及圆的特征和圆的画法。
多媒体课件、圆规、直尺、线、圆片等。
一、情境导入
师:刚才同学们朗诵的传统文化的片断,非常精彩,今天老师也给你们带来了一些相关的知识,你能从中获取哪些有价值的数学信息呢?(出示课件)。
师:仔细观察这几幅图片,它们都有什么共同特征?
生:它们都有圆。
生:它们都和圆有关。
板书:圆
二、自主探究新知
(一)、画圆
生:想
请同学们拿出画圆的工具,画出自己喜欢的圆。
生:他拿圆规的方法不对。(圆规应该拿在手柄处)
生:他画圆时可能针尖移动了位置。(画圆时针尖的位置一定要固定)
生:他圆规两脚一下近一下远。(对,圆规两脚之间的距离不能变)
(学生边汇报,师边示范用圆规画圆)
其实,同学们刚才说的就是画圆时应注意的地方。
现在请同学们利用圆规画一个标准的圆。
(二)、初步感知圆
同学们,通过你们的努力画出了这么美丽的圆,那在这之前我们还学过哪些平面图形?
生:正方形、长方形、三角形、平行四边形、梯形。(生汇报,师出示相应课件)
这些图形和圆有什么不同的地方?
生:它们的边都是直直的。
对,它们都由线段围成的封闭图形。
师:请拿出课桌里的圆片来摸一摸,有什么感觉?
生:弯弯的。
这样弯弯的线我们称它为曲线。(课件出示曲线)圆就是由曲线围成的封闭图形。(课件演示圆)
(三)、自学圆的概念:圆心、半径、直径
俗话说圆是最美丽的几何图形,你想了解圆的哪些知识呢?
生:我想知道怎样求圆的周长。
生:我想知道怎么求圆的面积。
无论是求圆的面积还是求圆的周长,我们都必须先认识圆。(板书:圆的认识)
(1)引导学习圆心
生:这些折痕相交与一点。
对,这一点呀我们称它为圆心,用字母o表示。(边总结边在黑板上标出圆心)
请同学们标出自己手中那个圆的圆心。
(2)自学半径
其实,在圆里还有半径和直径两个重要的概念,科学家是如何定义它们的呢?这个秘密就藏在数学书56页的例2中,请同学们自学相关的内容并用笔画出相关的概念和重要的词语。
你能用自己的话说说什么是半径吗?
生:从圆心出发至圆边上任一点的线段叫做半径。
师:圆边上任意一点我们叫它圆上任意一点。
请你帮老师找出黑板上这个圆的半径,其他同学标出自己手中那个圆的半径。
(3)自学直径
通过自学你们认识了半径,那你能找出下面图形中的直径来吗?(出示课件)
ab为什么不是直径,它是什么?
生:它虽然通过了圆心,但它只有一端在圆上,所以它不是直径,它是圆的半径。
ef为什么不是直径?
生:它没有通过圆心。
gh为什么不是直径?
简单的说,圆的直径必须满足哪几点要求?
生:一要通过圆心,二要两端都在圆上,三要是线段。
(四)、自主探索圆的特征
(1)探究
生:有(自信地)。
师:说得好,其实不说别的,就圆心、直径、半径,还蕴藏着许多丰富的规律呢,同学们想不想自己动手来研究研究?(想!)同学们手中都有圆片、直尺、圆规等等,这就是咱们的研究工具。待会儿就请同学们动手折一折、量一量、比一比、画一画,相信大家一定会有新的发现。两点小小的建议:第一,研究过程中,别忘了把你们组的结论,哪怕是任何细小的发现都记录在学习纸上,到时候一起来交流。
圆的初步认识的教学设计篇六
汕尾市陆河县河田镇河东小学。
丘友茜。
二0一三年八月。
汕尾市陆河县河田镇河东小学丘友茜教材:人教版数学六年级上册第四单元第一课时教学对象:小学六年级学生教材分析:
《认识圆》是在学生学过直线图形的认识和面积计算,以及圆的初步认识的基础上进行教学的。这是学习圆的周长和面积的基础,也是学生研究曲线图形的开始。教材通过对圆的研究,使学生初步认识研究曲线图形的基本方法。同时,也渗透了曲线图形与直线图形的关系,拓展了知识面。掌握圆的特征,不仅加深学生对周围事物的理解,提高解决简单实际问题的能力,也为以后学习圆柱、圆锥等知识打好坚实的基础。学情分析:
圆是一种常见的、简单的曲线圆形,在学习《认识圆》以前,六年级学生已经具备一定的生活经验,对圆有了初步的大概的感性认识,但是由于我们农村学校的小学生知识面较窄,视野不够开阔,特别是一些留守生,在缺乏父母督促学习的情况下,很难将圆的认识与生活中的数学问题联系起来,对圆的理性认识也有一定的难度。因此,在教学本课时,必须加强与实际生活的联系,加强实践操作,让学生通过折、量、画、议等手段,在动手操作中获得知识的体验,得到成功愉悦,增强学习兴趣,达到顺利完成本节课的教学内容。教学目标:
1、使学生认识圆,知道圆的各部分名称。
2、使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系。
3、通过观察、操作、想象等活动,培养学生自主探究的意识,进一步发展学生的空间观念。
4、让学生体验到圆在日常生活中的应用并感受到圆的美。教学重点:理解和掌握圆的特征。教学难点、关键:
理解和掌握同圆或等圆中直径与半径的关系是本节课的难点,而理解圆的特征则是本节课的关键所在。教学方法:
以问题为主轴,以自学为主线,以探究、归纳、交流为主要学习方式。
教具准备:课件、两个大小不同的圆形纸片、尺子。教学过程设计:
一、评价游戏导入新课,板书课题。
课件出示三种“夺红旗”方阵(长方形、正方形、圆形)让学生选择一种公平站立的方案。(设计意图:让学生初步感受圆与其他平面图形的不同,同时激发学生学习的兴趣。)。
二、探索新知。
1、感受生活中的圆形物体无处不在。(设计意图:让学生体验到圆在日常生活中的应用并感受到圆的美。)。
2、探索圆的概念。
(1)复习以前学过的直线平面图形。
长方形正方形三角形平行四边形梯形。
(2)教师指出:圆也是平面图形,以上图形是由直线围成的平面图形,而圆是由曲线围成的平面图形。
(设计意图:轻松的谈话氛围,引领学生步入圆的世界。通过生活情景感受圆的美丽,激起探索圆的学习欲望。)。
3、认识圆的各部分名称和圆的特征:
a.教师提问:折过若干次后,你发现了什么?(学生说:折痕相交于圆中心的一点。)。
b.教师指出:我们把圆中心的这一点叫做圆心.用字母o表示.c.让学生找出各自圆中的交点并标上圆心o,教师在黑板圆中板书:圆心od.拿出另一个圆,让学生自己想办法找到圆心,并标出圆心o。再把找圆心的方法分享给其他同学。
(2)探索直径:请同学们观察折痕的特点:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?a.围绕以上问题学生合作交流讨论后教师指出:我们把通过圆心并且两端都在圆上的这一条线段叫做直径,直径用字母d来表示。b.教师提问:根据直径的概念想一想:圆的直径应具备什么条件?(让学生感受直径的两个条件:1.过圆心,2.两端都在圆上。)c.让学生试着在自己的圆内画出一条直径,老师板书:直径d。d.问题:试试看在你们手上的这个圆里可画多少条直径?再量一量,看看它们的长度怎样?学生动手操作,讨论交流后总结:在同一个圆里有无数条直径,所有直径的长度都相等。
(3)感受、探索半径:让学生伸出大拇指和食指,大拇指顶住圆心,食指对着圆的边缘转一圈,用心感受圆心到圆上的距离。再让学生在圆中画出一条半径。
从画半径引出半径的概念:连接圆心和圆上任意一点的线段叫做半径,半径用字母r来表示。板书:半径r(4)学生大胆设想:
在同一个圆里可以画多少条半径?所有半径的长度都相等吗?
课件演示后总结:在同一个圆里有无数条半径,所有半径的长度都相等。
(设计意图:自主探究,合作交流是新课改所倡导的重要学习方式,因此,要给学生创设一个宽松的学习氛围,让他们自主去探究。这样的设计更突出了对学的过程的重视,留给学生自主学习的空间。通过小组合作,让学生自己动手折一折、画一画、量一量,相互交流、讨论、补充、启发,得到圆的特征,不仅使学生的认识从直观具体上升到抽象,而且使学生感悟了研究数学问题的基本方法。学生在动手操作中去发现、总结圆的特征,使学生感到自己是发现者、研究者、探寻者,感受到成功的喜悦。)。
(4)总结圆心,半径,直径的概念及特征。(设计意图:《新课标》指出,数学应该是从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。通过学生自己探索发现,说说什么是圆心、半径、直径,这样的设计使他们对数学产生浓厚的兴趣和亲切感,同时能引发学生的学习动机。)。
(5)探讨:在同一个圆里,直径的长度与半径的长度又有什么关系呢?让学生从自己圆中所画的半径和直径的数据中得出结论。
教师板书并强调:在同一个园里:d=2rr=d/2。(设计意图:通过自主探究、合作交流、共同分享,理解同圆或等圆半径与直径的关系。)。
三、反馈练习,内化提高。
1、对口令:求半径或直径,同桌出题互考。
2、基础练习:让学生领悟到两端都在圆上的线段有无数条,并且长短不一,但直径是最长的。
3、判断题6道,巩固圆的特征。
4、讨论引题时的“夺红旗”游戏应用了圆的什么知识?
5、思考:车轮为什么要做成圆形的?车轴应装在哪里?如果车轮制成正方形的、椭圆形的,我们坐上去会是什么感觉呢?(设计意图:学习数学的最终目的在于应用数学解决实际问题。通过各种形式不同的练习较直观地向学生渗透圆心是定点,半径是定长的特性,使学生对刚刚形成的知识做到活学活用,帮助学生对知识的深层理解,从而培养了学生综合运用知识探索解决实际问题的能力;同时练习又注重与生活的联系,这样的练习学生乐于参与,也有实效。)。
四、全课总结,布置作业。板书:
认识圆。
圆是由曲线围成的平面图形。
圆心o直径d半径r在同一个圆里。
d=2rr=d/2。
教后反思:
圆是生活中最常见的平面图形,也是比较简单的曲线图形。在教学中充分联系学生生活实际,让学生感受日常生活中圆形的物体,并通过观察、动手操作、合作探讨等方式,使学生认识圆的特征及半径与直径的关系,整节课的设计让学生能够积极主动探究,发现问题并互相交流。
一、谈话的方式引入,让学生感受圆在生活中的应用,唤起学生已有经验的认识。告诉学生圆在一切平面图形中是最美的,激起学习圆的兴趣,让学生在轻松愉快中获得新知。
二、在教学中,引导学生用多种感官参与到知识的生成过程中。本节课在认识圆的各部分名称,理解圆的特征时,安排了让学生折一折、画一画、量一量等动手实践活动,引导学生用眼观察,动脑思考,合作探究,收到了较好的教学效果。
三、重视学生自主探究。
教学一个圆里直径、半径的特征以及两者间关系时,让学生自己画一画、量一量,发现规律,给学生充分的自主探究和交流的时间,培养学生自主学习的意识。
从总体上看,认识圆这一课,虽然知识看起来比较简单,但学生容易在概念理解上不到位产生错误。如:半径是从圆心到圆上任意一点的距离,圆上、圆内、圆外到底是哪儿必须搞清楚。每一次的反思对自己来讲,都是一次收获,当然,随着对《圆的认识》一课的进一步思考,以后对它设计会有更多的改进,但不管怎样,“让学生学有价值的数学”是我们数学教师必须天天去思考和追求的。在今后的教学中我将一如既往地不断努力,不断创新,不断反思。
圆的初步认识的教学设计篇七
圆是一种常见的平面图形,在我们的日常生活中有着广泛的应用。它是在学生掌握了直线图形的周长和面积计算,并且对圆已有初步认识的基础上进行教学的。教材通过对圆的研究,使学生初步认识到研究曲线图形的基本方法。同时,也渗透了曲线图形与直线图形的关系。这样不仅扩展了知识面,而且从空间观念上来说,也进入了新的领域。因此,通过对圆的认识,不仅能提高解决问题的能力,而且也为学习圆的周长、面积、圆柱和圆锥的学习打下良好的基础。
二、学习者分析。
六年级学生有着丰富的生活体验和知识积累,但空间观念比较薄弱,动手操作能力较低,学生学习水平差距较大,小组合作意识不强。以前学习的长方形、正方形等是直线平面图形,而圆则是曲线平面图形,估计学生在动手操作、合作探究方面会存在一些困难。
三、教学目标。
1、认识圆,知道圆的各部分名称,知道同一圆内半径、直径的特征,初步学会用圆规画圆。
2、使学生掌握圆的特征,理解在同一个圆里直径与半径的关系,能根据这种关系求圆的直径或半径。
3、培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念,使学生初步学会用数学知识解释、解决生活中的实际问题。
教学重难点:掌握圆的特征,理解在同一个圆里直径和半径的关系,能根据这种关系求圆的直径或半径。
教学准备。
多媒体一套。学生准备硬币等圆形物体若干;圆规一把、直尺一把、三角尺一副;小剪刀一把;红色、蓝色彩笔各一支。
教学过程与方法。
(1)经历动手操作的活动过程,培养学生作图能力。
(2)通过分组学习,动手操作,主动探索等活动培养学生的创新意识,及抽象概括等能力,进一步发展学生的空间观念。
(3)在学习过程中,培养学生能与人合作、交流思维过程和结果的能力。
一、导入新课。
1、圆是什么样子的?你见过圆吗?
2、生活中你在哪儿见过?能说说吗?一直说下去能说完吗?的确圆是无处不在的。(打开有关生活中圆的课件)。
问:同学们你们从中又看到了圆了吗?你会画圆吗?今天我们一起来学习圆的认识(板书课题),相信通过今天的学习大家一定会明白其中的方法。
3、动手试一试,看谁想的方法多?
1、说说怎样用圆规画圆,强调画圆时圆规两脚间的距离不能改变,有针尖的一角不能移动,移动旋转时要把重心放在有针尖的一脚上,(教师在黑板上演示)学生自己练习画圆。
2、请大家用这个方法再画一个圆,并很快把它剪下来。
二、探究新知。
(一)认识圆心。
1、圆形画好了。
2、指出圆心。
说明:圆的中心叫“圆心”,就是画圆时针固定的一点,用字母o表示。(师板书:圆心o)。
(二)认识半径。
1、在你的圆的边缘上任意找一点,连接圆心和这一点得到一条线段,你还能画出这样的线段吗?再画几条,用尺子量一量这些线段,你发现了什么?(长度都相等)。
师小结:像这样的线段我们把它叫做半径。
2、什么叫半径?学生回答后出示概念及关键词。半径一般用字母r表示。
3、你能画出几条半径?
4、认识特点:在同一个圆里,有()条半径,它们的长度()。
(三)认识直径。
1、拿出你的学具圆,用尺子沿着一条折痕画出一条线段,再画几条,用尺子量一量这些线段,你发现了什么?(长度都相等)。
师小结:像这样的线段我们把它叫做直径。
什么叫做直径?学生回答后出示概念及关键词。直径一般用字母d表示。
2、要站在圆上,随便哪一点都可以吗?为什么?怎样证明?(引导学生画一画、量一量)。
说明:象这样,连接圆心到圆上任意一点的线段,叫做圆的半径,用字母r来表示。
(四)认识直径及直径与半径的关系。
1、刚才我们用折纸的方法确定圆心时,发现圆上有许多折痕。这些折痕叫什么?有什么特点?与半径有什么关系?请大家看看书、动动手画一画,看看能画几条?并在小组中说一说。
2、组织学生交流,教师画直径时有意两端不在圆上,让学生判断。
3、想一想:(1)画圆时,圆规两脚间的距离其实就是圆的什么?针尖固定的一点呢?
教师板书:(1)直径:d(2)d=2r或r=1/2d追问:直径肯定是半径的2倍吗?你是怎么知道的?看一下你手中圆的直径,会不会是黑板上圆的半径的2倍?你认为应该怎么说?(板书:同圆或者等圆中)。
3、口答:画一个直径是5厘米的圆,圆规两脚间的距离应是()。
4、完成课本的做一做。
三、全课总结。
四、延伸拓展。
1、同学们想一起到篮球场玩套圈游戏,你会怎么安排?说说你的想法。
3、利用发现的规律你能测出硬币等圆形物体的直径吗?
4、生活中哪些物体必须做成圆形的,为什么?
(课件出示两辆跑车)让学生展开讨论:车轮为什么是圆的?讲述:同学们,其实何尝是大自然对圆情有独钟?在我们人类生活中的每一个角落里,圆都扮演着重要角色,都成了美的使者和化身。(显示生活中圆的魅力)。
圆心(o)——定位置。
半径(r)——定大小——无数条——相等。
直径(d)——无数条——相等。
d=2rr=1/2d(同圆或等圆中)。
圆的初步认识的教学设计篇八
教学目标:
1.初步认识几分之一,理解几分之一的含义,会读,会写简单的分数。
2.会比较分子都为一的分数的大小。
2.通过演示,观察操作,自主探究,合作交流等学习途径与方法,培养学生抽象概括能力。
3.激发学生学习数学的兴趣,锻炼学生的动手能力,初步培养学生的创新合作意识,使之获得运用知识解决问题的成功体验。
教学重、难点。
重点:理解分数的含义,初步建立几分之一的概念。
难点:理解分数的含义.
教具、学具准备。
多媒体课件,每个学生事前都准备彩笔,长方形、正方形、圆形各两个图形纸片.毛线一根。
教学过程:
基能加油站。
除法口算题小组开火车练习。
情景导入。
帮兔妈妈解决数学问题。
问题一:四个月饼分给两个兔宝宝,怎么分?每只分几个?
圆的初步认识的教学设计篇九
1.认识圆,知道圆各部分的名称,知道同一圆内半径和直径的特征。
2.掌握圆的特征,理解在同圆内直径和半径的相互关系,能根据这种关系求圆的直径和半径。
3.初步学会用圆规画圆。
4.培养观察、分析、抽象、概括等思维能力和初步的空间观念;学会用数学知识解释生活中的实际问题。
教学重点:圆的各部分名称及各部分之间的关系。
教学难点:圆的特征。
学具准备:圆规、纸片、剪刀、彩笔、直尺。
一、生活中找圆,导入新课。
师:对于圆,同学们一定不会感到陌生吧?生活中,你们在哪见过圆形。
师:其实,在生活中随处可见圆状物体。中秋圆月、硬币等都是圆形。
二、操作、探究,自主认识圆的特征。
1.师:刚才我们看了这么多的圆,你们想不想把它画下来啊?
师:平时,你们是怎么画圆的啊?
师:比较一下,你觉得哪种方法更好啊?为什么?
师:大家都觉得用圆规画方便,那么,怎么利用圆规来画圆啊?请大家自己试试,遇到问题时,再请教无声的老师,看看它能给你什么提示。
让一位同学边示范边说步骤。(显示画圆的步骤)指出在画圆时的注意点。
再让同学们多画几个圆。
2.把自认为画的最好的圆剪下来。
师:拿出你的圆,对折一下,打开;再对折,再打开;反复几次。你发现了什么?
师在学生回答的基础上总结:这些折痕相交于一点,这一点就用圆规画圆时针尖固定的一点。我们把这一点叫做圆心。用字母o来表示。
老师在黑板上表示出圆心,让学生标出自己圆上的圆心。
3.我们已经认识了圆心,如果我们在圆上任意取一点,连接圆心和这点,这条线段我们把它叫做半径。用字母r来表示。(边说边在圆上表示出来)。
让学生在自己的圆上标示出半径,再让一位学生上黑板表示。
指点怎样量圆的半径的长度。
师:在这个圆上,你能画出几条半径来?他们的长度怎样。
让学生自己探究发现,可以同桌、小组之间探讨。
老师在学生回答的基础上总结板书。
4我们再把圆拿出来,看看上面还有什么奥秘。
我们在折圆时,每条折痕都通过什么?它的两个端点在哪里?
谁来说说,这是一条怎样的折痕?
我们把这条线段叫做圆的直径,用字母d来表示。请你在你的圆上画出你这个圆的直径。一人板演,说说直径是怎么来的。
我们怎样测量它的长度呢?
我们找出了圆的直径,它是否和半径一样也有这样的规律呢?请你们自己按我们研究半径的方法研究直径。
老师在学生回答的基础上总结板书。
5.完成“练一练”第1题。
展示讲评,说说怎样想的。
6.学到这里,你对圆还想说什么吗?
可先让学生在同桌、小组之间讨论一下。再汇报,并说说是怎么想的。
根据学生的汇报,总结演示半径直径的关系。
三、联系生活,拓展运用。
1.口答“练习二十四”第1、2题。
在其中讲解半径与圆的大小的关系。
2.如果你是设计师,你会把车轮设计成什么形状?
说说你的理由。
为什么不设计成其他形状?
四、学生自己总结。
多少年来,在孩子们的心目中,在教师们的课堂里,数学一直与定理、法则、记忆、运算、冷峻、机械等联系在一起,难学难教、枯燥乏味一直成为学生学习数学的绊脚石。如何让学生在轻松和谐的环境下学习数学知识,这就成了我们教学中最为关注的问题。
圆的认识是在学生初步认识圆以后进行教学的,对于大多数学生来说,虽然已经初步认识过圆,但对于建立正确的圆的概念以及掌握圆的特征来说还是比较困难的。一开始我就从学生的生活出发,从生活中感知圆,形成圆的初步认识,画圆就顺理成章,而且比较多种方法认识到用圆规画圆的普遍性。让学生试着用圆规画圆,有困难时再看书,向书本学习。比硬性让学生看书后画圆,更尊重学生,也更富有启发性。画圆之后,让学生共同概括规律,是从感性到理性的一种提高,是十分必要的。
从感性认识到理性认识的升华,单靠学生讨论是完不成的,关键时刻,还需要教师系统的引导和讲解。因此在介绍圆各部分名称时,由老师带领着认识,当然也是在动手操作中感受圆的各部分名称。在学生操作的过程中已经积累了很多的潜在的意识,这时,老师只用稍微点拨一下,老师所要的内容学生就脱口而出。教学过程中,充分放手让学生参与知识的形成过程,让他们自己去发现、去猜想、去验证、去讨论、去合作。
当然在教学过程中我也发现了还需改进的地方,在个别环节的处理上还欠细致,前后时间的安排上也不是很好。还有,漠视了数学本身的文化背景,漠视了浸润在数学发展演变过程中的人文背景。如何兼顾知识与技能的教学,如何使我们的课堂活中有实,实中见活,这是我们每个老师值得深思的问题。
圆的初步认识的教学设计篇十
1、认识圆的特征,知道什么是圆心、半径和直径。能正确判断一个图形是不是圆,并说明理由。
2、运用不同的思想方法认识:在同一个圆(或等圆)里,半径的长度都相等;直径的长度都相等并且等于半径的两倍;知道圆是轴对称图形,有无数条对称轴,能画出加圆的对称轴。
3、能用圆规画圆,知道半径(直径)决定圆的大小,圆心决定圆的位置。
4、了解圆在生产、生活和科学技术的应用,并能用圆的特征解释。
:掌握圆的特征,会画圆。
:讲授法,探究法。学生学法:自学法、观察法,探究法。
:圆片,三角板,ppt课件,圆规,尺子,白纸,剪刀,细线等。
一、再现场景,导入新课。
圆和我们以前学过的平面图形有什么不同?
二、师生合作学习新知。
(一)试一试。
1、同学们能用手中的材料试着画一个圆吗?
2、交流反馈。
3、既然同学们能用这么多方法能画出圆,把自己的方法与别人的比较一下,能发现那种方法适用性更广一些?从而引导出用圆规画圆。介绍圆规的组成部件。
(二)说一说。
1、请用圆规画圆的同学谁能把你的方法给老师和同学们说一下。
2、生说,教师在黑板上板画。适时规范学生的语言。(先将针尖和笔尖张开一定距离;然后将针尖固定在一个点上;最后使笔尖落在纸上,将圆规旋转一周,毛尖就画出了一个圆。)。
3、其它学生用刚才那个同学的方法在纸上自由画一个圆。
(三)学一学。
1、请同学们打开课本第17页例2下面这部分内容自学一遍。把你新学到的知识勾画出来,并重点理解一下。最后在你刚才画的一个圆里标出圆心、半径和直径。
2、学生自学,教师巡视,适时收集信息为下面反馈做好准备。
3、学生交流,边说边在自己画的圆中指出相应位置。教师适时追问,刚才针尖的位置是什么,它有什么作用?针尖与笔尖的距离是什么?它决定圆的什么?教师根据学生的回答用一个绳子系上一支粉笔头甩出不同大小的圆,加深学生理解。当学生说出圆心、半径和直径的概念不够规范时要用书上的规范用语,并通过重点词语理解概念。教师在追问及学生回答时适时板书。
三、独立探究,获取新知。
1、请同学们拿出准备好的圆片独立探究。出示探究目标(课件出示):
1将自己手中的圆用不同的方式找到圆心、半径和直径并做好标识。(学生找圆心时若有困惑可适时引导:我发现有个同学真聪明,他将手中的圆对折几次后就很快地找到了圆心,学生们试试看。)。
2在同一个圆中,有多少条半径?这些半径的长度之间有什么关系?你是怎样得到的?
4圆是不是轴对称图形?若是,它有多少条对称轴?能画出其中的一条吗?目标出示后,学生一定要认真读,明确要求,然后可以选择自己喜欢的一个或几个问题进行探究。教师巡视,适时指导调控时间。
2、学生交流反馈。教师适时板书。
四、介绍圆的历史。
说起中国古代的圆,下面的这幅图案还真得介绍给大家(出示图),认识吗?
想知道这幅图是怎么构成的吗?
原来它是用一个大圆和两个同样大的小圆组合而成的(出示图)。现在,如果告诉你小圆的半径是3厘米,你又能知道什么呢?(学生说)。
师:看来,只要我们善于观察,善于联系,我们还能获得更多有用的信息。
五、解释与应用。
1、基本练习(制成课件)。
2、解释现象。
车轮是绕着轴承转动,轴承的位置在什么地方?为什么?
简单的自然现象中,有时也蕴含着丰富的数学规律呢。至于其他一些现象中又为何会出现圆,当中的原因,就留待同学们课后进一步去调查、去研究了。
其实,又何止是大自然对圆情有独钟呢,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏――(课件展示)。
六、总结与反思。
1、请同学们将本节课所学知识整理一下,用一两句话说说你这节课最大的收获是什么?
2、教师总结:西方数学、哲学史上历来有这么种说法,上帝是按照数学原则创造这个世界的。对此,我一直无从理解。而现在想来,石子入水后浑然天成的圆形波纹,阳光下肆意绽放的向日葵,天体运行时近似圆形的轨迹,甚至于遥远天际悬挂的那轮明月、朝阳而所有这一切,给予我们的不正是一种微妙的启示吗?至于古老的东方,圆在我们身上遗留下的印痕又何尝不是深刻而广远的呢。有的说,中国人特别重视中秋、除夕佳节;有人说,中国古典文学喜欢以大团圆作结局;有人说,中国人在表达美好祝愿时最喜欢用上的词汇常常有圆满美满而所有这些,难道就和我们今天认识的圆没有任何关联吗?那就让我们从现在起,从今天起,真正走进历史、走进文化、走进民俗、走进圆的美妙世界吧!
圆的初步认识的教学设计篇十一
1、认识圆,知道圆的各部分名称,知道同一圆内半径、直径的特征,初步学会用圆规画圆。
2、使学生掌握圆的特征,理解在同一个圆里直径与半径的关系,能根据这种关系求圆的直径或半径。
3、培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念,使学生初步学会用数学知识解释、解决生活中的实际问题。
掌握圆的特征,理解在同一个圆里直径和半径的关系,能根据这种关系求圆的直径或半径。
多媒体一套。学生准备硬币等圆形物体若干;圆规一把、直尺一把、小剪刀一把。
一、导入新课。
1、导入:同学们玩过投圈游戏吗?如果现在有几位同学要进行投圈比赛,站成什么形状比较合理?今天我们一起来学习圆的认识(板书课题),相信通过今天的学习大家一定会明白其中的道理。
2、你见过圆吗?生活中你在哪儿见过?
3、想办法画圆。
二、探究新知。
1、认识圆心、半径、直径。
2、在同一个圆里半径和直径的长度有什么关系?教师板书:d=2r或r=1/2d。
3、用圆规画圆。
三、拓展延伸。
生活中的车轮为何是圆的,车轴应该装在哪里?
四、全课总结。
1、各部分名称:or(无数条)d。
2、d=2r或r=1/2d(同圆或等圆)。
3、画法:定圆心、定半径、旋转一圈。
圆的初步认识的教学设计篇十二
教学目标:
1.使学生认识圆,掌握圆的各部分名称。
2.通过动手操作、实验观察探索出圆的特征及同一个圆里半径和直径的关系。
3.初步学会用圆规画圆,培养学生的作图能力。
4.培养学生观察、分析、抽象、概括等思维能力。
教学重点:
在动手操作中掌握圆的特征,学会用圆规画圆的方法。
教学难点:
理解圆上的概念,归纳圆的特征。
教材分析:
教材首先说明什么是圆,并结合周围物体说一说,这样调动了学生已有的生活经验,再通过画圆、折圆、测量等活动,展现圆的特征,其目的在于让学生通过观察、操作理解圆中的各部分关系,从而掌握圆的特征并解释生活中相关问题。
学情分析:
圆是在学生学过了直线图形以及圆的初步认识的基础上进行教学的。圆这一平面上的曲线图形,学生在生活中经常看到,它到底有什么特征呢?是本节课学生学习的重点,在学习圆的认识时,学生通过观察、操作,自己获取一些有关圆的特征的知识,这样回大大提高学生的学习兴趣,发挥学生的主体性。
教学过程:
活动一:演示操作,揭示课题。
师:一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来。
1.教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆)。
2.小结引入:(出示铁丝围成的圆)这就是一个圆.圆也是一种平面图形,这节课我们就来学习圆的认识。(板书课题:圆的认识)。
活动二、动手操作,探究新知。
(一)教师让学生举例说明周围哪些物体上有圆。
(二)认识圆的各部分名称和圆的特征。
1.学生拿出圆的学具。
2.教师:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的)。
教师说明:圆是平面上的一种曲线图形。
3.通过具体操作,来认识一下圆的各部分名称和圆的特征。
(1)先把圆对折、打开,换个方向,再对折,再打开??这样反复折几次。教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)。
仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)。
教师指出:我们把圆中心的这一点叫做圆心。圆心一般用字母o表示。
教师板书:圆心。
(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?(圆心到圆上任意一点的距离都相等)。
教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r表示。(教师在圆内画出一条半径,并板书:半径)。
教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?
在同一个圆里可以画多少条半径?
所有半径的长度都相等吗?
教师板书:在同一个圆里有无数条半径,所有半径的长度都相等。
教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d来表示。(教师在圆内画出一条直径,并板书:直径)。
教师提问:根据直径的概念同学们想一想,直径应具备什么条件?
在同一个圆里可以画出多少条直径?
自己用尺子量一量同一。
个圆里的几条直径,看一看,所有直径的长度都相等吗?
教师板书:在同一个圆里有无数条直径,所有直径的长度都相等。
(4)教师小结:通过刚才的`学习我们知道,在同一个圆里有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。
(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?
如何用字母表示这种关系?
反过来,在同一个圆里,半径的长度是直径的几分之几?
教师板书:在同一个圆里,直径的长度是半径的2倍。
(三)反馈练习。
1.p581。
2.填表。
(四)圆的画法。
1.学生自学,看书57页。
2.学生试画。
3.学生通过试画小结用圆规画圆的方法,注意的问题。
4.教师归纳板书:1.定半径;2.定圆心;3.旋转一周。
教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。
5.学生练习。
(五)教师提问。
为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置?
教师板书:半径决定圆的大小,圆心决定圆的位置。
(六)思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办?
活动三、实践与应用。
(一)判断。
1.画圆时,圆规两脚间的距离是半径的长度。()。
2.两端都在圆上的线段,叫做直径。()。
3.圆心到圆上任意一点的距离都相等。()。
4.半径2厘米的圆比直径3厘米的圆大。()。
5.所有圆的半径都相等。()。
6.在同一个圆里,半径是直径的。()。
7.在同一个圆里,所有直径的长度都相等。()。
8.两条半径可以组成一条直径。()。
(二)按下面的要求,用圆规画圆。
1.半径2厘米。
2.半径2.5厘米。
3.直径8厘米。
(三)怎样测量没有圆心的圆的直径?
活动四、全课小结。
这节课我们学习了什么?通过这节课的学习你有什么收获?
在同一个圆里有无数条半径,所有半径的长度都相等。
在同一个圆里,直径的长度是半径的2倍。半径决定圆的大小,圆心决定圆的位置。
圆的初步认识的教学设计篇十三
师:今天上课我们学什么?大声地说“学什么”
师:从哪里看到的?只给我看,
生指屏幕。
师:屏幕上有,还有呢?
师:说,哪有?
师:没错,圆片,还有吗?
生:圆规。
生齐:想。
师出示一个信封,摸出一个圆片,师:是圆吗?
生:是。
生齐:有。
师:好,现在看谁的反应最快?
师从信封里摸出一个长方形。
生:长方形。
师:男孩的反应快,状态也不错。
师从信封里摸出一个正方形。
生:正方形。
师:还有一个图形。
师从信封里摸出一个三角形。
生:三角形。
师:猜猜还有吗?
师从信封里摸出一个平行四边形。
生:平行四边形。
师从信封里摸出一个梯形。
生:梯形。
师:行了行了,小朋友们,都别你们猜到了。
教师课件演示各种图形,
师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?
生齐:没有。
师:为什么?
生:因为圆是由曲线围成。
师:而其他图形呢?
生:都是由直线,哎!线段围成。
师:同意吗?
师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?
生:角。
师:圆有角吗?
生:没有。
师:所以圆特别的?
生:光滑。
师:说的真好。
生齐:曲线。
师:给它一个名称。
生:曲线图形。
师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?
生齐:不难。
师:谁让你们聪明呢?还有难的。
师出师一个不规则图形。
师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来?
生齐:不会。
师:为什么?
生齐:丰满。
师:嘿!瞧,还有一个。
师出示一个椭圆,
生:不会,
师:为什么?
师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……。
生:瘦瘦的。
师:瘦瘦的。圆呢?
教师出示圆形教具,转动。
师:怎么样?
生:一样。
师:怎么看到的一样?
师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?
行,就你吧,近水楼台。
师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?
生:看不见了。
生:不是。
师:可以吗?
生齐:可以。
师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?
生:不能。
生齐:ok!
师:好,伸出你最拿手的一只手,右边,准备好了吗?
生:准备好了。
生1:不是.
师:对不对?
生:对.
生1:不是.
师:对不对?
生:对.
生1:更不是.
师:瞧,这更字用的多好.
生1:更不是.
师:小家伙厉害.
生1:不是.
生:对.
生1:是.
生:对.
师:掌声鼓励一下.
圆是曲线图形。
画圆。
生2:我认为是圆的半径变了.
生:不能.
师:除了这个地方改变以外,还有那些地方不能动?
生3:圆心改变了.
师:在画圆的过程中,针不能改变.
生:能.
师:先别动笔,边画边考虑.
圆和什么有关系?
生:圆心和半径.
师:我知道你们说的半径是什么意思?
谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察。
生4(到黑板前画出远的半径)。
师:对不对?
生:对.
生:圆心.
师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?
生:o.
师:请在你刚才画的圆上,标出圆心,写出字母o.
继续看这条线段,圆心的另一端在哪里?
生;圆上.
生:不是.
师:那有多少个?
生:无数个.
师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?
生;不知道.
师:不知道不怕,怕的是他人说这三个字:为什么?
我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.
生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.
师:因为平滑,所以有无数条.
生6:因为圆心到圆上的距离全部相等。
生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.
师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?
生:随便。
师:请问,在圆上有多少个这样随便的点?
生:无数.
生:为什么?
师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?
生:相等.
师:同意的请举手,我的三个字又来了.
生:为什么.
师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?
生:圆规.
师:还有尺寸,尺寸让你们用来干什么的?
生:量.
师:现在就动手量一量.
生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.
师:既然两角的距离没有变,那么两角的距离其实就是半径的距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.
生:半径有无数条,长度都相等,都一样.
生:得出来了.
师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.
生:错.
生:也有无数条,直径都相等.
师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?
生9:因为我们知道所有的半径都相等.
生:有.直径是半径的二倍.
生:半径和直径都相等.
生:四条.
师:正五边形,有几条?
生:五条.
师:正六边形?
生:六条.
师:正八边形?
生:八条.
师:圆形?
生:无数条.
师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最的地方和曲线图形圆交融在一起.
生:不一样.
师:半径几厘米的圆比较大?
生:5厘米.
半径几厘米的圆比较小?
生:3厘米.
师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?
生:半径.
生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.
生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.
生:不是.
师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?
生12:用一个碗扣在白纸上,描一下.
师:有可能,但不是.
生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.
师:人造圆规.
生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.
生15:少了宽度.
生:不是.
生:5厘米.
师:4厘米呢?
生:4厘米.
师:假如半径是3厘米,那么直径呢?
生:6厘米.
师:是不是我把圆扯开6厘米,就可以画圆了/。
生;不是.要扯开3厘米.
生:没有.
师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?
生:近似一个圆,。
师:想一想,刚才我们旋转的是什么呀?
生:中心.
生:圆.
师:今天上课我们学什么?大声地说“学什么”
师:从哪里看到的?只给我看,
生指屏幕。
师:屏幕上有,还有呢?
师:说,哪有?
师:没错,圆片,还有吗?
生:圆规。
生齐:想。
师出示一个信封,摸出一个圆片,师:是圆吗?
生:是。
生齐:有。
师:好,现在看谁的反应最快?
师从信封里摸出一个长方形。
生:长方形。
师:男孩的反应快,状态也不错。
师从信封里摸出一个正方形。
生:正方形。
师:还有一个图形。
师从信封里摸出一个三角形。
生:三角形。
师:猜猜还有吗?
师从信封里摸出一个平行四边形。
生:平行四边形。
师从信封里摸出一个梯形。
生:梯形。
师:行了行了,小朋友们,都别你们猜到了。
教师课件演示各种图形,
师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?
生齐:没有。
师:为什么?
生:因为圆是由曲线围成。
师:而其他图形呢?
生:都是由直线,哎!线段围成。
师:同意吗?
师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?
生:角。
师:圆有角吗?
生:没有。
师:所以圆特别的?
生:光滑。
师:说的真好。
生齐:曲线。
师:给它一个名称。
生:曲线图形。
师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?
生齐:不难。
师:谁让你们聪明呢?还有难的。
师出师一个不规则图形。
师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来?
生齐:不会。
师:为什么?
生齐:丰满。
师:嘿!瞧,还有一个。
师出示一个椭圆,
生:不会,
师:为什么?
师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……。
生:瘦瘦的。
师:瘦瘦的。圆呢?
教师出示圆形教具,转动。
师:怎么样?
生:一样。
师:怎么看到的一样?
师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?
行,就你吧,近水楼台。
师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?
生:看不见了。
生:不是。
师:可以吗?
生齐:可以。
师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?
生:不能。
生齐:ok!
师:好,伸出你最拿手的一只手,右边,准备好了吗?
生:准备好了。
生1:不是.
师:对不对?
生:对.
生1:不是.
师:对不对?
生:对.
生1:更不是.
师:瞧,这更字用的多好.
生1:更不是.
师:小家伙厉害.
生1:不是.
生:对.
生1:是.
生:对.
师:掌声鼓励一下.
圆是曲线图形。
画圆。
生2:我认为是圆的半径变了.
生:不能.
师:除了这个地方改变以外,还有那些地方不能动?
生3:圆心改变了.
师:在画圆的过程中,针不能改变.
生:能.
师:先别动笔,边画边考虑.
圆和什么有关系?
生:圆心和半径.
师:我知道你们说的半径是什么意思?
谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察。
生4(到黑板前画出远的半径)。
师:对不对?
生:对.
生:圆心.
师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?
生:o.
师:请在你刚才画的圆上,标出圆心,写出字母o.
继续看这条线段,圆心的另一端在哪里?
生;圆上.
生:不是.
师:那有多少个?
生:无数个.
师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?
生;不知道.
师:不知道不怕,怕的是他人说这三个字:为什么?
我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.
生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.
师:因为平滑,所以有无数条.
生6:因为圆心到圆上的距离全部相等。
生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.
师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?
生:随便。
师:请问,在圆上有多少个这样随便的点?
生:无数.
生:为什么?
师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?
生:相等.
师:同意的请举手,我的三个字又来了.
生:为什么.
师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?
生:圆规.
师:还有尺寸,尺寸让你们用来干什么的?
生:量.
师:现在就动手量一量.
生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.
师:既然两角的距离没有变,那么两角的距离其实就是半径的距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.
生:半径有无数条,长度都相等,都一样.
生:得出来了.
师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.
生:错.
生:也有无数条,直径都相等.
师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?
生9:因为我们知道所有的半径都相等.
生:有.直径是半径的二倍.
生:半径和直径都相等.
生:四条.
师:正五边形,有几条?
生:五条.
师:正六边形?
生:六条.
师:正八边形?
生:八条.
师:圆形?
生:无数条.
师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最的地方和曲线图形圆交融在一起.
生:不一样.
师:半径几厘米的圆比较大?
生:5厘米.
半径几厘米的圆比较小?
生:3厘米.
师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?
生:半径.
生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.
生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.
生:不是.
师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?
生12:用一个碗扣在白纸上,描一下.
师:有可能,但不是.
生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.
师:人造圆规.
生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.
生15:少了宽度.
生:不是.
生:5厘米.
师:4厘米呢?
生:4厘米.
师:假如半径是3厘米,那么直径呢?
生:6厘米.
师:是不是我把圆扯开6厘米,就可以画圆了/。
生;不是.要扯开3厘米.
生:没有.
师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?
生:近似一个圆,。
师:想一想,刚才我们旋转的是什么呀?
生:中心.
生:圆.
圆的初步认识的教学设计篇十四
1、使学生在观察、操作、画图等活动中感受并发现圆的有关特征,知道什么是圆的圆心、半径和直径;能借助工具画图,能用圆规画指定大小的圆。
2、让学生经历从猜想到验证的过程,在活动中进一步积累认识图形的学习经验,增强空间观念,发展数学思考。
在观察、操作、画图等活动中感受并发现圆的特征。
教学难点:
归纳圆的特征,并能准确画出指定大小的圆。
一、情景引入。
出示一组生活中物体的图片,让学生欣赏。(如太阳、圆月、汽车的车轮、呼拉圈、光盘、钟面等)。
1、刚才欣赏到的那些漂亮图片中的物体是什么形状?
2、在我们的生活中,就在我们的身边,还有那些地方能看到圆?
(学生衣服上的纽扣、身上的硬币、桌子里的杯子等等)。
请学生用手指一指这些物体上的圆,并用手摸一摸,有什么感觉?
3、看来,在我们的大自然中、生活中圆是无处不在,今天就让我们一起来了解这个虽然不熟悉但和我们处处在一起的圆。(板书:圆的认识)。
二、教学新知,初步画圆。
1、刚才看了那么多的圆,说了那么多的圆。接下来请大家用你能想到的办法自己动手画一个圆。
2、请学生交流画圆的方法。如借助圆形的物体画,还有书上讲到的方法或是用圆规画)。
3、通过刚才的看圆、说圆与画圆,你觉得圆与以前学过的平面图形有什么不同?
总结:以前学过的平面徒刑都是由线段围成的,圆是由曲线围成的,圆比较光滑,没有角。
4、大家介绍了很多画圆的方法。为了使我们能画出任意大小的圆来,勤劳、智慧的人们制成了专门用来画圆的工具――圆规。
三、认识圆规,掌握用圆规画圆的方法。
1、认识圆规。
让学生取出课前准备好的圆规,一起认识圆规的的构成并介绍圆规两脚的功能:圆规有两只脚,一只是针尖,另一只脚是用来画圆的笔,两只脚可以随意叉开。
2、尝试画圆。
1)你能试着用圆规画一个圆吗?学生独立画圆。
2)刚才老师转了转,发现有些同学要么没画好,要么画出来的不圆,下面我们一起看大屏幕,注意观察如何使用圆规画圆。(使用实物投影仪,教师示范使用圆规画圆)。
3)说说,老师刚才是如何使用圆规画圆的?学生回答,教师总结并板书:两脚叉开――固定针尖――旋转成圆。
4)学生按照这个方法再练习画一个圆,同时思考:通过两次画圆,应该注意什么?
总结:针尖要固定,不能移动;两脚间的距离保持不变;要旋转一周。
5)练习画一个两脚之间距离是2厘米的圆。
四、学习圆的各部分名称及特征。
1、认识圆心、半径、直径。
1)教学圆心:刚才我们画圆时,针尖固定的这个点,我们把它叫做圆心,用字母o来表示。找出你刚才所画的圆的圆心,并标上字母o。同桌相互检查一下,有没有标对。
2)教学半径:连接圆心和圆上一点的线段是半径,用字母r表示。指导学生画一条圆的半径,并标上字母。在我们用圆规画圆时,这个半径就是指什么?(两脚之间的距离)因此圆的大小就是由圆的半径决定的。
让学生联系画一个半径是4厘米的圆,画出一条半径,标上圆心和半径的字母。向全班展示自己的圆,看一看,自己画的、标的还有什么地方部不对。
3)教学直径。
出示一个画有一条直径的圆,让学生观察这条线段的位置有什么特点?
总结:像这样通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。
同学们你们画的圆也有直径,请你画一条圆。
4)闭好眼睛,回想标圆心、画半径与直径的方法。
2、练习,完成练一练的第1题。
说说哪些不是半径或直径,为什么?
3、研究圆的特点。
我们已经认识了圆心、半径和直径,现在我们就继续来研究圆的特点。
1)出示一张圆形的纸,你能找到它的圆心吗?(把圆对折两次)。
通过对折,你还发现圆有什么地方比较特别吗?(对折后能完全重合,是轴对称图形)。
在同一个圆里,半径的长度都相等吗?直径呢?
同一个圆的直径和半径有什么关系?
圆是轴对称图形吗?它有几条对称轴?
3)学生汇报回答上述四个问题,教师适当引导:前面三个问题为什么要强调在同一个圆里?可以画无数条半径和直径,你是怎么知道的?你能用字母来表示半径与直径之间的关系吗?(板书:d=2r)。
4)通过刚才的讨论和交流,我们掌握了圆的特征,谁来总结一下圆的特征。
五、巩固练习。
1、练习十七的第1题。
填写表格,并说一说半径与直径之间有什么关系?
2、练一练的第2题。
画一个直径是5厘米的圆,并用字母o、r、d分别表示出它的圆心、半径和直径。
教师提问:使用圆规画一个直径是5厘米的圆,先要确定什么?(求出半径,也就是两脚之间的距离)。
3、判断题。
1)圆有无数条对称轴。
2)直径是半径的2倍。
3)画一个直径为4厘米的圆,圆规两脚间的距离为4厘米。
4)圆的位置由圆心决定。
5)两脚间的距离越大,画出的圆就越大。
六、欣赏生活中的圆。
谈话:瞧,生活中,也蕴含着丰富的数学规律呢。其实,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏。
师:感觉怎么样?
师小结:而这,不正是圆的魅力所在吗?
七、全课总结。
谈话:其实短短的一节课,要想真正了解圆还不太容易。那么就让我们从今天起,走进历史,走进文化,走进圆的世界吧!
圆的初步认识的教学设计篇十五
理解和掌握圆的特征。
纸、剪刀、圆规、课件。
(一)、创设情景,激发兴趣。
1、(大屏幕展示高年级同学课间投篮比赛情境图)。
2、师质疑:你们认为安排这样的队形公平吗?大家有什么好的建议?
3、生自由回答,师相机点拨。
4、师:今天我们就来学习有关圆的知识。(板书:圆的认识)。
(二)、恰当引导,自主学习。
1、师:你们认为圆和我们以前学过的平面图形有什么区别?
2、(师板书:圆是一种由曲线围成的封闭图形)。
3、生齐读三遍。理解意思。
(三)、师生交流,感受新知。
1、找身边的圆。
2、师:(出示教具圆规)这是什么?它表面上有圆吗?(生边看边答。)。
3、在你的纸上画一圆。
4、师抽生在黑板上画圆。
(1)没成功:他为什么没画成功?(1是没有固定好有针的那个脚;2是没固定好圆规两脚间的距离;3是可能不太好旋转;4是黑板比较滑,不太好固定)。
5、师示范画圆。
师:刚才同学们总结得很好,看来,用一只手固定住圆规的针尖很关键。看老师画。
师:我们把……统称为圆上【板书:圆上】。
师:只能画这一条吗?生:还能再画!
师:再画一条。还能再画吗?再画一条。还能画吗?到底能画多少条?
师:所画出来的表示圆规两脚间距离的这几条线段,一个端点都在哪?另一个端点呢?
生:一个端点都在圆心,另一个端点都在圆上。
师:我们给这样的线段起个名字吧!
师:【板书:半径(r)】半径一般用字母r表示,在你的圆上标上r。谁能用自己的话说一说什么叫半径。(一个端点在圆心,另一个端点在圆上的线段就叫半径。)。
师:在同一个圆里,半径有多少条?长度怎样?
生:在一个圆里,半径有无数条,长度都相等。
师:既然半径有无数条,那么在围成圆的这条曲线上,像这样的端点能找出多少个?
生:能找出很多(无数)个。
师:(在三个点的旁边紧密地多点几个点)这行吗?
师:正是这无数个点紧紧地手拉手,靠在一起,连接成一条完美的曲线,围成了圆。
师:请同学们拿出剪刀,剪下你所画的圆。
生:一条折痕。【痕迹、印子、折痕】。
师:我们把对折产生的这条线段、这条痕迹统称为折痕。
师:原本平展的圆上,多了很多很多的折痕,在这些折痕里藏着许多许多关于圆的奥秘,同学们想发现吧?请同学们在4人小组里围绕折痕,展开讨论,充分发表自己的见解,然后由组长记下“我们的发现”。汇报发现的`时候,由组长上来发言,组员可以补充。但每一组只能用一句话汇报一个自己认为最精彩的发现,别的组发表过的观点,其他组便不再重复,开始讨论。
1、(小组合作,讨论问题)。
2、各小组汇报讨论结果。
(四)、巩固练习,问题解决。
1、判断直径、半径。
2、[媒体]填一填:
3、[媒体]再请你辩一辩:下面各句话对吗?
4、画圆。
请你画一个半径为4厘米的圆。
师:下面我们还将面临3个实际问题的挑战,同学们敢接受挑战吗?
问题1、你能测量出1圆硬币的直径吗?(参考用工具:直尺,一副三角板)。
问题2、你能在地面上画一个半径1米的圆吗?(参考用工具:绳子、粉笔)。
问题3、车轮都做成圆的,车轴装在哪里?为什么?(参考用工具:自行车)。
师:我已经发现,很多同学都笑了,这说明他心里有底了。每个同学选择一个自己最感兴趣的课题来研究。
(五)、课堂小结,课外延伸。
发挥想象,灵巧操作。
1、给你两枚钉子和一条一定长度的绳子,你有办法画出圆来吗?
〈2〉、任意画出一个圆,再标出圆心、半径、直径。(字母表示。
师:学完这节课,同学们还有什么想法吗?圆里面藏着无穷无尽的奥秘,等待着同学们去研究和发现!愿我们的学习和生活都像圆那样完美!
圆的初步认识的教学设计篇十六
出示一组生活中物体的图片,让学生欣赏。(如太阳、圆月、汽车的车轮、呼拉圈、光盘、钟面等)。
1、刚才欣赏到的那些漂亮图片中的物体是什么形状?
2、在我们的生活中,就在我们的身边,还有那些地方能看到圆?
(学生衣服上的纽扣、身上的硬币、桌子里的杯子等等)。
请学生用手指一指这些物体上的圆,并用手摸一摸,有什么感觉?
3、看来,在我们的大自然中、生活中圆是无处不在,今天就让我们一起来了解这个虽然不熟悉但和我们处处在一起的圆。(板书:圆的认识)。
1、刚才看了那么多的圆,说了那么多的圆。接下来请大家用你能想到的办法自己动手画一个圆。
2、请学生交流画圆的方法。如借助圆形的物体画,还有书上讲到的方法或是用圆规画)。
3、通过刚才的看圆、说圆与画圆,你觉得圆与以前学过的平面图形有什么不同?
总结:以前学过的平面徒刑都是由线段围成的,圆是由曲线围成的,圆比较光滑,没有角。
4、大家介绍了很多画圆的方法。为了使我们能画出任意大小的圆来,勤劳、智慧的人们制成了专门用来画圆的工具――圆规。
1、认识圆规。
让学生取出课前准备好的圆规,一起认识圆规的的构成并介绍圆规两脚的功能:圆规有两只脚,一只是针尖,另一只脚是用来画圆的笔,两只脚可以随意叉开。
2、尝试画圆。
1)你能试着用圆规画一个圆吗?学生独立画圆。
2)刚才老师转了转,发现有些同学要么没画好,要么画出来的不圆,下面我们一起看大屏幕,注意观察如何使用圆规画圆。(使用实物投影仪,教师示范使用圆规画圆)。
3)说说,老师刚才是如何使用圆规画圆的?学生回答,教师总结并板书:两脚叉开――固定针尖――旋转成圆。
4)学生按照这个方法再练习画一个圆,同时思考:通过两次画圆,应该注意什么?
总结:针尖要固定,不能移动;两脚间的距离保持不变;要旋转一周。
5)练习画一个两脚之间距离是2厘米的圆。
1、认识圆心、半径、直径。
1)教学圆心:刚才我们画圆时,针尖固定的这个点,我们把它叫做圆心,用字母o来表示。找出你刚才所画的圆的圆心,并标上字母o。同桌相互检查一下,有没有标对。
2)教学半径:连接圆心和圆上一点的线段是半径,用字母r表示。指导学生画一条圆的半径,并标上字母。在我们用圆规画圆时,这个半径就是指什么?(两脚之间的距离)因此圆的大小就是由圆的半径决定的。
让学生联系画一个半径是4厘米的圆,画出一条半径,标上圆心和半径的字母。向全班展示自己的圆,看一看,自己画的、标的还有什么地方部不对。
3)教学直径。
出示一个画有一条直径的圆,让学生观察这条线段的位置有什么特点?
总结:像这样通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。
同学们你们画的圆也有直径,请你画一条圆。
4)闭好眼睛,回想标圆心、画半径与直径的方法。
2、练习,完成练一练的第1题。
说说哪些不是半径或直径,为什么?
3、研究圆的特点。
我们已经认识了圆心、半径和直径,现在我们就继续来研究圆的特点。
1)出示一张圆形的纸,你能找到它的圆心吗?(把圆对折两次)。
通过对折,你还发现圆有什么地方比较特别吗?(对折后能完全重合,是轴对称图形)。
在同一个圆里,半径的长度都相等吗?直径呢?
同一个圆的直径和半径有什么关系?
圆是轴对称图形吗?它有几条对称轴?
3)学生汇报回答上述四个问题,教师适当引导:前面三个问题为什么要强调在同一个圆里?可以画无数条半径和直径,你是怎么知道的?你能用字母来表示半径与直径之间的关系吗?(板书:d=2r)。
4)通过刚才的讨论和交流,我们掌握了圆的特征,谁来总结一下圆的特征。
1、练习十七的第1题。
填写表格,并说一说半径与直径之间有什么关系?
2、练一练的第2题。
画一个直径是5厘米的圆,并用字母o、r、d分别表示出它的圆心、半径和直径。
教师提问:使用圆规画一个直径是5厘米的圆,先要确定什么?(求出半径,也就是两脚之间的距离)。
3、判断题。
1)圆有无数条对称轴。
2)直径是半径的2倍。
3)画一个直径为4厘米的圆,圆规两脚间的距离为4厘米。
4)圆的位置由圆心决定。
5)两脚间的距离越大,画出的圆就越大。
谈话:瞧,生活中,也蕴含着丰富的数学规律呢。其实,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏。
师:感觉怎么样?
师小结:而这,不正是圆的魅力所在吗?
谈话:其实短短的一节课,要想真正了解圆还不太容易。那么就让我们从今天起,走进历史,走进文化,走进圆的世界吧!
圆的初步认识的教学设计篇十七
1、通过折一折、数一数、量一量等活动,观察、体会圆的特征,认识圆的各部分名称,理解在同圆或等圆中直径与半径之间的关系。
2、了解、掌握多种画圆的方法,并初步学会用圆规画圆。
3、借助动手操作活动,培养学生运用所学知识解决实际问题的能力。
4、渗透知识来源于实践、学习的目的在于应用的思想。
掌握圆各部分的名称及圆的特征。圆的画法的掌握。
多媒体课件、圆形纸片、圆规、直尺等。
直尺、圆规、圆形纸片等。
一、创设情景,激发学习兴趣。
师:孩子们,见过平静的水面吗?生:见过。
师:丢进一块石头,你发现有什么变化?生:荡起一个个波纹。
师:这些波纹是什么形状的呢?生:圆形的。
师:这样的现象在大自然中随处可见。生活中,你在哪些地方见到过这些图圆形呢?
生:……。
师:对了,生活中的很多地方都能看到圆形,老师这里也收集了一些,请看!(课件播放)盛开的向日葵,被切开的橙子……)师:同学们,在上面你同样找到圆形了吗?生:找到了。
二、圆与平面图形的区别。
师:老师的信封里也有一个圆,想看一看吗?生:想。
师:可是除了圆还有一些其他的平面图形,也想看一看吗?(老师一一拿出来,生说名称)师:(课件)好样的,如果要从这一些平面图形把它给摸出来,觉得有没有难度?生:没有。
师:怎么会没有难度呢?
生:其他的有棱角,直直的,而圆是圆圆的。摸起来很光滑。师:这些图形都是由什么围成的?(课件)生:线段围成的。
师:而圆的边事弯曲的,所以我们说圆是由一条曲线围成的图形。(课件)师:找到他们的区别后有没有信心把圆从里面摸出来?生:有。
师:可是事情还是没那么简单,里面除了圆还有其它曲线图形。(拿出)生:(惊讶)。
师:同学们瞧。这个图形它也是由曲线围成的。同学们会不会把它当成圆形摸出来呢?
生:不会。这个曲线图形表面凹凸不平,而圆是很光滑的。
师:(拿出椭圆)还有呢。这个够光滑吧?你待会儿该不会把它当成圆形给掏出来吧?
生:不会,因为椭圆看起来扁扁的。而圆很匀称,怎么看都一样。师:说的好,椭圆这样看矮矮的、胖胖的。这样看呢?生:高高的瘦瘦的。
师:而圆看起来很匀称,怎么看都一样。
师:通过我们刚才的比较,谁能从这些平面图形中摸出圆?
师:好,你来吧。闭上眼睛,把手往前伸着,我把这些图形一个个放在你手中,你只需回答是圆不是圆就可以了。下面同学不能提示,根据他的回答作出判断。(动手感知)。
师:真厉害,最热烈的掌声送给他。
师:刚才我们已经知道,圆是由一条曲线围成的封闭图形。(课件)围成圆的这一周,我们把它叫做圆上。在圆上的这一点a,我们就说a点在圆上。那外面的呢?我们把它叫做什么?生:圆外。
师:这里的一点b,外面就说b点在?(圆外)师:里面呢?叫什么?生:圆内。
三、合作探究认识圆心、半径和直径。这是圆与其他图形的区别,那么圆到底还有哪些特征呢?现在拿出准备的圆形纸片,我们来做个试验。把你的圆对折再对折,多折几次。打开。结合大屏上的三个提示小组内合作探究。看看圆到底还有哪些特征。(课件出示)。
师:相信大家一定会有不少新的发现。(学生合作交流)。
师:你们讨论完了吗?经过数次对折,你发现了什么?生:我发现纸上留下许多折痕。
生:我还发现这些折痕相交于圆中心一点。师:是这样的吗?一起来看。
师(课件):经过几次对折打开,纸上留下了这些折痕。你们发现了吗?(板书:长折痕)。
师:(课件)这些折痕相交于圆中心一点,找到这一点了吗?用笔把它点出来。(板书:一点)。
师:我们把相交于圆中心的这一点,叫做圆心,圆心用字母o表示(板书:圆心o)。
师:把你们的也标上字母。
师:这些折痕,它们有什么共同的特点?生:都通过了圆心。
师:(课件)对了,我们就把通过圆心,并且两端都在圆上的线段叫做直径。直径一般用字母d来表示。
师:通过刚才的观察,你还发现了什么?
生:我还发现圆心把这些长折痕平均分成了许多短折痕。
生:我发现它们的一端都在圆心,另一端都在圆上。
师:(课件)像这些连接圆心到圆上任意一点的线段,我们就把它叫做半径。半径用字母r来表示。(板书:半径r)。
师:好,我们来看看,这上面哪些线段是半径呢?(课件)。
师:很好,你能在自己的圆片上画一条半径和直径吗?别忘了表示字母,写上长度。
师:通过折一折,我们认识了圆心、半径和直径。通过数一数,你又发现了什么呢?
生:我发现半径有无数条。
生:圆上有无数个点。
师:还有呢?还有理由吗?生(沉默)。
师:不问不知道,一问才知道,原来你们都是懵的啊?你们是懵的吗?生:不是。
生:(举手)换个大点的圆。
师:他的意思是说:小伙子,你的圆太小了,换个大点的。是吗?
生:我认为画半径的笔细一些。
师:同学们,别小看了刚才同学的想法,他其实一下子就告诉了我们数学最基本的地方。那就是线段它可以无限的细下去。一直细到看不见为止,那这样的话我们就可以说圆有多少条半径?生:无数条。
师:听听你们的声音,中气都比原来足了。对不对?
师:圆有无数条半径的特征我们已经探讨的比较清楚了。通过量一量,你还发现了什么呢?
生:我发现直径是半径的两倍。
师:你想说的是:直径长度是半径长度的两倍对不对?你的直径长多少?半径呢?
师:也可以说?生:r=d/2。
(板书:d=2rr=d/2)。
师:除了直径与半径的关系,还有别的发现吗?生:我发现所有的直径长度相等。生:我还发现所有的半径长度相等。
师:你们呢?所有的直径长度相等吗?所有的半径长度也相等吗?(板书:长度相等)。
师:通过量一量,大家又发现了所有直径长度相等,所有半径长度也相等。师:(收集大小不同的两个圆)好,我们来看,半径相等吗?生:不相等。
生:在同一圆内所有的直径长度相等,所有的半径长度也相等。
师:看来,要使所有的半径长度相等这一特征成立,它必须得有一个很重要的条件,那就是:在同一圆内。(板书:在同一圆内)。
师:(收集一样的两个圆)现在它们在同一个圆内吗?生:没有。
师:它们的半径长度相等吗?生:相等。
师:现在你又能得出什么结论?
生:在一样大的圆里,所有的半径长度相等,所有的直径长度也相等。
师:说的好不好?除了在同一个圆内,所有的半径长度相等所有的直径长度也相等。在相等的圆里,也是这样。(板书:等圆)。
师:同学们,通过折一折、数一数、量一量,你们都有了哪些发现呢?生:发现了圆心、半径和直径。
生:还发现了圆有无数条直径和半径。生:以及在同一个圆或等圆里所有的半径长度相等,所有的直径长度也相等的特征。师:(课件)孩子们,其实我们的这些发现早在两千多年前就被我国古代思想家——墨子所发现。在他的著作中这样描述了:圆一中同长也。所谓的一中,指的就是一个?(圆心)同长呢?又指什么?生:半径一样长,直径一样长。
师:这一发现和我们刚才的发现?(完全一致)他的这一发现比西方国家整整早了一千多年。听到这里我想大家都有一个共同的感受,那就是?生:(激动的)自豪!!四、合作探讨圆的画法。
师:发现了圆那么多的特征,想不想自己动手画一个圆呢?师:那么怎样才能既准确又方便的画出一个圆?生:可以用圆规来画。
师:对了,古人就曾说过:没有规矩不成方圆。这里的规就是手中的圆规。用来画圆。圆规有两只脚,一只是针尖,用来固定圆心;另一只是画圆用的笔。两只脚可以随意的叉开。你能试着用圆规画一个圆吗?师:(巡视中)老师发现大部分同学都画的比较好,但也有的同学画的不够理想。师:画好了吗?谁来说说画的不够理想的这些同学可能出现了什么问题?生:圆心没固定好。
生:画的时候没拿手柄,拿到下面了。
师;你们刚才说到的问题,老师在你们中间找到了证据。一起来看,这张什么问题?(投影展示)。
生:太偏了。应该往中间画。
师:往中间画?怎样才能画到中间去?生:将圆心固定到纸的中间。
师:圆心固定在纸的中间,画的圆就在哪里?生:本子中间。
师:也就是说,圆心觉定了圆的什么?生:圆的位置。
师:说的非常正确。圆心决定了圆的位置。再来看看这幅有什么问题?生:没连上。师:能连上吗?生:不能。
师:猜猜看,估计是什么原因导致的?
生:肯定在画的时候改变了两脚直间的距离。师:同意他的看法吗?生:同意。
师:圆规两脚之间的距离也就是圆的什么?生:圆的半径。
师:再接着画下去,是越大还是越小?生:越小。
师:所以我们说,圆的大小取决于什么?生:半径的长短。
师:对了,圆的大小是由半径的长短决定的。与圆心的位置无关。师:到底应该怎样使用圆规画圆呢?现在我们一起来看黑板。师:(展示画圆方法)师:孩子们,根据老师刚才的画圆步骤和方法,你能再画一个半径5厘米的圆吗?(学生再次操作画圆)。
师:画好了吗?举起来互相欣赏一下我们的劳动成果吧。五、圆在生活中的运用。
师:(课件)画好了圆,我们再来看看,这是什么?生:篮球场。
师:中间是个什么?生:圆。师:中间为什么是个圆而不是个正方形或长方形呢?不知道篮球怎么开赛,回答这个问题还真是有点难。一起来了解一下。(播放开赛录像)。
师:从这段录像我们看见,裁判拿着球在圆心,队员在圆上,比赛一开始,队员就尽量将球传到自己的场地。现在你能解释球场的中间为什么是个圆了吗?生:因为圆心到圆上任意一点的距离都相等。
师:说的真好。这样大的一个圆,怎么画出来的呢?有这么大的圆规吗?生:没有。
师:那该怎么画呢?生:……。
师:大家听明白了吗?
师:解释的太棒了。这实际就是在一个圆内,所有的半径长度相等的道理。师:看来简单的自然现象,有时也蕴含了丰富的数学规律。
师:其实在我们的生活中,除了这些能够用眼看到的圆,还有许多肉眼所看不到的圆。一起来了解一下。
(课件)太阳美妙的光环、特殊仪器拍摄到的无线电波、说话时声音的传播。师:孩子们,圆在我们的生活中无处不在,因为有了圆,我们的世界才变得如此美妙而神奇。
圆的初步认识的教学设计篇十八
1.引导学生在观察、画圆、测量等活动中感受并发现圆的有关特点,知道什么是圆心、半径和直径,能用圆规画指定大小的圆。
2.在活动中,感受圆与其它图形的区别,沟通它们的联系,获得对数学美的丰富体验,提升学生对数学文化的认同。
(一)在活动中整体感知。
1.思考:如何从各种平面图形中摸出圆?
2.操作并体会:圆与其它图形有怎样的区别?在交流中整体感知圆的特征。
(二)在操作中丰富感受。
1.交流:圆规的构造。
2.操作:学生尝试画圆,交流中归纳用圆规画圆的一般方法。
3.体会(学生第二次画圆):如果方法正确,为什么用圆规画不出其它的曲线图形?
4.引导(教师示范画圆):使学生将思维聚焦于圆规两脚之间的距离,体会到圆规两脚距离的恒等,恰是“圆之所以为圆”的内在原因。
(三)在交流中建构认识。
1.引导:引导学生将上述距离画下来,由此揭示圆心及半径,进而介绍各自的字母表示。
2.思考:半径有多少条、长度怎样,你是怎么发现的?
3.概括:介绍古代数学家的相关发现,并与学生的发现作比较。
4.类比:学生尝试猜直径,进而引导学生借助类比展开思考,发现直径的特征,并提出同一圆中直径与半径的关系。
5.沟通:圆的内部特征与外部形象之间具有怎样的有机联系?
(四)在比较中深化认识。
2.沟通:这些正多边形与圆这一曲线图形之间又有着怎样的内在联系?
(五)在练习中形成结构。
1.寻找:给定的圆中没有标出圆心,半径是多少厘米?
2.想象:半径不同,圆的大小会怎样?圆的大小与什么有关?
3.猜测:不用圆规,还可能怎样画出一个圆?在交流中进一步丰富学生对半径、直径之间关系的认识。
4.沟通:用圆规如何画出指定大小的圆?
(六)在拓展中深化体验。
1.渗透:在与直线图形的对比中,揭示圆的旋转不变性。
2.介绍:呈现直线图形旋转后的情形,再一次引导学生感受圆与直线图形的联系,体会圆与旋转的内在关联,丰富对圆这一曲线图形内在美感的认识。
圆的初步认识的教学设计篇十九
1.使学生认识圆,掌握圆的各部分名称。
2.通过动手操作、实验观察探索出圆的特征及同一个圆里半径和直径的关系。
3.初步学会用圆规画圆,培养学生的作图能力。
4.培养学生观察、分析、抽象、概括等思维能力。
在动手操作中掌握圆的特征,学会用圆规画圆的方法。
理解圆上的概念,归纳圆的特征。
教材首先说明什么是圆,并结合周围物体说一说,这样调动了学生已有的生活经验,再通过画圆、折圆、测量等活动,展现圆的特征,其目的在于让学生通过观察、操作理解圆中的各部分关系,从而掌握圆的特征并解释生活中相关问题。
圆是在学生学过了直线图形以及圆的初步认识的基础上进行教学的。圆这一平面上的曲线图形,学生在生活中经常看到,它到底有什么特征呢?是本节课学生学习的重点,在学习圆的认识时,学生通过观察、操作,自己获取一些有关圆的特征的知识,这样回大大提高学生的学习兴趣,发挥学生的主体性。
活动一:演示操作,揭示课题。
师:一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来。
1.教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆)。
2.小结引入:(出示铁丝围成的圆)这就是一个圆.圆也是一种平面图形,这节课我们就来学习圆的认识。(板书课题:圆的认识)。
活动二、动手操作,探究新知。
(一)教师让学生举例说明周围哪些物体上有圆。
(二)认识圆的各部分名称和圆的特征。
1.学生拿出圆的学具。
2.教师:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的)。
教师说明:圆是平面上的一种曲线图形。
3.通过具体操作,来认识一下圆的各部分名称和圆的特征。
(1)先把圆对折、打开,换个方向,再对折,再打开??这样反复折几次。教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)。
仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)。
教师指出:我们把圆中心的这一点叫做圆心。圆心一般用字母o表示。
教师板书:圆心。
(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?(圆心到圆上任意一点的距离都相等)。
教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r表示。(教师在圆内画出一条半径,并板书:半径)。
教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?
在同一个圆里可以画多少条半径?
所有半径的长度都相等吗?
教师板书:在同一个圆里有无数条半径,所有半径的长度都相等。
教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d来表示。(教师在圆内画出一条直径,并板书:直径)。
教师提问:根据直径的概念同学们想一想,直径应具备什么条件?
在同一个圆里可以画出多少条直径?
自己用尺子量一量同一。
个圆里的几条直径,看一看,所有直径的长度都相等吗?教师板书:在同一个圆里有无数条直径,所有直径的长度都相等。
(4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。
(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?
如何用字母表示这种关系?
反过来,在同一个圆里,半径的长度是直径的几分之几?
教师板书:在同一个圆里,直径的长度是半径的2倍。
(三)反馈练习。
1.p581。
2.填表。
(四)圆的画法。
1.学生自学,看书57页。
2.学生试画。
3.学生通过试画小结用圆规画圆的方法,注意的问题。
4.教师归纳板书:1.定半径;2.定圆心;3.旋转一周。
教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。
5.学生练习。
(五)教师提问。
为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置?教师板书:半径决定圆的大小,圆心决定圆的位置。
(六)思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办?
活动三、实践与应用。
(一)判断。
1.画圆时,圆规两脚间的距离是半径的长度。()。
2.两端都在圆上的线段,叫做直径。()。
3.圆心到圆上任意一点的距离都相等。()。
4.半径2厘米的圆比直径3厘米的圆大。()。
5.所有圆的半径都相等。()。
6.在同一个圆里,半径是直径的。()。
7.在同一个圆里,所有直径的长度都相等。()。
8.两条半径可以组成一条直径。()。
(二)按下面的要求,用圆规画圆。
1.半径2厘米。
2.半径2.5厘米。
3.直径8厘米。
(三)怎样测量没有圆心的圆的直径?
活动四、全课小结。
这节课我们学习了什么?通过这节课的学习你有什么收获?
在同一个圆里有无数条半径,所有半径的长度都相等。
在同一个圆里,直径的长度是半径的2倍。半径决定圆的大小,圆心决定圆的位置。