初二数学因式分解教案(优质14篇)
教案是教师为了指导学生学习而准备的一种教学设计材料。教案的评估和反思是不可或缺的环节。以下教案范例中,教学活动设计灵活多样,能提高学生的学习兴趣。
初二数学因式分解教案篇一
1、由于新教材数学教学的特殊性,我的讲解基本上还拘泥于教材的信息,而开放型的、能激发学生想象力与创造力和发散学生思维的课堂比例还较小。在课堂教学中,有时缺乏积极有效的师生互动,部分课时过于注重讲授,没有以精讲精练的要求正确处理好讲与练的关系,导致教与学不合拍,忽视对学生的基础、能力的关注。
2、课堂教学不能针对学生实际,缺乏“备学生”、“备学案”这一必要环节;对教材的处理和把握仍然拘泥于教材,没有进行有效地取舍、组合、拓展、加深;课堂教学没有真正做到对学生进行基础知识点、中考热点和中考难点的渗透,学生原有的知识不能得到及时、适时地活化;课堂密度要求不足,学生参与机会少、参与面小;课堂留给学生自疑、自悟、自学、自练、自得的时间十分有限。
3、对中考的研究不够,对中考的考试范围、要求、形式、出题的特点及规律的了解不够明确,在课堂教学中依赖于复习资料,缺乏对资料的精选与整合,忽视教师自身对知识框架的主动构建,从而课堂教学缺乏对学生英语知识体系的方法指导和能力培养。
4、课堂设计缺乏适当适时的教学评价,不能及时获悉学生在课堂上有没有收获,有多大收获等学情;课前设计“想教学生什么”,课堂反馈“学生学到什么”和课后反思“学生还想学什么”三个环节没有得到程度上的统一。
由于课堂教学中以上问题的存在,学生的数学学习与复习出现了许多问题。
1.学生对数学学习缺乏兴趣、自信心和学习动力;在数学课堂上不积极参与,缺少主动发言的热情或根本不愿意发言;另外,相当一部分学生在听新课时跟不上老师的`节奏或不能理解教师相对较快的指示语。
2.学生对数学课堂知识的掌握不实在、理解不全面,课外花的冤枉时间多;而大部分学生对书本知识不够重视,找不到数学学科复习的有效载体,不能有效的利用课本,适时地回归课本,数学复习缺乏系统性,数学学习缺乏主动性。
3.部分学生缺少教师明确的指导,在复习时缺乏系统安排和科学计划,或者学习和复习没有个性化特点,导致学习效果不明显。
4.基于以上情况,我认为作为学生中考的把关者,初中数学教师首先要有正确地意识,应充分认识到:一节课有没有效益,并不是指教师有没有教完内容或教得认真不认真,而是指学生有没有学到什么或学生学得好不好。如果学生不想学或学了没有收获,即使教师教得很辛苦也是无效教学;或者学生学得很辛苦,却没有得到应有的发展,也是无效或低效教学。
针对以上问题,我们可以从以下几个方面进行提高:
1、教师要有课堂效益意识。有效的媒体手段有助于课堂容量、密度和速度的提高。尤其是在复习课堂上适当地使用多媒体手段,不但可以活跃课堂,更能提高学生的参与面,短、频、快的大容量课堂节奏能有效的吸引并集中学生的学习注意,从而最终提高学习的听课效益;其次,课堂效益意识还体现在教学的设计中要充分为学而教,以学生如何有效获取知识,提高能力的标准来设计教学。课堂设计要有助于学生在课堂上积极参与,有助于他们有效内化知识与信息,复习过程中要重视学习方法的指导,在教学中恰当地渗透中考的信息,拓宽教学内容。
2、数学课堂上教师应及时有效获取学情反馈,有效地进行课前回顾,课堂小结等环节的落实。为有效地提高英语课堂教学效益,教师还可以制定科学的、操作性强的、激励性的英语学习效果评价制度,坚持对学生的听课、作业、笔记等方面进行跟踪,及时了解学生的学习、复习状态与状况,以便在课堂教学过程中做出针对性的调整。
3、注重课堂教学效率的提高,要切实抓好备课这一环节,即备课要精,练习要精,作业要精。同时,我们要积极进行教学反思,由教师自己及时反省、思考、探索和解决教学过程中存在的问题,及时调整教学方法,优化教学过程。在课堂教学中强调基础知识的学习。教师要突破现行教材的局限性,在重点内容上有系统的强化训练。在句法上不能拘泥于传统的计算层面,要搜集材料,适当拓宽。
4、要强化分层次教学与辅导,通过分层次教学和辅导提升学生的成绩,从方法上,要抓住学生学习的薄弱点,区别不同情况,有针对性辅导。从策略上,加强学生实际问题的研究,做到缺什么、补什么,从对象上,要重点关注学科明显薄弱的学生,采用教师定学生、师生结对、辅导等有效形式使学生随时能得到教师的辅导和帮助,从而切实提高学生成绩。
一是抓住课本,有效复习。教材和教学大纲是考前复习和考试命题的依据。因此,在复习时,教师和学生都应认真学习并充分理解和准确把握教学大纲中对基础知识与能力的要求。
二是系统归纳,分清脉络。在总复习时,要突出一个“总”字。面对上千的题型,通过复习,要使学生对初中数学学习有个总体的、概括的印象。大到计算证明,小到具体的知识点,使学生脑子中有清晰的框架和内容充实的“网络图”。
三是专项练习,有的放矢。对于以往总复习暴露出来的问题,教师应有目的、有针对性地进行专题讲解与训练,搜集、积累学生平时在各方面出现的错误,逐题突破。
在复习中,教师应要求学生学会整理错题,把试卷和做过的练习题里的错题整理出来,专门抄写在一个本子上,及时订正反馈。教师要加以选择,并要求学生有选择性地做基础知识练习,让学生走出题海。关于阅读理解,现在出题内容越来越接近生活,因此,学生复习时应加强练习,广泛接触各种题型,拓展知识面,同时要有意识地积累各种题型的解题方法和技巧,从而可减少中考时的答题失误。
总之,中考数学复习阶段非常重要,复习可以查漏补缺,能使知识达到系统、全面。虽然我们已经逐认识到课堂教学的重要性和对学生指导的紧迫性,但是离相对满意的数学课堂的目标还存在一定的差距。因此,我们需要不断地更新理念,提高自身的理论水平和实践能力,为学生的数学发展和轻松面对中考作出更大的努力。
初二数学因式分解教案篇二
知识点:
因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
教学目标:
理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
考查重难点与常见题型:
考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。
教学过程:
多项式的因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有:
如多项式。
其中m叫做这个多项式各项的公因式,m既可以是一个单项式,也可以是一个多项式。
(2)运用公式法,即用。
写出结果。
(3)十字相乘法。
(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。
(5)求根公式法:如果有两个根x1,x2,那么。
1、教学实例:学案示例。
2、课堂练习:学案作业。
3、课堂:
4、板书:
5、课堂作业:学案作业。
6、教学反思:
初二数学因式分解教案篇三
根据大纲要求,结合本教材特点和学生认知能力,将教学目标确定为:
知识与技能:1、理解因式分解的含义,能判断一个式子的变形是否为因式分解。
2、熟练运用提取公因式法分解因式。
过程与方法:在教学过程中,体会类比的数学思想逐步形成独立思考,主动探索的习惯。
情感态度与价值观:通过现实情景,让学生认识到数学的应用价值,并提高学生关注生存环境的环保意识。
初二数学因式分解教案篇四
1.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.
【过程与方法】。
经历观察、分析、交流的过程,逐步提高运用知识的能力.
【情感态度】。
提高学生的观察、分析能力和对图形的感知水平.
【教学重点】。
会求反比例函数的解析式.
【教学难点】。
反比例函数图象和性质的运用.
教学过程。
一、情景导入,初步认知。
【教学说明】复习上节课的内容,同时引入新课.
二、思考探究,获取新知。
1.思考:已知反比例函数y=的图象经过点p(2,4)。
(1)求k的值,并写出该函数的表达式;。
(2)判断点a(-2,-4),b(3,5)是否在这个函数的图象上;。
分析:
(1)题中已知图象经过点p(2,4),即表明把p点坐标代入解析式成立,这样能求出k,解析式也就确定了.
(2)要判断a、b是否在这条函数图象上,就是把a、b的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.
(3)根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y随x的值的变化情况.
【归纳结论】这种求解析式的方法叫做待定系数法求解析式.
2.下图是反比例函数y=的图象,根据图象,回答下列问题:
(1)k的取值范围是k0还是k0?说明理由;。
(2)如果点a(-3,y1),b(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.分析:
(1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k0.
(2)因为点a(-3,y1),b(-2,y2)是该函数图象上的两点且-30,-20.所以点a、b都位于第三象限,又因为-3-2,由反比例函数的图像的性质可知:y1y2.
【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.
初二数学因式分解教案篇五
“整式的乘法”是整式的加减的后续学习从幂的运算到各种整式的乘法,整章教材都突出了学生的自主探索过程,依据原有的知识基础,或运用乘法的各种运算规律,或借助直观而又形象的图形面积,得到各种运算的基本法则、两个主要的乘法公式及因式分解的基本方法学生自己对知识内容的探索、认识与体验,完全有利于学生形成合理的知识结构,提高数学思维能力.利用公式法进行因式分解时,注意把握多项式的特点,对比乘法公式乘积结果的形式,选择正确的分解方法。
因式分解是一种常用的代数式的恒等变形,因式分解是多项式乘法公式的逆向变形,它是将一个多项式变形为多项式与多项式的乘积。
2、教学目标。
(1)会推导乘法公式。
(2)在应用乘法公式进行计算的基础上,感受乘法公式的作用和价值。
(3)会用提公因式法、公式法进行因式分解。
(4)了解因式分解的一般步骤。
(5)在因式分解中,经历观察、探索和做出推断的过程,提高分析问题和解决问题的能力。
3、重点、难点和关键。
重点:乘法公式的意义、分式的由来和正确运用;用提公因式法和公式法进行因式分解。
难点:正确运用乘法公式;正确分解因式。
关键:正确理解乘法公式和因式分解的意义。
3.让学生掌握基本的数学事实与数学活动经验,减轻不必要的记忆负担.。
2.1平方差公式1课时。
2.2完全平方公式2课时。
初中优秀......
初中(通用13篇)作为一位不辞辛劳的人民教师,通常需要用到教案来辅助教学,教案有利于教学水平的提高,有助于教研活动的开展。来参考自己需要的教案吧!下面是小编为......
初二数学因式分解教案篇六
会应用平方差公式进行因式分解,发展学生推理能力。
2、过程与方法。
经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。
3、情感、态度与价值观。
培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。
1、重点:利用平方差公式分解因式。
2、难点:领会因式分解的解题步骤和分解因式的彻底性。
3、关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来。
采用“问题解决”的教学方法,让学生在问题的'牵引下,推进自己的思维。
一、观察探讨,体验新知。
【问题牵引】。
请同学们计算下列各式。
(1)(a+5)(a—5);(2)(4m+3n)(4m—3n)。
【学生活动】动笔计算出上面的两道题,并踊跃上台板演。
(1)(a+5)(a—5)=a2—52=a2—25;
(2)(4m+3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2。
【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律。
1、分解因式:a2—25;2、分解因式16m2—9n。
【学生活动】从逆向思维入手,很快得到下面答案:
(1)a2—25=a2—52=(a+5)(a—5)。
(2)16m2—9n2=(4m)2—(3n)2=(4m+3n)(4m—3n)。
【教师活动】引导学生完成a2—b2=(a+b)(a—b)的同时,导出课题:用平方差公式因式分解。
平方差公式:a2—b2=(a+b)(a—b)。
评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式)。
二、范例学习,应用所学。
【例1】把下列各式分解因式:(投影显示或板书)。
(1)x2—9y2;(2)16x4—y4;
(3)12a2x2—27b2y2;(4)(x+2y)2—(x—3y)2;
(5)m2(16x—y)+n2(y—16x)。
【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解。
【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演。
【学生活动】分四人小组,合作探究。
解:(1)x2—9y2=(x+3y)(x—3y);
(5)m2(16x—y)+n2(y—16x)。
=(16x—y)(m2—n2)=(16x—y)(m+n)(m—n)。
初二数学因式分解教案篇七
教学过程中渗透类比的数学思想,形成新的知识结构体系;设置探究式教学,让学生经历知识的形成,从而达到对知识的深刻理解与灵活应用。
学法:自主、合作、探索的学习方式。
在教学活动中,既要提高学生独立解决问题的能力,又要培养团结协作精神,拓展学生探究问题的深度与广度,体现素质教育的要求。
初二数学因式分解教案篇八
会应用平方差公式进行因式分解,发展学生推理能力.
2.过程与方法。
经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.
3.情感、态度与价值观。
培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.
重、难点与关键。
1.重点:利用平方差公式分解因式.
2.难点:领会因式分解的解题步骤和分解因式的彻底性.
3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.
教学方法。
采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.
教学过程。
一、观察探讨,体验新知。
【问题牵引】。
请同学们计算下列各式.
(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).
【学生活动】动笔计算出上面的两道题,并踊跃上台板演.
(1)(a+5)(a-5)=a2-52=a2-25;。
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.
1.分解因式:a2-25;2.分解因式16m2-9n.
【学生活动】从逆向思维入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).
二、范例学习,应用所学。
【例1】把下列各式分解因式:(投影显示或板书)。
(1)x2-9y2;(2)16x4-y4;。
(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;。
(5)m2(16x-y)+n2(y-16x).
【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.
【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.
【学生活动】分四人小组,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);。
(5)m2(16x-y)+n2(y-16x)。
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
初二数学因式分解教案篇九
1、了解什么是比例,能够正确地表示比例关系。
2、掌握比例的性质,能够灵活地运用比例的性质进行解题。
3、通过练习,提高解决实际问题的能力。
1、比例的概念及表示方法。
2、比例的性质。
3、比例的应用。
1、比例的应用。
2、解决实际问题的能力。
一、引入(5分钟)。
1、教师出示一张比例图,让学生猜测比例的'含义。
2、学生回答后,教师讲解比例的概念及表示方法。
二、讲解(15分钟)。
1、教师讲解比例的性质。
2、教师通过例题让学生掌握比例的应用。
三、练习(30分钟)。
1、教师出示一些比例题目,让学生在课堂上完成。
2、学生完成后,教师讲解答案及解题方法。
四、巩固(10分钟)。
1、教师出示一些实际问题,让学生运用比例的知识进行解决。
2、学生完成后,教师讲解答案及解题方法。
五、作业(5分钟)。
1、教师布置相关作业。
2、学生完成后,交给教师批改。
通过本节课的教学,学生们对比例的概念及表示方法有了更深入的了解,掌握了比例的性质,并通过练习提高了解决实际问题的能力。但是,教学过程中还存在一些问题,比如有些学生对比例的应用还不够熟练,需要加强练习。因此,下一节课需要针对这些问题进行更加深入的讲解和练习。
初二数学因式分解教案篇十
一元一次方程解简单的应用题的方法和步骤、
课堂教学过程设计
为了回答上述这几个问题,我们来看下面这个例题、
例1 某数的3倍减2等于某数与4的和,求某数、
(首先,用算术方法解,由学生回答,教师板书)
解法1:(4+2)÷(3-1)=3、
答:某数为3、
(其次,用代数方法来解,教师引导,学生口述完成)
解法2:设某数为x,则有3x-2=x+4、
解之,得x=3、
答:某数为3、
师生共同分析:
1、本题中给出的已知量和未知量各是什么?
2、已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得
x-15%x=42 500,
所以 x=50 000、
答:原来有 50 000千克面粉、
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)
教师应指出:
(2)例2的解方程过程较为简捷,同学应注意模仿、
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(2)根据题意找出能够表示应用题全部含义的一个相等关系、(这是关键一步);
(4)求出所列方程的解;
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨、解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误、并严格规范书写格式)
解:设第一小组有x个学生,依题意,得
3x+9=5x-(5-4),
解这个方程: 2x=10,
所以 x=5、
其苹果数为 3× 5+9=24、
答:第一小组有5名同学,共摘苹果24个、
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程、
(设第一小组共摘了x个苹果,则依题意,得 )
3、某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数、
首先,让学生回答如下问题:
1、本节课学习了哪些内容?
2、列一元一次方程解应用题的方法和步骤是什么?
3、在运用上述方法和步骤时应注意什么?
依据学生的回答情况,教师总结如下:
(2)以上步骤同学应在理解的基础上记忆、
1、买3千克苹果,付出10元,找回3角4分、问每千克苹果多少钱?
2、用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?
初二数学因式分解教案篇十一
学生的技能基础:学生已经有了初步的统计意识,在第一课时的学习中,学生已经接触了极差、方差与标准差的概念,并进行了简单的应用,但对这些概念的理解很单一,认为方差越小越好.
学生活动经验基础:在以往的统计课程学习中,学生经历了大量的统计活动,感受到了数据收集和处理的必要性和作用。课堂主要采用实验讨论、自主探索、合作交流等学习方式,学生有一定的活动基础,具备了一定的合作与交流的能力。
二、教学任务分析。
在学生对极差、方差、标准差等概念都有了一定的认识之后,学生对这些刻画数据离散程度的三个统计量的认识上还存在一个误区,那就是认为方差或标准差越小越好。因此,本节课安排了学生对一些实际问题的辨析,从而使学生对这三个统计量有一个更深刻的认识,为此,本节课的'教学目标是:
1.知识与技能:进一步了解极差、方差、标准差的求法;会用极差、方差、标准差对实际问题做出判断。
2.过程与方法:经历对统计图中数据的读取与处理,发展学生初步的统计意识和数据处理能力。根据极差、方差、标准差的大小对实际问题作出解释,培养学生解决问题能力。
3.情感与态度:通过解决现实情境中的问题,提高学生数学统计的素养,用数学的眼光看世界。通过小组活动,培养学生的合作意识和交流能力。
三、教学过程分析。
本节课设计了五个教学环节:第一环节:情境引入;第二环节:合作探究;第三环节:运用提高;第四环节:课堂小结;第五环节:布置作业。
第一环节:情境引入。
教学目标。
知识与技能。
1、进一步了解极差、方差、标准差的求法;。
2、用极差、方差、标准差对实际问题作出判断。
过程与方法。
经历数据的读取与处理提高解决问题的能力;。
情感态度与价值观。
通过小组合作,培养合作意识.
教学重点:
1、会计算一组数据的极差、方差、标准差;。
2、由极差、方差、标准差对实际问题作出。
教学难点:
对一组数据的极差、方差、标准差作出判断.
教学过程。
一、复习。
极差:指一组数据中最大和最小数据的差.
方差:各个数据与平均数之差的平方的平均数。
教学目标。
知识与技能。
1、经历数据离散程度的探索过程。
2、了解刻画数据离散程度的三个量度——极差、标准差和方差,能借助计算器求出相应的数值。
过程与方法。
培养学生认真、耐心、细致的学习态度和学习习惯.2.渗透数学来源于实践,又反过来作用于实践的观点.
情感态度与价值观。
教学重点。
会计算某些数据的极差、标准差和方差。
教学难点。
理解数据离散程度与三个“差”之间的关系。
教学准备:计算器,投影片等。
教学过程:
一、创设情境。
1、投影课本p148引例。
(通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的平均质量,同时让学生初步体会“平均水平”相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度——极差)。
2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。
二、活动与探究。
如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)。
问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?
2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。
3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?
(在上面的情境中,学生很容易比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致学生思想认识上的矛盾,为引出另两个刻画数据离散程度的量度——标准差和方差作铺垫。
初二数学因式分解教案篇十二
教学内容和地位:
众数、中位数是描述一组数据的集中趋势的两个统计特征量,是帮助学生学会用数据说话的基本概念。本节课的教学内容和现实生活密切相关,是培养学生应用数学意识和创新能力的最好素材。
教学重点和难点:
本节课的重点是众数和中位数两概念的形成过程及两概念的运用。本节课的难点是对统计数据从多角度进行全面地分析。因为利用数据进行分析,对刚刚接触统计的学生来说,他们原有的认知结构中缺乏这方面的知识经验,所以,我们可以借助生活中的事例,利用丰富多彩的多媒体辅助,帮助学生突破这一知识难点。
教学目标分析:
认知目标:
(1)使学生认知众数、中位数的意义;。
(2)会求一组数据的众数、中位数。
能力目标:
(1)让学生接触并解决一些社会生活中的问题,为学生创新学数学、用数学的情境,培养学生的数学应用意识和创新意识。
(2)在问题解决的过程中,培养学生的自主学习能力;。
(3)在问题分析的过程中,培养学生的团结协作精神。
情感目标:
(2)在合作学习中,学会交流,相互评价,提高学生的合作意识与能力。
教学辅助:网络教室、多媒体辅助网络教学课件、bbs电子公告栏、学习资源库。
教法与学法:
根据本节课的教学内容,主要采用了讨论发现法。即课堂上,教师(或学生)提出适当的问题,通过学生与学生(或教师)之间相互交流,相互学习,相互讨论,在问题解决的过程中发现概念的产生过程,体现“数学教学是数学思维活动的过程的教学”。在教学活动中,通过学生的自主学习来体现他们的主体地位,而教师是通过对学生参与学习的启发、调整、激励来体现自己的主导作用。另外,在学生合作学习的同时,始终坚持对学生进行“学疑结合”、“学思结合”、“学用结合”的学法指导,这对学生的主体意识的培养和创新能力的培养都有积极的意义。
初二数学因式分解教案篇十三
(一)、知识与技能:
(1)使学生了解因式分解的意义,理解因式分解的概念。
(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。
(二)、过程与方法:
(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。
(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。
(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。
(三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。
二、教学重点和难点。
重点:因式分解的概念及提公因式法。
难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。
三、教学过程。
教学环节:
活动1:复习引入。
看谁算得快:用简便方法计算:
(1)7/9×13-7/9×6+7/9×2=;。
(2)-2.67×132+25×2.67+7×2.67=;。
(3)992–1=。
设计意图:
如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.
注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。
活动2:导入课题。
p165的探究(略);。
2.看谁想得快:993–99能被哪些数整除?你是怎么得出来的?
设计意图:
引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。
活动3:探究新知。
看谁算得准:
计算下列式子:
(1)3x(x-1)=;。
(2)(a+b+c)=;。
(3)(+4)(-4)=;。
(4)(-3)2=;。
(5)a(a+1)(a-1)=;。
根据上面的算式填空:
(1)a+b+c=;。
(2)3x2-3x=;。
(3)2-16=;。
(4)a3-a=;。
(5)2-6+9=。
在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。
活动4:归纳、得出新知。
比较以下两种运算的联系与区别:
a(a+1)(a-1)=a3-a。
a3-a=a(a+1)(a-1)。
在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?
初二数学因式分解教案篇十四
因式分解是第九章的难点。学生初学因式分解时往往要与乘法运算混淆。原因主要是概念不清。
在教学时,因式分解与乘法的区别是通过把等号两边的式子互相转换位置而直观得出。对于因式分解的方法,学生可通过自己的一系列练习实践去体会。故不需要在开头引入的地方多加铺垫,浪费了一定的时间。
在因式分解的几种方法中,提取公因式法师最基本的的方法,学生也很容易掌握。但在一些综合运用的题目中,学生总会易忘记先观察是否有公因式,而直接想着运用公式法分解。这样直接导致有些题目分解错误,有些题目分解不完全。所以在因式分解的步骤这一块还要继续加强。其实公式法分解因式。学生比较会将平方差和完全平方式混淆。这是对公式理解不透彻,彼此的特征区别还未真正掌握好。大体上可以从以下方面进行区分。如果是两项的平方差则在提取公因式后优先考虑平方差公式。如果是三项则优先考虑完全平方式进行因式分解。
在复习课上以上存在的一些问题还要重点突出讲解。帮助学生跟深刻的去认识因式分解。