三角形内角和数学教案(热门17篇)
教案的编写需要考虑学生的学习需求和教学目标的实现。在编写教案时,要注重培养学生的学习兴趣和思维能力。通过研究这些教案,我们可以发现一些优秀的教学策略和方法。
三角形内角和数学教案篇一
通过猜想、验证,了解三角形的内角和是180度。在学习的.过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。
出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?
引导学生说出90度、60度、30度。
出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。
提问:请同学们任选一个三角尺,算出他们三个角一共多少度?
学生计算后指名回答。
师:三角尺三个角的和是180度。
提问:是不是任一个三角形三个角的和都是180度呢?请同学们在自备本上任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。
学生小组活动,教师了解学生情况,个别同学加以辅导。
全班交流:让学生分别说出三个角的度数以及它们的和。
提问:你发现了什么?
:任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。
要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。
教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以。
计算的结果为准。
完成想想做做的题目。
三角形内角和数学教案篇二
根据上面三组实验分别证明了锐角三角形、直角三角形、钝角三角形的内角和都等于180度。
四、练一练。
请学生自己画任意的`三角形,并用刚才老师所讲的方法自己来判断一下三角形的内角和。
五、实践活动:
第1题:用纸剪出一个等边三角形。
第2题:将等边三角形两边取中点,并向底作垂线,
第3题:把纸沿着虚线对折。
第4题:观察三个角的内角加起来为多少?
三角形内角和数学教案篇三
通过猜想、验证,了解三角形的内角和是180度。在学习的过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。
三角形的内角和
课前准备
电脑课件、学具卡片
出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?
引导学生说出90度、60度、30度。
出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。
提问:请同学们任选一个三角尺,算出他们三个角一共多少度?
学生计算后指名回答。
师:三角尺三个角的和是180度。
提问:是不是任一个三角形三个角的和都是180度呢?请同学们在自备本上
任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。
学生小组活动,教师了解学生情况,个别同学加以辅导。
全班交流:让学生分别说出三个角的度数以及它们的和。
提问:你发现了什么?
:任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。
要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。
教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以
计算的结果为准。
完成想想做做的题目。
学生独立计算,交流算法。要求学生用量角器量出结果,和计算的结果想比较。
指导学生看图,弄清拼成的三角形的三个内角指的是哪三个角。计算三角形三个角的内角和,帮助学生进一步理解:三角形三个内角的和是180度。
通过操作、计算,使学生认识到:不管三角形的大小怎样变化,它的内角和是不会变化的。
引导学生运用三角形的分类及三角形内角和的有关知识解决有关问题,重点培养学生灵活运用知识解决问题的能力。
三角形内角和数学教案篇四
通过猜想、验证,了解三角形的内角和是180度。在学习的过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。
教学重难点。
三角形的内角和课前准备电脑课件、学具卡片。
教学活动。
出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?
引导学生说出90度、60度、30度。
出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。
提问:请同学们任选一个三角尺,算出他们三个角一共多少度?
学生计算后指名回答。
二、自主探索,解决问题。
提问:是不是任一个三角形三个角的和都是180度呢?请同学们在自备本上任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。
学生小组活动,教师了解学生情况,个别同学加以辅导。
全班交流:让学生分别说出三个角的度数以及它们的和。
提问:你发现了什么?
:任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。
三、试一试。
要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。
教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以。
计算的结果为准。
四、巩固提高。
完成想想做做的题目。
三角形内角和数学教案篇五
人教版义务教育课程标准试验教科书数学四年级下册第67页。
遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。
三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180。
学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道三角形的内角和是180度的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。
1、使学生经历自主探索三角形的内角和的过程,知道三角形的内角和是180°,能运用这一规律解决一些简单的问题。
2、使学生在观察、操作、分析、猜想、验证、合作、交流等具体活动中,提高动手操作能力和数学思考能力。
三角形内角和数学教案篇六
遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。
三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180。
学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道三角形的内角和是180度的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。
1、使学生经历自主探索三角形的内角和的过程,知道三角形的内角和是180°,能运用这一规律解决一些简单的问题。
2、使学生在观察、操作、分析、猜想、验证、合作、交流等具体活动中,提高动手操作能力和数学思考能力。
三角形内角和数学教案篇七
义务教育课程标准试验教科书《数学》(人教版)四年级下册第85页。
设计思路。
遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出每块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生小组合作,任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。练习形式具有趣味性,激发了学生主动解题的积极性。第一个练习从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。这些题检测不同层次的学生是否掌握所学知识应该达到的基本要求,顾及到智力水平发展较慢和中等的同学,第3个练习设计了开放性的练习,在小组内完成。由一个同学出题,其它三个同学回答。先给出三角形两个内角的度数,说出另外一个内角。有唯一的答案。训练多次后,只给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中消除疲倦激发兴趣,拓展学生思维。兼顾到智力水平发展较快的同学。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。
教学目标。
1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教材分析。
三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。
教学重点。
让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
教学准备。
多媒体课件、学具。
教学过程。
一、激趣引入。
师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?
生1:三角形是由三条线段围成的图形。
师:请看屏幕(课件演示三条线段围成三角形的过程)。
师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)。
(二)设疑,激发学生探究新知的心理。
师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)。
生:能。
师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)。
师:有谁画出来啦?
生1:不能画。
生2:只能画两个直角。
生3:只能画长方形。
师(课件演示):是不是画成这个样子了?哦,只能画两个直角。
师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?
生:想。
师:那就让我们一起来研究吧!
(揭示矛盾,巧妙引入新知的探究)。
二、动手操作,探究新知。
师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)。
生:90°、60°、30°。(课件演示:由三角板抽象出三角形)。
师:也就是这个三角形各角的度数。它们的和怎样?
生:是180°。
师:你是怎样知道的?
生:90°+60°+30°=180°。
师:对,把三角形三个内角的度数合起来就叫三角形的内角和。
师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?
生:90°+45°+45°=180°。
生2:这两个三角形都是直角三角形,并且是特殊的三角形。
1.猜一猜。
师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。
生1:180°。
生2:不一定。
……。
(1)小组合作、进行探究。
师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?
生:可以先量出每个内角的度数,再加起来。
师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!
师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)。
(2)小组汇报结果。
师:请各小组汇报探究结果。
生1:180°。
生2:175°。
生3:182°。
……。
(三)继续探究。
师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?
生1:有。
生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
三角形内角和数学教案篇八
“三角形内角和”是人教版数学四年级下册的一节探索与发现课,让学生在学习了三角形的特征、高以及三角形分类的基础上,进一步研究三角形三个角的关系。本节课学生对知识点的掌握还不错,但是,这一节课还有很多不足之处,需要加以改进:
1、教学设计不错,环节紧凑,思路清晰。
2、重视操作过程,时间把握得好。本节课用了大量的时间来让学生做小组实验,从而让他们自己感知三角形内角和是180°,印象深刻。
3、能注意前后照应,解决了前面的疑问。在讲授新课前,设置一个疑问“为什么同一个三角形不能有两个直角?”以此来吸引学生,找出三角形内角和的特性。在掌握了三角形内角和是180°后,再次把问题提出来,让学生解决。
4、板书巧妙,一步步引入课题。先是让学生复习“三角形”的定义,接着简单说明什么是“三角形内角”,最后再讲授三角形三个内角度数的和叫做“三角形内角和”。
5、课堂纪律好,气氛活跃,学生踊跃积极。学生在小组活动时,活跃而有序,上课时能认真听讲,积极举手。同时,实行小组评价更是发挥了学生的主动性。
6、求三角形内角和的方法,一个比一个直观、生动。从量一量、算一算,到剪一剪、折一折,让学生更容易感受到三角形内角和是180°。
7、练习题设计得比较好,特别是判断题,都是学生平时容易出错的题目,在课堂上用比较直观的课件显示出来,让学生的印象深刻。组合题也很有灵活性,先是找出能组成三角形的度数,然后根据度数判断出是什么三角形。
8、能尊重学生的意见,有的小组没有在算一算的时候,没有得出180°的结果,老师能够分析其中的原因。
1、在老师给出“画有2个内角是直角的三角形”的任务时,学生明显是画不出来。但是教师也可以把学生失败的作品展示出来,照应之后的讲解。而不能一带而过。
2、如果量一量的方法,不能让人信服,要在后面打个“?”,等到解决疑问后,再去掉。
3、在进行剪一剪、折一折的活动时,老师应该先用板书上的三角形来示范一次,告诉学生应该怎么做。因为有些学生折不出来。拼的时候,也有出错。
4、把三角形拼成平角后,要用直尺或者是量角器测量一下,看看得出的图形是不是平角,要用严谨的态度对待,不能光用眼睛来判断。
5、老师注意提醒学生读题的时候要规范,要读出度数单位,这很好。但是,在做题练习时,应该请一两个学生在黑板上做,这样也便于教师提醒学生,在书写时,也要注意写上度数单位,强调格式。
三角形内角和数学教案篇九
《三角形的内角和》教材是先让学生通过计算三角尺得个内角的度数和,激发学生好奇心,进而引发学生猜想:其他三角形的内角和也是180度吗?再通过组织操作活动验证猜想,得出结论。根据这样的教材安排,本课的重点也就应放在“三角形内角和是180度”的探索上,让学生在探索中深入理解得出过程。针对教材的如此安排,我也设计了如下的开放的课堂预设:
1、要知道我们猜测的是否正确,你有什么办法验证呢?
先独立思考,有想法了在小组里交流。
生一:我们组根据刚才三角板的内角和是三个角的度数加起来得出的,所以,我们就用量角器量出了三个角的度数,再加起来。
学生说出了测量的度数相加,虽然不是很精确180度,量的过程中有点误差,得到了在180度左右。
生二:我们组是把锐角三角形的三个角跟书上一样去折,折在一起发现正好是个平角,所以我们发现锐角三角形内角和也是180度。(及时表扬了能主动预习的好习惯。)。
生三:我们组把钝角三角形跟刚才一组一样,折在一起,发现也能拼成一个平角,所以钝角三角形的内角和也是180度。
生四:我们组研究的是直角三角形,跟上面两组的同学一样折在一起,三个角拼起来也是一个平角,所以直角三角形的内角和也是180度。
生五:我们也是折的,但我们没有把三个角折在一起,而是把两个小的角折到直角那里发现两个锐角合起来正好与直角三角形的直角重合,图形也就成了一个长方形,两个锐角的和是90度再加个直角也就是180度。
也有同学提出了采用了减下角再拼的方法。
以上这个小片段,虽然在孩子们表述中没这么流利,完整,但却是他们最真实的发现,这堂课上下来,感觉收获很大。
自己感觉这节课的设计上把握了学生学习起点与心理,遵循了教材让学生先猜想再验证的思路,从学生已有的知识背景出发,为他们提供了重复粉从事数学活动的时间和交流机会。学生思考着,讨论着,交流着,感悟着,在这一过程中,学生不仅掌握了知识,寻求到了解决问题的方法,更重要的是在交流中,学生的语言表达能力也得到了很大的增强。
三角形内角和数学教案篇十
1、掌握三角形内角和是180°,并能应用这一规律解决一些实际问题。
2、让学生经历“猜想、动手操作、直观感知、探索、归纳、应用”等知识形成的过程,掌握“转化”的数学思想方法,培养学生动手实践能力,发展学生的空间思维能力。
3、在活动中,让学生体验主动探究数学规律的乐趣,体验数学的价值,激发学生学习数学的热情,同时使学生养成独立思考的好习惯。
让学生经历“三角形内角和是180度”这一知识的形成、发展和应用的全过程。
三角形内角和的探索与验证。
量角器 各种类型的三角形(硬的纸板) 三角板
一、设疑激趣,导入新课
师:今天老师给大家带来了一位朋友(课件)出示三角形,
师:对于三角形你有哪些认识与了解。
生:三角形有锐角三角形、直角三角形、钝角三角形
生:由三条线段围成的平面图形叫三角形。
师:介绍内角、内角和
三角形中每两条边组成的角叫做三角形的内角。
师:三角形有几个内角。
生:三个。
师:这三个角的和,就叫做三角形的内角和。你知道三角形内角和是多少度?
生1:我通过直角三角板知道的
生3:我预习了,三角形内角和就是180度)
师:是不是向他们说的一样,所有的三角形内角和都是180度呢?
二、自主探索,进行验证
师:你打算怎样验证呢?
生1用量角器量出每个角的度数,再加一加看看是不是180度 生2:把三角形撕下来
生3:把三个角顺次画下来也可以
生4:拼一拼的方法
师:好!同学们想出了这么多办法,下面就用你喜欢的方法验证 师:cai多媒体课件展示操作要求:
合作探究:
1、每四人一组,每组至少选两个三角形,用你喜欢的方法验证
2、看那个小组验证的方法新、方法多
师:在巡视,并进行个别操作指导
三、交流探索的方法和结果
孩子们探索的方法可能有三个:
生1:一是用量角器量各个角,然后再算出三角形中三个角的度数和,用这种方法求的结果可能是180度也可能比180度小一些,也可能比180度大一些。
生2:二是用转化法,把三角形中三个角剪下来,拼在一起成为一个平角,由此得出三角形中三个角的和是180度。
生3:三是折一折,把三个角折在一起,折在一起成为一个平角,由此得出三角形中三个角的和是180度。
四、归纳总结,体验成功
师:孩子们,三角形中三个角的度数和到底是多少度呢?
生:180度。
五、拓展应用
1、基础练习
2、等边三角形、等腰三角形、直角三角形
六、课堂小结
谈一谈自己的学习收获。
三角形内角和数学教案篇十一
2.弄清三角形按角的分类,会按角的大小对三角形进行分类;。
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态。
5.通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
直尺、微机。
互动式,谈话法。
1、创设情境,自然引入。
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。
问题2你能用几何推理来论证得到的关系吗?
对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)。
新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。
2、设问质疑,探究尝试。
让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。
问题1观察:三个内角拼成了一个什么角?
问题2此实验给我们一个什么启示?
问题3由图中ab与cd的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。
(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?
学生回答后,电脑显示图表。
(3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?
问题1直角三角形中,直角与其它两个锐角有何关系?
问题2三角形一个外角与它不相邻的两个内角有何关系?
问题3三角形一个外角与其中的一个不相邻内角有何关系?
其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。
这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。
引导学生分析并严格书写解题过程。
三角形内角和数学教案篇十二
遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。
三角形内角和数学教案篇十三
教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和的性质。
三角形的内角和为何等于180度?小学阶段如何比较严密的验证这个性质,培养学生科学的数学素养,是这节课的重难点。在学生明确了“内角“的.含义后,通过学生的大胆猜想,从而引导学生探索三角形内角和等于多少度。大多数学生会想到测量的方法,但这只是一种不完全归纳法,还不能严密的证明。还可以引导学生想到将3个角转换成平角(180度)的方法,即撕角和拼角的方法,这也为今后在初中学习内角和的证明做知识储备。教师还可以在此基础上,再加上1—2种形象的证明方式,如:利用“极限”思想和转动角的方式。就是想让更多的学生感觉到,三个内角的和是180°的可能性很大,拓宽学生思路,并培养学生的空间想象能力。
学情分析。
四年级是发展学生逻辑思维能力的黄金时期,如何才能完整、严密的进行数学思考,培养推理能力,是我本节课关注的重点之一。对于“三角形的内角和等于180度”这个性质,有很多学生已经知道,但却是“知其然不知其所以然”。应在学生的学习基础上设置更高的目标,重视猜想与验证、培养学生事实求是的科学态度,学生对于验证的方式和方法,老师要做到适当点拨,及时鼓励。
教学目标。
1、学生亲自动手,通过量、剪、拼、折等方法推导出三角形内角和是180度,会应用这一规律进行计算。
2、通过动手操作,找到规律,并能灵活运用。
3、培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。
教学重点和难点。
教学重点:学生亲自动手,通过量、剪、拼、折等方法推导出三角形内角和是180度。
教学难点:会应用这一规律进行计算。
三角形内角和数学教案篇十四
教学内容:
义务教育课程标准实验教科书__版小学数学四年级下册第42~46页。
教学目标:
1、通过量、剪、拼、折等数学活动,让学生亲自实践操作,发现规律,主动推导并得出“三角形内角和是180°”的结论,会应用这一规律进行计算。
2、在操作、验证三角形内角和的过程中,体验解决问题方法的多样性,发展空间观念,提高初步的逻辑思维能力。
教学过程:
一、创设情境,导入新课。
1、谈话:我们已经认识了三角形,你知道哪些关于三角形的知识?
2、我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?我们一起去看看吧!
播放课件。
详细内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是的。”一个小的锐角三角形很委屈的样子说:“是这样吗?”(它们在争论谁的内角和大。)。
通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。
3、故事中到底谁说得对呢?今天我们就来研究三角形的内角和。
【设计意图】从学生的心理、兴趣和意愿为出发点,利用故事的形式提出疑问,激发学生的学习兴趣,提高学生探索的积极性。
二、自主探究、发现规律。
(1)量一量。
生:把三角形的三个内角分别量出来,再用加法算出三角形的内角和。
学生活动(小组合作---每组准备三种不同的三角形)量角,求和,完成第43页的表格。
学生交流汇报测量结果。
师:从刚才的交流中,你发现了什么?
生:不管是锐角三角形、直角三角形还是钝角三角形,内角和都是180°。
(在量的过程中,由于误差,有的学生可能算出内角和在180°左右,这时教师要相机诱导:在测量的过程中出现一些误差是正常的,因为同学们画的角不够标准,量角器的不同,还有本身测量的原因都可能导致误差。)。
师:看来量一量会出现误差,那么你还有其它的更科学的办法进行验证吗?
(2)拼一拼。
学生分小组活动,教师参与学生的活动,并给予必要的指导。
学生展示交流,师:从大家的交流中,我们发现都可以把三角形的三个内角拼成一个平角,证明“三角形内角和是180°”。
(3)折一折。
小组活动,学生交流。
生1:将正方形(或长方形)纸沿对角线对折,这样,就折成了两个大小一样的三角形。因为正方形(或长方形)的四个直角的和是360°,所以三角形的内角和就是它的一半,是180°。
生2:直角三角形的两个锐角可以折成一个直角,也就是说,在直角三角形中,两个锐角的和是90°,因此三角形内角和就是180°。
2、归纳。
师:通过刚才的活动,我们得出了什么结论?
3、师谈话:三个三角形争论的问题现在能解决了吗?你现在想对这三个三角形说点什么?
学生畅所欲言,对得出的规律做系统的整理。
【设计意图】动手实践,自主探索,亲身体验,是学习数学的重要方式。学生分组合作,量一量、拼一拼、折一折,通过多种感官参与比较、分析从而自主探索得出结论,得到的不仅是三角形内角和的知识,也使学生学到了怎样由已知探索未知的思维方式与方法,培养了他们主动探索的精神。
三、灵活运用,巩固练习。
1、判断。
一个三角形最少有两个锐角。()。
一个钝角三角形最少有一个钝角。()。
学生判断并说出理由。
2、自主练习第6题。
练习时,先让学生独立填空,再说说自己是怎么想的,然后用量角器验证计算的结果。
小结:以后如果遇到求一个三角形内未知角的度数时,我们可以用计算的方法算一算,简单又精确。
3、游戏:选度数,组三角形。
(课件显示如下)。
请选出三个角的度数来组成一个三角形。
10°18°15°150°130°72°。
20°50°70°35°75°。
52°56°54°58°60°。
学生回答的同时,教师操作课件,把学生选择的度数拖入方框内,通过电脑计算相加是否等于180°,来验证学生的选择是否正确。验证学生选的对了以后,再让学生判断选择的度数所组成的三角形按角的大小分类,并说出理由。
[设计意图]用已学到的新知解决实际数学问题,认识学数学的价值,再次体验成功,增强学习数学的兴趣。尤其是第三个练习,依据学生的年龄特征和认知水平,设计探索性和开放性的问题,注重拓宽学生的思维活动空间。
四、课堂总结、深化认识。
谈话:这节课你学会了什么?解决了什么问题?是怎样解决的?
【设计意图】不仅从知识方面进行总结,还引导学生回顾发现问题、提出问题、解决问题的过程,关注学生学习过程中的情感体验。既让学生习得一种学习方法,又培养了学习兴趣。
课后反思:
本节课学生以小组为单位进行合作学习,从自己的已有经验出发,积极地进行操作、测量、计算,并对自己的结论进行思考、分析。在充分发挥学生主体作用,放手让学生开展探究的同时,教师也恰到好处的发挥了引导作用。整个探究过程学生是自主的、有积极性的,在获得数学结论的同时学习了科学探究的方法,为今后的学习打下了坚实的基础。
三角形内角和数学教案篇十五
这节课是上“三角形内角和”,因为学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出一块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°,再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。
这篇教学设计通过施教,符合新课程理念,转变学生的学习方式,能让学生以小组合作的形式进行问题的探索与研究,学生在整节课中学得轻松。整节课的教学设计,条理清晰,层次清楚,教学一开始从学生熟悉的三角板抽象出特殊的三角形探讨三角形的内角和是180°,接下来很自然地引导学生探讨所有的三角形的内角和是不是也是180,过渡自然且有吸引力。
总之,在这节课中存在着很多不足,今后我将花更多的时间在课堂教学方法、策略的研究上,使自己不断进步。
三角形内角和数学教案篇十六
让学生整体感知三角形内角和的知识,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的"横空出现"。
提出问题:长方形内角和是360°,那么三角形内角和是多少呢?
(1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度。
(2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。
(3)折—拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。
(4)画:根据长方形的内角和来验证三角形内角和是180°。
一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。
利用已经学过的知识构建新的数学知识,这不仅有助于学生理解新的知识,而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系起来,并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中,学生积极思考并大胆发言,他们的创造性思维得到了充分发挥。
观察:指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了,但角的大小没有变。
结论:角的两条边长了,但角的大小不变。因为角的大小与边的长短无关。
实验:教师先在黑板上固定小棒,然后用活动角与小棒组成一个三角形,教师手拿活动角的顶点处,往下压,形成一个新的三角形,活动角在变大,而另外两个角在变小。这样多次变化,活动角越来越大,而另外两个角越来越小。最后,当活动角的两条边与小棒重合时。
结论:活动角就是一个平角180°,另外两个角都是0°。
小学生由于年龄小,容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用"角的大小与边的长短无关"的旧知识来理解说明。
对于利用精巧的小教具的演示,让学生通过观察,交流,想象,充分感受三角形三个角之间的联系和变化,感悟三角形内角和不变的原因。
习题是沟通知识联系的有效手段。在本节课的四个层次的练习中,能充分注意沟通知识之间的内在联系,使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知,构建自己的认知结构,从而发展思维,提高综合运用知识解决问题的能力。
第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。
第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征,较好地沟通了知识之间的联系。
第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的变化情况,进一步理解三角形内角和的知识。
第四题是对三角形内角和知识的进一步拓展,引导学生进一步研究多边形的内角和。教学中,学生能把这些多边形分成几个三角形,将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律,以此促进学生对多边形内角和知识的整体构建。
三角形内角和数学教案篇十七
教学《三角形的内角和》这一课时,我首先利用猜谜语引出三角形,顺理成章的让学生回忆已经学过的有关三角形的知识。然后,根据学生的认知特点,设计了“三角形三兄弟之争”引入课题。通过师生猜角度和活动,学生对内角及内角和的概念有了初步的认识。学生很有兴致地去数去观察三角形内角及内角和。学生正在好奇之时,我适时激疑:“三角形有三个内角,那么他们的内角和是多少度呢?”一切都在顺利地按我的预定设计进行。请同学们同桌一组,利用有关的学具进行验证。”学生饶有兴致地去探究,或数或量或折或比较,在讨论交流中完整地得到了“三角形内角和的知识”……,课堂气氛十分热烈,学生学得积极主动。反思整个教学过程本文来自优秀教育资源网,给我如下启发:我想通过本节课的学习让学生体会到与人合作的必要性和培养动手操作的能力以及创新精神。所以课堂上体现了以下几点:
一、激发学生探究知识的欲望。教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的导语来激发学生的学习兴趣,让学生主动地投入学习。如“三角形内角和”的引入部分,我先要求学生拿出自己预先准备的三个不同的三角形(直角、锐角和钝角三角形),各自用量角器量出每个三角形中三个角的度数,然后分别请几个学生报出不同三角形的两个角的度数,我当即说出第三个角的度数。一开始,有几位同学还不服气,认为可能是巧合,又举例说了几个,都被我一一猜对了,这时学生都感到惊奇,教师的答案怎么和他们量出的答案会一致的。“探个究竟”的兴趣因此油然而生。
二、教师的教学方式要适应学生的学习。在教学过程本文来自优秀教育资源网中,我给学生设置了一个开放的、富有挑战性的问题情境,让学生独立、自主地去探究验证其他学生已发现的知识,通过实验、操作、交流等活动,经历探究过程,获得知识与能力,掌握解决问题的方法,获得情感体验。我想:只要我们坚持“为学生的发展而教”,那么我们的课堂将会更加生机勃勃、充满智慧的欢乐和创造的快意。
三、联系生活实际,感受数学的作用。数学来源于生活,又高于生活,应用于生活。因此,数学教学要紧密联系学生的生活实际。学生学习的目的也就是让他们在生活中学有所用。在本课的教学中,我设计了让学生“量一量”、“撕一撕”、“折一折”“算一算”等活动,贴近了学生的生活,降低了学习难度。
四、存在问题:比如:课前的教具准备不够充分;学生在折纸验证三角形的内角和后汇报时,我引导小结不够。同时我还在想:小学生毕竟知识有限,在小组合作探究时老师应该干什么?是不停地提示学生应该干什么怎么干好呢?还是快速浏览每个小组,找到最需要帮助的小组,然后介入其中好呢?再者就是当学生的认知和原有的经验发生冲突时怎么办?在新教育理念下,实际的课堂情境中往往会有很多情况出现。如果我这样做了,我的教学任务就完不成了;如果我那样做了,就可能会偏离我的教学设计,学生的问题可能会让我不知所措。我想,课堂教学是为学生的学习和成长服务的,教师要勇于放手,给学生更大的思维空间,授之以“渔”,而不是授之以“鱼”。