高一数学教案设计(精选19篇)
教案是一份重要的教学参考材料,有助于教师提供有效的教学指导。提前准备好教案编写所需的各种资料和参考书籍,为教学备课打下良好的基础。通过阅读教案范文,我们可以了解到教学目标的达成和学生学习态度的改变,以及课堂教学的效果评价。
高一数学教案设计篇一
2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期。
3会用代数方法求等函数的周期。
4理解周期性的几何意义。
“周期函数的概念”,周期的求解。
1、是周期函数是指对定义域中所有都有,即应是恒等式。
2、周期函数一定会有周期,但不一定存在最小正周期。
例1、若钟摆的高度与时间之间的函数关系如图所示。
(1)求该函数的周期;
(2)求时钟摆的高度。
例2、求下列函数的周期。
(1)(2)。
总结:(1)函数(其中均为常数,且的周期t=xx)。
(2)函数(其中均为常数,且的周期t=xx)。
例3、求证:的周期为。
且
总结:函数(其中均为常数,且的周期t=。
例5、(1)求的周期。
(2)已知满足,求证:是周期函数。
课后思考:能否利用单位圆作函数的图象。
高一数学教案设计篇二
一、教材分析(结构系统、单元内容、重难点)。
二、学生分析(双基智能水平、学习态度、方法、纪律)。
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、
教学目的要求。
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施。
积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
一、教材分析(结构系统、单元内容、重难点)。
第1页。
元一次不等式(组)与简单的线性规划问题及应用;。
二、学生分析(双基智能水平、学习态度、方法、纪律)。
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、教学目的要求。
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施。
一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。
一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
第2页。
要练说,先练胆。说话胆小是幼儿语言发展的障碍。不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。总之,说话时外部表现不自然。我抓住练胆这个关键,面向全体,偏向差生。一是和幼儿建立和谐的语言交流关系。每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。二是注重培养幼儿敢于当众说话的习惯。或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会用眼神。对说得好的幼儿,即使是某一方面,我都抓住教育,提出表扬,并要其他幼儿模仿。长期坚持,不断训练,幼儿说话胆量也在不断提高。
第3页。
高一数学教案设计篇三
1、了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法。
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念。
(2)能从数和形两个角度认识单调性和奇偶性。
(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程。
2、通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想。
3、通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度。
一、知识结构。
(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像。
二、重点难点分析。
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识。教学的难点是领悟函数单调性,奇偶性的本质,掌握单调性的证明。
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点。
三、教法建议。
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程当中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来。
(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。
函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。
高一数学教案设计篇四
理解函数的奇偶性及其几何意义。
【过程与方法】。
利用指数函数的图像和性质,及单调性来解决问题。
【情感态度与价值观】。
体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣。
【重点】。
【难点】。
(一)导入新课。
取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:
答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称;
(二)新课教学。
(1)偶函数(evenfunction)。
(学生活动):仿照偶函数的定义给出奇函数的定义。
(2)奇函数(oddfunction)。
注意:
1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。
2、具有奇偶性的函数的图象的特征。
偶函数的图象关于y轴对称;
奇函数的图象关于原点对称。
3、典型例题。
例1.(教材p36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性(本例由学生讨论,师生共同总结具体方法步骤)。
解:(略)。
总结:利用定义判断函数奇偶性的格式步骤:
1首先确定函数的定义域,并判断其定义域是否关于原点对称;
2确定f(-x)与f(x)的关系;
3作出相应结论:
若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;
若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数。
(三)巩固提高。
1、教材p46习题1.3b组每1题。
解:(略)。
(教材p41思考题)。
规律:
偶函数的图象关于y轴对称;
奇函数的图象关于原点对称。
说明:这也可以作为判断函数奇偶性的依据。
(四)小结作业。
课本p46习题1.3(a组)第9、10题,b组第2题。
三、规律:
偶函数的图象关于y轴对称;
奇函数的`图象关于原点对称。
高一数学教案设计篇五
2、过程与方法目标:通过让学生探究点、线、面之间的相互关系,掌握文字语言、符号语言、图示语言之间的相互转化。
3、情感、态度与价值目标:通过用集合论的观点和运动的观点讨论点、线、面、体之间的相互关系培养学生会从多角度,多方面观察和分析问题,体会将理论知识和现实生活建立联系的快乐,从而提高学生学习数学的兴趣。
二、教学重点和难点。
重点:点、线、面之间的相互关系,以及文字语言、符号语言、图示语言之间的相互转化。
难点:从集合的角度理解点、线、面之间的相互关系。
三、教学方法和教学手段。
四、教学过程。
教学环节教学内容师生互动设计意图。
新课讲解。
基础知识。
能力拓展。
探索研究一、构成几何体的基本元素。
点、线、面。
二、从集合的角度解释点、线、面、体之间的相互关系。
点是元素,直线是点的集合,平面是点的集合,直线是平面的子集。
三、从运动学的角度解释点、线、面、体之间的相互关系。
1、点运动成直线和曲线。
2、直线有两种运动方式:平行移动和绕点转动。
3、平行移动形成平面和曲面。
4、绕点转动形成平面和曲面。
5、注意直线的两种运动方式形成的曲面的区别。
6、面运动成体。
四、点、线、面、之间的相互位置关系。
1、点和线的位置关系。
点a。
2、点和面的位置关系。
3、直线和直线的位置关系。
4、直线和平面的位置关系。
5、平面和平面的位置关系。通过对几何体的观察、讨论由学生自己总结。
引领学生回忆元素、集合的相互关系,讨论、归纳点、线、面之间的相互关系。
通过课件演示及学生的讨论,得出从运动学的角度发现点、线、面之间的相互关系。
引导学生由生活中的实际例子总结出点、线、面之间的相互位置关系,让学生有个感性认识。培养学生的观察能力。
培养学生将所学知识建立相互联系的能力。
让学生在观察中发现点、线、面之间的相互运动规律,为以后学习几何体奠定基础。
培养学生将学习联系实际的习惯,锻炼学生由感性认识上升为理性知识的能力。
课堂小结1、学习了构成几何体的基本元素。
2、掌握了点、线、面之间的相互关系。
3、了解了点、线、面之间的相互的位置关系。由学生总结归纳。培养学生总结、归纳、反思的学习习惯。
课后作业试着画出点、线、面之间的几种位置关系。学生课后研究完成。检验学生上课的听课效果及观察能力。
附:1.1.1构成空间几何体的基本元素学案。
(一)、基础知识。
7、你能说出构成几何体的几个基本元素之间的关系吗?
(二)、能力拓展。
(三)、探索与研究。
高一数学教案设计篇六
数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。本节是第一课时,教学内容为公式(二)、(三)、(四)。教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有非常重要的地位。
本节课的授课对象是本校高一(x)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。
(1)基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;
(4)个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。
1、教学重点:理解并掌握诱导公式。
2、教学难点:正确运用诱导公式,求三角函数值,化简三角函数式。
“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究。下面我从教法、学法、预期效果等三个方面做如下分析。
数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质。
在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦。
“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情。如何能让学生程度的消化知识,提高学习热情是教者必须思考的问题。
在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。
本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。
高一数学教案设计篇七
1、复习6以内数的组成,能正确地记录6以内数的分合形式。
2、练习5以内的加减运算,能看算式报出答案。
3、能大方地在集体面前回答问题。
1、经验准备:幼儿已学过6的组成和5的加减。
2、幼儿用书1-21页。
(一)游戏:碰球。
——鼓励幼儿前一已有经验大方地在集体面前回答。
——师幼共同玩“碰球”的游戏。
1、教师出示数字卡片“5”,请幼儿看数字卡片,要求幼儿口报的数字和老师报的数字合起来是“5”。
2、游戏2—3遍后,可更换出示数字“6”。“4”,提醒幼儿口报的数字要和老师报的数字合起来与卡片上的数字一样多。
(二)游戏:开快乐火车。
——师友共同玩游戏,鼓励幼儿快速地报出算式卡片上的得数,要求既要算得快,又要算的对:嘿嘿,我的火车就要开,幼儿:几点开?教师出示算式:你们猜?幼儿:()点开。
(三)幼儿操作活动。
——看分合式填空格。引导幼儿观察圆点和数字分合式。启发幼儿在空格中填写相应数量的圆点或数字,并说一说分合式。
——看算式进行5以内加减运算。
——看图列算式。
——算式与答案连线。
(四)活动评价。
——鼓励个别幼儿大方地在集体面前介绍自己的活动与记录,其他幼儿对照检查自己的操作活动。
——展示幼儿的操作材料,表扬画面整洁、正确的幼儿。
高一数学教案设计篇八
2.能力目标:使学生具有使用函数模型研究生活中简单的事物变化规律的能力。
3.情感目标:渗透数学来源于生活,运用于生活的思想。
重点让学生理解现阶段函数的概念,定义域的概念。
难点用函数模型去研究生活中简单的事物变化规律时,如何确定定义域。
学情。
分析授课班级为高一年级的学生,有朝气,有活力,爱实践,爱生活。本课之前,学生已经学习了初中函数概念,为本课的学习打下基础。
教法与学法教法:微课视频中包含情境教学法、多媒体辅助教学法的使用。
1.动画设计《世界在不断的变化》。
2.专业录频软件;
3.视频后期处理软件;
;
5.其它图片、背景音乐。
课前准备。
教学过程。
环节设计:教师活动、学生活动、设计意图。
环节一创设情境。
兴趣导入首先让学生观看视频《世界在不断的变化》。
老师解说:这个世界在不断的变化,有一句很有哲理的话“这个世界唯一没有变化的就是这个世界一直在改变”。聪明的人类为了在这个不断变化的世界中生存,想出了很多记录世界变化规律的办法。今天我们就来学习一个好办法,它就是数学函数,函数是研究事物变化规律的数学模型之一。
1看视频。
2听老师解说,函数是研究世界变化规律的数学模型之一。
3了解函数的作用,对函数产生兴趣。
通过让学生观看视频,并对学生讲解,让学生了解函数是用来研究事物变化规律的数学模型之一,这样学生能更深刻的理解函数的功能,即激发了学生学习热情,又回顾初中学习的数学函数的定义。
在某一个变化过程中有两个变更x和y,在某一法则的作用下,如果对于x的每一个值,y都有唯一的值与其相对应,就称y是x的函数,这时x是自变量,y是因变量.用一个生活实例加深对知识的理解。
实例:到学校商店购买某种果汁饮料,每瓶售价2.5元,那么购买瓶数x,与应付款y之间存在一种对应关系y=2.5x.瓶数x在自然数集中每取定一个值,应付款y就有唯一一个值与其对应,我们可以运用对应关系y=2.5x去进行方便的运算。
在这个例子中,我们发现自变更x只有在自然数集中取值才有意义,其实如果我们细心研究所有已知函数,就会发现确定自变量x的取值范围,是使用函数模型描述世界变化规律的前提.所以我们重新定义函数,将自变量x的取值范围用集合d来表示.函数的定义:
知识总结。
(1)函数的概念。
(2)强调用函数来研究事物变化规律的前提是确定自变量x的取值范围,即定义域。
学生回顾本次微课所学习的知识。让学生回顾本节课学习内容,强化本节课重点,为下节课打下基础。
环节四实例检测。
实例:文具店出售某种铅笔,每只售价0.12元,应付款额是购买铅笔数的函数,当购买6支以内(含6支)的铅笔时,请用表达式来表示这个函数.要求学生把做题结果拍成照片,发到邮箱,及时反馈.学生练习,并把做题结果拍成照片,发到我的邮箱,并通过qq与学生进行交流实例巩固今天学习的函数概念。
高一数学教案设计篇九
知识梳理:
1、轴对称图形:
2中心对称图形:
1、画出函数,与的图像;并观察两个函数图像的对称性。
2、求出,时的函数值,写出。
结论:
(1)、强调定义中任意二字,奇偶性是函数在定义域上的整体性质。
(2)、奇函数偶函数的定义域关于原点对称。
5、奇函数与偶函数图像的对称性:
如果一个函数是奇函数,则这个函数的图像是以坐标原点为对称中心的__________。反之,如果一个函数的图像是以坐标原点为对称中心的中心对称图形,则这个函数是___________。
如果一个函数是偶函数,则这个函数的图像是以轴为对称轴的__________。反之,如果一个函数的图像是关于轴对称,则这个函数是___________。
(1)(2)(3)。
(4)(5)。
练习:教材第49页,练习a第1题。
总结:根据例题,你能给出用定义判断函数奇偶性的步骤?
题型二:利用奇偶性求函数解析式。
例2:若f(x)是定义在r上的奇函数,当x0时,f(x)=x(1-x),求当时f(x)的解析式。
练习:若f(x)是定义在r上的奇函数,当x0时,f(x)=x|x-2|,求当x0时f(x)的解析式。
已知定义在实数集上的奇函数满足:当x0时,,求的表达式。
题型三:利用奇偶性作函数图像。
例3研究函数的性质并作出它的图像。
练习:教材第49练习a第3,4,5题,练习b第1,2题。
当堂检测。
1已知是定义在r上的奇函数,则(d)。
a.b.c.d.
2如果偶函数在区间上是减函数,且最大值为7,那么在区间上是(b)。
a.增函数且最小值为-7b.增函数且最大值为7。
c.减函数且最小值为-7d.减函数且最大值为7。
3函数是定义在区间上的偶函数,且,则下列各式一定成立的是(c)。
a.b.c.d.
4已知函数为奇函数,若,则-1。
5若是偶函数,则的单调增区间是。
6下列函数中不是偶函数的是(d)。
abcd。
7设f(x)是r上的偶函数,切在上单调递减,则f(-2),f(-),f(3)的大小关系是(a)。
abf(-)f(-2)f(3)cf(-)。
8奇函数的图像必经过点(c)。
a(a,f(-a))b(-a,f(a))c(-a,-f(a))d(a,f())。
9已知函数为偶函数,其图像与x轴有四个交点,则方程f(x)=0的所有实根之和是(a)。
a0b1c2d4。
11若f(x)在上是奇函数,且f(3)_f(-1)。
12、解答题。
已知函数在区间d上是奇函数,函数在区间d上是偶函数,求证:是奇函数。
已知分段函数是奇函数,当时的解析式为,求这个函数在区间上的解析表达式。
高一数学教案设计篇十
【过程与方法】。
利用指数函数的图像和性质,及单调性来解决问题。
【情感态度与价值观】。
体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣。
【重点】。
【难点】。
(一)导入新课。
取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:
答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称;。
(二)新课教学。
(1)偶函数(evenfunction)。
(学生活动):仿照偶函数的定义给出奇函数的定义。
(2)奇函数(oddfunction)。
注意:
1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;。
2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。
2.具有奇偶性的函数的图象的特征。
偶函数的图象关于y轴对称;。
奇函数的图象关于原点对称。
3.典型例题。
例1.(教材p36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性(本例由学生讨论,师生共同总结具体方法步骤)。
解:(略)。
总结:利用定义判断函数奇偶性的格式步骤:
1首先确定函数的定义域,并判断其定义域是否关于原点对称;。
2确定f(-x)与f(x)的关系;。
3作出相应结论:
若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;。
若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数。
(三)巩固提高。
1.教材p46习题1.3b组每1题。
解:(略)。
(教材p41思考题)。
规律:
偶函数的图象关于y轴对称;。
奇函数的图象关于原点对称。
(四)小结作业。
课本p46习题1.3(a组)第9、10题,b组第2题。
三、规律:
偶函数的图象关于y轴对称;。
奇函数的`图象关于原点对称。
高一数学教案设计篇十一
通过学习,培养学生分析能力和解决问题的能力。
初步培养学生提出问题、思考问题、解决问题的能力。
一、复习。
1、口算:
3+74+95+67+812+6。
2、计算:
二、新授。
1、教学例4。
出示挂图。
问:你看到了什么?请你仔细看看,你发现了什么问题?
师指出:对评比牌前面的.灌树挡住了,你有办法知道每个班红旗获得情况吗?
2、小组讨论。
教师要注意引导学生观看条件。
3、小组汇报。
如:二(2)班16-3=13。
注意:强调让学生通过多种方法进行计算。
4、问:谁知道二(1)班、二(2)班得几面红旗呢?
小组讨论,师生共同总结出:没办法知道。因为被树挡住了。
问:那他们可能得几面红旗呢?
你是在怎么知道的?
三、练习。
1、p23做一做。
2、练习四第1-4题。
教学反思:
高一数学教案设计篇十二
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。 6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
我们所使用的教材是人教版《普通高中课程标准实验教科书数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:
1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3.科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4.时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
1. 选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2. 通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3. 在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
两个班一个普高一个职高,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的`知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6、重视数学应用意识及应用能力的培养。
俗话说的好,好的教学计划是教学成功的一半,作为一名优异的教师,做好一定的教学计划很有必要。
总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。希望上面的,能受到大家的欢迎!
高一数学教案设计篇十三
教学目标:
1、使学生理解除数是一位数,商是整十、整百数的口算方法,学会正确、熟练地进行计算。
2、引导学生将掌握的口算乘法知识迁移到口算除法中去,培养学生迁移类推的能力。
3、培养学生的语言表达能力。
教学重点:
能正确进行口算。
教学难点:
掌握口算除法的思维方法,理解算理。
教具准备:
口算卡片、小棒。
教学过程:
一、学前准备。
1、口算。
教师出示口算卡片,学生抢答。
2、口答。
60里面有几个十?800里面有几个百?240里面有几个十?
3、把6根小棒平均分成3份,每份是多少根?
二、探究新知。
1、学习教材第11页例1。
(1)教师:我们来帮助小朋友解决问题吧。
教师板书:60÷3。
(2)尝试解答60÷3。
(3)交流、汇报计算方法。
(4)动手操作。
请同学们拿出6捆小棒,分一分。
(5)说说谁的.方法最简单,你喜欢用哪种方法进行口算。
(6)同桌交流60÷3的口算过程。
教师指导,帮助学习有困难的学生。
2、学习600÷3=。
(1)板书:600÷3=。
师:这道题应怎样想呢?
(2)尝试口算600÷3=。
(3)提问:谁能说出600÷3的口算方法。
3、学习教材第12页例2。
板书:120÷3。
(2)观察被除数与刚才所学例题中的被除数有什么不同。
(3)引导学生独立口算。
(4)说一说思考的过程。
三、课堂作业新设计。
1、教材第11页“做一做“。
(1)集体看“做一做“。
(2)观察每组中上下两题的异同。
(3)找出其中的运算规律。
(4)独立完成。
(5)验证其运算规律是否正确。(当被除数扩大到原来的10倍,除数不变时,商也扩大到原来的10倍)。
2、教材第13页练习三的第1―3题。
(1)独立完成。
(2)边做边口述口算过程。
四、思维训练。
1、列式并写出得数。
(1)6000除以3的多少?
(2)3600除以4的多少?
2、抢答。(口算卡)。
高一数学教案设计篇十四
学习是一个潜移默化、厚积薄发的过程。编辑老师编辑了:数列,希望对您有所帮助!
1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.
(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的.
(2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式.
(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项.
2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.
3.通过由求的过程,培养学生严谨的科学态度及良好的思维习惯.
(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的.计算等.
(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法.
(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助.
(4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系.
(5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况.
(6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的.
上述提供的:数列希望能够符合大家的实际需要!
高一数学教案设计篇十五
(2)理解任意角的三角函数不同的定义方法;。
(4)掌握并能初步运用公式一;。
(5)树立映射观点,正确理解三角函数是以实数为自变量的函数.
初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.
任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.
本节利用单位圆上点的`坐标定义任意角的正弦函数、余弦函数.这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系.
教学重难点。
重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).
难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.
高一数学教案设计篇十六
3.能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。
一、预习检查。
1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为.
2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为.
3、双曲线的渐进线方程为.
4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是.
二、问题探究。
探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同.
探究2、双曲线与其渐近线具有怎样的关系.
练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是.
例1根据以下条件,分别求出双曲线的标准方程.
(1)过点,离心率.
(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为.
例2已知双曲线,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率.
例3(理)求离心率为,且过点的双曲线标准方程.
三、思维训练。
1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是.
2、椭圆的离心率为,则双曲线的离心率为.
3、双曲线的渐进线方程是,则双曲线的离心率等于=.
4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则.
四、知识巩固。
1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是.
2、设双曲线的一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为.
3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的值为.
4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率.
5、(理)双曲线的焦距为,直线过点和,且点(1,0)到直线的距离与点(-1,0)到直线的距离之和.求双曲线的离心率的取值范围.
高一数学教案设计篇十七
2、掌握标准方程中的几何意义。
3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。
1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、
2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、
3、双曲线的渐进线方程为、
4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是、
探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、
探究2、双曲线与其渐近线具有怎样的关系、
练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是、
例1根据以下条件,分别求出双曲线的标准方程、
(1)过点,离心率、
(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、
例3(理)求离心率为,且过点的双曲线标准方程、
2、椭圆的离心率为,则双曲线的离心率为、
3、双曲线的渐进线方程是,则双曲线的离心率等于=、
4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率、
将本文的word文档下载到电脑,方便收藏和打印。
高一数学教案设计篇十八
1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.
(2)能从数和形两个角度认识单调性和奇偶性.
(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.
2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.
3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.
(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.
(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.
函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.
高一数学教案设计篇十九
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的`如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
一、知识归纳
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
二、例题讨论
一)利用方向角构造三角形
四)测量角度问题
例4、在一个特定时段内,以点e为中心的7海里以内海域被设为警戒水域.点e正北55海里处有一个雷达观测站a.某时刻测得一艘匀速直线行驶的船只位于点a北偏东。