正数与负数的教案(优秀15篇)
编写教案可以帮助教师系统地组织教学内容,确保教学的连贯性和有效性。教案的编写需要教师结合教材,体现教学内容的系统性和连贯性。这些教案范文涵盖了不同学科和年级的内容,具有一定的代表性。
正数与负数的教案篇一
2.内容解析。
引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要.本课内容是本章后续的有理数的相关概念及运算的基础.
通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量.在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负.
基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量.
二、目标和目标解析。
1.教学目标。
(1)体会引入负数的必要性;。
(2)了解负数的意义,会用正数、负数表示具有相反意义的量.
2.目标解析。
(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;。
(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义.在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量.
三、教学问题诊断分析。
学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限.在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难.这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致.突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量.
本节课的教学难点为:用正数、负数表示指定方向变化的量.
四、教学过程设计。
1.创设情境,引入新知。
教师展示教科书图1.1-1,并提出。
问题1哪位同学知道这些图片介绍的是什么内容?
学生回答.教师补充说明数的产生产生与日常生活、生产实践的关系,感受数随着社会发展而发展的必要性.
【设计意图】使学生感受数的产生和发展离不开生活和生产的需要.
问题2请同学们阅读本章的引言.你能尝试着回答一下其中的问题吗?
学生思考并尝试解释.对于其中的问题(1),如果本地气温有低于0℃的情况,可以选择自己所在地区的气温状况进行描述.
【设计意图】引言中的问题,有的学生凭生活经验可以回答,有的不能回答.让学生阅读并尝试回答,一方面让他们感受在生活、生产中需要用到负数,另一方面让他们知道,要解决这些问题,就需要学习新的数的知识,从而激发学生的求知欲.
2.观察感知,理解概念。
问题3根据小学的知识,你能指出上述例子中哪些是正数,哪些是负数吗?
学生回答,给出正确答案后,教师给出正数、负数的描述性定义:
大于0的数叫做正数,在正数前加上符号“-”(负)的数叫负数.
问题4阅读课本第2页倒数第二段.你能举例说明什么叫一个数的符号吗?
学生阅读,举例.只要学生能举出与课本上不同的例子,并说明它们的符号就表明他们看懂了这段话.
教师补充说明:一般的,正数的符号是“+”,负数的符号是“-”.0既不是正数,也不是负数.
【设计意图】让学生阅读课文,以培养他们的读书习惯.通过学生举例,可以检验他们对这段课文的理解情况.因为“0既不是正数,也不是负数”是一种规定,所以老师直接说明,学生记住就可以了.
3.例题示范,学会应用。
(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增加7.5%.写出这些国家这一年商品进出口总额的增长率.
提问:你是怎么理解例(1)的?
师生合作回答上述问题.估计学生解释体重“增长值”的意义时会出现困难,教师可以在学生解释的基础上补充总结:体重增长值可能是正的,也可能是负的.体重增长值为负数,相当于体重减少.
再提问:你能仿照第(1)题的解答,自己解决(2)吗?
【计意图】通过具体问题情境,使学生学会用正数与负数表示具有相反意义的量的方法,通过师生合作,突破用正数、负数表示指定方向变化的量这一难点.通过不断追问,引导学生逐步理解题意,重点是找出表示具有相反意义的量的词.
学生总结,师生共同补充、完善.要总结出:
(2)选定一方用正数表示,那么另一方就用负数表示;。
(4)当数据没有变化时,增长率是0.
【设计意图】引导学生及时总结,提炼出可以指导解答其他同类问题的一般性结论.一般而言,我们习惯上把“上升”“盈利”“增加”“收入”等规定为正,把与它们相反的量规定为负.
问题6请同学们自己举出一个能用正数、负数表示其中的量的实际例子,并给出答案.
【计意图】让学生用刚刚总结出的结论解决问题.
4.巩固概念,学以致用。
练习:教科书第3页练习1,2.
【计意图】巩固性练习,同时检验用正数、负数表示具有相反意义的量的掌握情况.
5.归纳小结,反思提高。
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)你能举例说明引入负数的必要性吗?
(2)你能用例子说明负数的意义吗?
6.布置作业:教科书习题1.1第1,2,4,8题.
五、目标检测设计。
以下各数2014年07月08日-一帆风顺-一帆风顺祝大家健康快乐!天天都有好心情中,正数有;负数有.
正数与负数的教案篇二
在熟悉的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量。
使学生经历数学化,符号化的过程,体会负数产生的必要性。
感受正、负数和生活的密切联系,享受创造性学习的乐趣.
正数与负数的教案篇三
1.正确理解正,负数及零的意义,会用正,负数表示具有相反意义的量,能简单说出正数和负数的意义。
2.借助生活中的实例理解正数,负数的意义,体会负数引入的必要性和有理数应用的广泛性。
3.通过有理数的学习,培养抽象思维能力、归纳与概括能力。
体会负数的意义,两种相反意义的量。
1.创设情境,引入新知。
教师展示教科书图1.1-1并提出问题1:哪位同学知道这些图片介绍的是什么内容?学生回答,教师补充说明数的产生与日常生活,生产实践的关系,感受数随着社会的发展而发展的必要行。
设计意图】:使学生感受数的产生和发展离不开生活和生产的需要。
问题2:请同学们阅读本章的.引言,你能回答其中的问题吗?
学生思考并解释。
2.观察感知,理解概念。
问题3:根据小学的知识,你能指出上述例子中哪些是正数,哪些是负数吗?
学生给出正确答案后,教师给出正,负数的定义,大于0的数叫做正数,在正数前加上符号“-”的数叫做负数。
问题4:阅读课本第二页倒数第二段,你能举例说明什么叫一个数的符号吗?
学生阅读举例,只要学生说出与课本不同的实例并说明它们的符号就表明他们看懂了这段话。
教师补充:有时,为了明确表达意义,在正数前也加上“+”号,正数的符号是“+”,负数的符号是“-”,0既不是正数也不是负数。
3.例题示范,学会应用。
课本例题,
提问:你是怎么理解例的?
设计意图】通过具体问题情境,使学生学会正数与负数是具有相反意义的量的方法,通过师生合作突破用正数,负数表示指定方向变化的量这一难点,通过不断追问,引导学生逐步理解题意,重点是找出表示具有相反意义的量的词。
选定一方用正数表示,另一方就用负数表示。
实际问题中,有时需要描述指定方向变化的量,如:本例中,进出口总额减少64%,表示为增长-64%,这就是说增长量是一个负数实际上是减少了,也可以说成“负增长”。
当数据没有变化时,增长率为0。
设计意图】引导学生及时总结、提炼出可以指导解答其他同类问题的一般性结论。
4.巩固概念,学以致用。
练习:第三页练习1,2。
设计意图】巩固性练习,同时检验用正数,负数表示具有相反意义的量的掌握情况。
5.归纳小结。
回顾本节课内容。
6.布置作业。
习题1.1第1.2.4题。
正数与负数的教案篇四
3、体验数学发展的`一个重要原因是生活实际的需要;激发学生学习数学的兴趣。
重点深化对正负数概念的理解。
难点正确理解和表示指定方向变化的量,表示相反意义的量。
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们。
温度计上的-2,0,3分别表示是么意义?
(1)、一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。
(2)、2001年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家2001年商品进出口总额的增长率。
正数与负数的教案篇五
1.教学目标、重点、难点.
教学目标:
(1) 通过实例,感受引入负数的必要性.
(2) 了解正数、负数的概念.
(3) 会区分两种不同意义的量,会用正负数表示具有相反意义的量.
重点:理解相反意义的量,理解负数的意义.
难点:正确区分两种相反意义的量,并会用正负数表示.
2.例、习题的意图
通过补充的引例,复习回顾上一学段学习过的数的类型,归纳出我们已经学习了整数和分数,然后通过观察、分析p3的几幅画和图表所列举出的一些实际生活中的具有相反意义的量,让学生感受引入负数的必要性.通过分析正、负数与以前学过的整数和分数的区别与联系,进而归纳出正、负数的概念.
例1为p5练习1,设置目的是强化学生对正、负数表示形式的理解.让学生准确的认识和区分正数与负数.
在学生对正、负数的概念与表示形式掌握的基础上,补充例2.例2是明确了哪一种意义的量用正数表示,则与其相反意义的量用负数表示.让学生进一步掌握如何用正、负数表示相反意义的数量.并理解相反意义与数量的含义.进而利用课本p5观察让学生认识正、负数表示实际生活中的数量的意义和必要性.
补充例3是例2的延续,在不明确哪一种意义的量用正数表示的情况下,让学生表示相反意义的量.通过例3的学习,训练学生发现生活中的具有相反意义的数量,理解、体会正、负意义的相对性,并恰当的用正、负数表示.培养学生的发散思维.
补充例4则是对例3正、负数表示相反意义的量的加强,通过训练,让学生说出正、负数所表示的实际意义,进一步培养学生正、负数的应用能力,逐步提升正、负数相对性和相反性的理解.
习题的设置是针对例题掌握情况的检查.教科书p5练习(2)、(3)、(4)是针对例2而设置的.补充练习1检查学生对相反意义与数量的理解.补充练习2是对例3的掌握情况的检查.
3.认知难点与突破方法:
对于相反 意义及数量含义的理解,以及区分两种不同意义的量是本课的难点.在教学中注意思维的层次,首先要让学生明确数量指的是具体事物的多少.再分析是否是同一类事物,在是同类事物的基础上确定是否是相 反关系.强化学生分析的层次性.在操作上,通过大量实际生活材料的分析和例2的学习让学生对相反意义及数量含义建立一定的感性认识,教师及时的给予适当的归纳,让学生建立初步的理性认识,最后通过练习1的判断对错进一步强化巩固对概念的理解.
用正、负数表示具有相反意义的过程中体现的正与负的相对性是另一个难点,通过例3的教学,鼓励学生发散思维,多角度认识具 有相反 意义的量,进而让学生认识正、负的相对性,通过例4的教学强化进一步强化对正、负的相对性的理解.
通过回顾小学学过的数的类型,归纳出我们已经学了整数和分数,然后举一些生活中具有相反意义的量,说明为了表示相反意义的量,我们需要引入负数.强调数学的严密性.
教师举例:今天我们已经是七年级的学生了,我是你们的数学老师,下面我自我介绍一下,我的名字是***,身高1.71米,体重75.5千克,今年32岁,我们班有50名学生,其中男生23人,占全班总人数的46%,女生26人占总人数的53%.
问题1:老师在刚才的介绍中出现了几个数?分别是什么?试将这些数按以前学过的分类方法分类.学生思考、交流后教师总结:整数和分数两类.
问题2:生活中 ,仅有整数和分数就够用了吗?
在学生交流的基础上教师归纳总结:以前学的数已经不够用了,在实际生活中我们需要引进一些新的数,只有这样才能更好的表示生活实际中数量关系.
教师引导学生通过观察上例中出现的这些数与以前学过的数的区别,进而归纳出正负数的概念.
补充例1:(1)下各数哪些是正数,哪些是负数.
-1,2.5,0, -3.14, ,120,-1.732, .
正数前面的+号通常省略.了解正负数形式上的区别(符号不同),形成中的联系(在以前学习的非0整数和分数前加上符号)
问题3:在整数前加上-号后这个数还是整数吗?在分数前加上-号后这个数还是分数吗? 使学生对正整数、正分数、负整数、负分数有初步的了解.
(2)指出(1)中的分数、整数.(为有理数的学习做铺垫)
问题4:为什么要引出负数?通常在日常生活中我们用正数和负数分别表示怎样的量?学生回答问题.(用正负数表示相反意义的数量)
补充例2:用正、负数表式下列各量.
(1)若把上升5m记作+5m,那么下降5m记作 .
(2)某人转动转盘,如果用+5表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈表示为 .
(3)向南走5000米记作-5000米,那么向北走8000米记作 .
学会用正、负数表示具有相反意义的量,相反意义的量包含两个要素:一是意义相反.如向东的反向是向西,上升与下降,收入与 支出.二是他们都是数量.
练习思考.书p5观察,在此基础上让学生指出生活中具有相反意义的例子.(检查学生对相反意义的数量的理解程度.
补充例3:.用适当的数值表示下列实际问题的数量.
(1)某地白天的温度是30℃,午夜的温度是零下10℃.
(2)某出租车在 东西走向的大街上向 东行驶3km,又向西行驶了5km.
(3)一商店在一小时内收入200元,又支出150元.
(4)甲公司本月的销售额增长13%,乙公司本月的销售额下降了2.9%
本例题是一发散性问题,没有规定哪种意义的量用正数表示,所以先要指明哪种意义的量用正数表示,其相反意义的量用负数表示.在解题中鼓励学生的不同思维. 比如:若收入200元,记作:-200元,则支出150元记作+150元. 反之,若收入200元,记作:+200元,则支出150元记作-150元.进一步加深对正、负数相反性及相对性的理解.同时要明确,通常情况下,零上、增长、收入用正数表示,零下、减少、支出用负数表示.
补充例4:解释下列各语句中表示各数量的数值的实际意义.
(1)七月份的物价比六月份增长了25%,八月份比七月份增长了-2.3%.
(2)经过绿化,我国沙漠化土地每年增长-4.5%.
(3)某仓库上午入库货物-3500t.
(4)缆车上升了-78米.
(5)小红这次考试分数比上次增加了+2分.
(6)盈利-300元.
分析:强调负数表示的是与其具有相反关系的量.(1)降低 2.3%,(2)降低4.5%,(3)出库3500t,(4)下降7 8米,(5)增加了2分,(6)亏损300元.
1.p5练习(2)、(3)、(4)
补充练习2:判断下列说法对错:
a.向南走-60米表示向西走60 米.( )
b.节约50元与浪费-30元是互为相反意义的量( )
c.快与慢表示具有相反意义的量.( )
d.+15米就是表示向东走15米.( )
e.黑色与白色表示具有相反意义的量.( )
f.向北4.5米和向南8米是具有相反意义的量.( )
补充练习3:用正负数表示下列具有相反意义的量.
(1)温度上升3℃和下降5℃. (2)盈利5万元和亏损8千元.
(3)运进50箱与运出100箱. (4)向东10米与向西6米.
1.课本p7 第1、2、3.
2.下面各数哪些是正数?哪些是负数?
3.如果一个物体沿东西方向运动,若规定向西为负,向东为 正,
(1)向东运动5米和向西运动10米各怎样表示?
(2)-30米和50米各表示什么? (3)物体原地不动怎样表示?
4.说出下列每句话的意义.
(1)小明在围棋比赛中输了-5盘. (2)今晚的气温升高了-3℃.
(3)电梯下降了-4层. (4)李华体重增加了-2公斤
正数与负数的教案篇六
通过实例,感受引入负数的必要性;会判断一个数是正数还是负数;会用正负数表示互为相反意义的量。
通过正负数的学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力。
通过归纳,让学生体会思维的一般过程是从具体到抽象;从特殊到一般的过程,使他们培养良好的思维习惯和探索精神,通过对学生进行爱国主义思想教育,培养学生良好的个性品质。
会判断正数、负数,运用正负数表示相反意义的量,理解0表示量的意义。
理解负数、数0表示的量的意义。
会判断正数、负数及理解对数0表示量的意义,能为下一节课讲述有理数的分类,大小的比较等打下基础,因此成为本节课的重点,由于用负数表示实际问题对学生来说很不习惯,因此成为本节课的教学难点。本节课是在小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接,而且是以后学习数轴、相反数、绝对值以及有理数运算的基础。本节课从学生熟悉的实例出发,通过一系列探索和讨论过程,着重培养学生学会观察、分析、总结和归纳,使传授知识与培养能力融为一体,使学生不仅学到科学探究的方法,而且让他们在学习过程中获得愉快和进步,同时培养他们爱国主义精神。
情境教学法、启发式教学法、讨论法。
一课时。
投影仪(电脑)。
环节教师活动学生活动设计意图。
创设情境导入新课。
鼓励每组派两名同学到讲台前,按照教师的指令进行表演活动,看哪一组获胜。
教师说出指令:
向前一步,向后一步;
向前两步,向后两步;
向前三步,向后一步;
向前四步,向后两步;
教师根据学生的活动情况,也参与表演,适当加以引导启发,用符号(加减号)表示。
活动后,评选出速记最快,方法最好的同学。
一、初步了解,认识具有相反意义的量。
启发学生举出生活中常遇到的一些具有相反意义的量,教师针对学生列举的例子给予适当点评,鼓励。
判断一些量是否具有相反意义:(出示幻灯片一)。
例1、判断下面各对量是不是具有相反意义的量。
(1)温度是零上25℃和零下18℃;
(2)某条河的水位上升0.7米和下降1.2米。
(3)珠穆朗玛峰高于海平面8844.43米和吐鲁番盆地最低点低于海平面155米。
教师针对学生的答题情况给予评价。
二、具有相反意义的量的表示方法:
教师综上进行引导:
一般地,对于具有相反意义的量,我们可以把其中一种意义的量规定为正,并在表示这量的前面放上一个“+”(读作“正”)来表示;把与它意义相反的量规定为负的,并在表示这个量的前面放上一个“-”(读作“负”)来表示(零除外)。
鼓励学生任意结组,举例说明,巩固练习。
做一做:(出示幻灯片二)。
1、请你仿照天气预报中对气温的表示方法,完成下表:
意义:向东走1.8千米,向西走3千米,收入14200元支出4745元,水位上升30厘米水位下降50厘米,表示+1.8千米+14200元+30厘米。
2、请你把下面句子中的量用“+”或“-”的数表示出来。
(1)一辆公共汽车在一个停车站下去10个乘客。
(2)珠穆朗玛峰高于海平面8844.43米和吐鲁番盆地最低点低于海平面155米。
(3)商品价格上涨10%和下降15%。
教师对学生的回答,给予鼓励性评价,最后板书答案。
议一议:(出示幻灯片三)。
观察由前面的问题得到的数:
教师根据学生的回答,归纳总结,同时板书课题及正、负数的概念。
在已学过的数(0除外)的前面添上“-”得到的这样的数叫做负数;在已学过的数(0除外)的前面添上一个“+”得到的,这样的数叫做正数。
教师强调两点:
2、正数中的“+”可以省略不写。
四、巩固训练(出示幻灯片四)。
1、下面哪对量是具有相反意义的?
(1)在知识竞赛中,加20分和扣10分。
(2)一座水库水量增加10000立方米和减少12000立方米。
(3)某汽车站开进汽车28辆和开出汽车24辆。
(4)长方形的周长是24厘米和面积是27平方厘米。
2、写出与下列各量具有相反意义的量:
(1)飞机上升200米。
(2)铅球的质量低于标准质量2克。
(3)木材公司购进木材20xx立方米。
3、判断下列各数哪些是正数,哪些是负数。
+12,-3,19,+0.4,0,3.14,+,-,-0.01。
五、应用迁移,拓展升华。
(出示幻灯片五)。
填空:-1,2,-3,4,-5,_____,_____,
_____,_____……。
第81个数是_______,第20xx个数是_______.
教师针对学生的`回答进行点评,并适当鼓励。
下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”)。
星期日一二三四五六。
元+16+5.0-1.2-2.1-0.9+10-2.6。
(1)本周小张一共用掉了多少钱?存进了多少钱?
(2)储蓄罐中的钱与原来的相比多了还是少了?
(3)如果不用正负数的方法记账,你还可以怎样记帐?比较各种记帐方法的优劣。
教师参与学生的讨论,对学生的回答给予鼓励性的评价。
六、学习总结:
这节课你有哪些收获?有什么体会?
教师简要点评,同时对学生的总结给予适当的评价和鼓励,最后告诉学生,负数最早记载于中国的《九章算术》中,比国外早一千多年,借此向学生进行爱国主义思想教育。
1、课堂检测(包括基础题和能力提高题)。
2、开放探究:
同学聚会,约定在中午12点开会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为-1.5点,你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?一名学生按老师的指令表演,另一名学生在黑板上速记,其他同学参与,帮助本组的同学。
教师让多个学生自由发言。
学生独立思考,举手发表个人见解,其他同学可以互相补充。
每组同学之间相互合作,交流,一同学说有关相反的两个量,由其他同学表示。
让学生抢答,尽量照顾不同层次的学生参与的积极性在教师的引导下学生仔细观察,小组讨论、交流,发表个人见解,学生踊跃发言,相互补充、完善,尝试归纳。
学生独立思考,举手回答,教师尽量选多名学生回答。
学生分组讨论,相互交流意见,选派代表回答。
同桌或小组学生讨论,合作探究,对于第(3)问同学们可以各抒已见。
学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。
综合考查学以致用。
通过活动,激发学生参与课堂教学的热情,使学生进入问题情境,让其感受到引入数学符号的必要性,引入新课。
培养学生敢于发表自己见解的精神,激发学生学习的兴趣。
进一步加深巩固具有相反意义的量的意义,同时培养学生的语言表达能力。
巩固具有相反意义的量的表示方法,培养学生合作交流意识。
在练习中进一步巩固具有相反意义的量的表示方法。
在这一活动中有助于培养学生的观察能力,合作探究意识和语言表达能力,可调动不同层次学生的积极性。
巩固所学的知识,让多名学生回答,可调动不同层次的学生的积极性。
通过学生的讨论交流,培养学生合作意识及总结归纳能力。
通过这一实际问题,有助于提高学生运用所学的知识解决实际问题的能力,同时体现了运用正、负数表示的优越性。
学生尝试小结,自由发表学习心得,能培养学生的语言表达能力和归纳概括能力,同时向学生进行爱国主义思想教育。
考查学生对知识的掌握情况,锻炼学生综合运用知识,独立解决问题的能力。
附板书设计:
正数与负数的教案篇七
可见,正、负数在我们的生活中应用得很广泛,以后大家千万要留心身边的生活,在我们的日常生活中,处处都有要学的数学知识。
时间过得真快,马上就要下课了,你们过得高兴吗?说说有什么收获?
看着你们举起的手,大家都有所收获。
哪儿不明白?
我们不仅学会了知识,还学会了思考问题。下节课我们一起讨论解决大家提出的问题。
正数与负数的教案篇八
3、体验数学发展的一个重要原因是生活实际的需要;激发学生学习数学的兴趣。
重点深化对正负数概念的理解。
难点正确理解和表示指定方向变化的量,表示相反意义的量。
教学过程。
一、创设情景。
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们。
温度计上的-2,0,3分别表示是么意义?
二、自主探究。
(1)、一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。
(2)、2001年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家2001年商品进出口总额的增长率。
正数与负数的教案篇九
负数在我们的生活中随处可见。
1、电梯中的负数(出示课件)。
下面请同学看大屏幕,叔叔应该按哪个键?阿姨应该按哪个键?
2、存折上的负数。
3、方向问题(出示课件)。
我们继续往下看,默读题目,谁读懂了,谁能填空?
4、课本p73例4(出示课件)。
请看这幅图,我们以海平面为分界线,图中高于海平面有两点,低于海平面有哪几点?用正、负数读出图中的数据。
5、刘翔跨栏的画面(出示课件)。
认识他吗?请你默读信息,思考当时赛场风速每秒-0.4米是什么意思?谁能解释一下?
正数与负数的教案篇十
能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。
二。过程与方法。
借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。
三。情感态度与价值观。
培养学生积极思考,合作交流的意识和能力。
教学重、难点与关键。
1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2.难点:正确理解负数的概念。
3.关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。
教具准备。
投影仪。
教学过程。
四、课堂引入。
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。人们由记数、排序、产生数1,2,3,为了表示没有物体、空位引进了数0,测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.
五、讲授新课。
(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号-的数)叫做负数。而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上+(正)号,例如,+3,+2,+0.5,+,就是3,2,0.5,一个数前面的+、-号叫做它的符号,这种符号叫做性质符号。
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。
(4)、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。
用正负数表示具有相反意义的量。
(5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛地应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度。例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额。
(6)、请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义。
(7)、你能再举一些用正负数表示数量的实际例子吗?
(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。
六、巩固练习。
课本第3页,练习1、2、3、4题。
七、课堂小结。
为了表示现实生活中的具有相反意义的量,我们引进了负数。正数就是我们过去学过的数(除0外),在正数前放上-号,就是负数,但不能说:带正号的数是正数,带负号的数是负数,在一个数前面添上负号,它表示的是原数意义相反的数。如果原数是一个负数,那么前面放上-号后所表示的数反而是正数了,另外应注意0既不是正数,也不是负数。
八、作业布置。
1.课本第5页习题1.1复习巩固第1、2、3题。
九、板书设计。
正数与负数的教案篇十一
(第1课时)
知识与技能:使学生了解正数与负数是从实际需要中产生的;
情感与态度:在负数概念的形成过程中,培养学生的观察、归纳与概括的能力
负数的引入和意义
创设情景,生活实例引入,观察猜想,合作探究
(一)、从学生原有的认知结构提出问题
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.
为了表示一个人、两只手、……,我们用到整数1,2,……
为了表示半小时、四元八角七分、……,我们需用到分数1/2和小数4.87、……
为了表示“没有人”、“没有羊”、……我们要用到0.
但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.
(二)、师生共同研究形成正负数概念
某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.
它们是具有相反意义的两个量.
现实生活中,像这样的相反意义的量还有很多.
例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155 米,“高于”和“低于”其意义是相反的.
又如,某仓库昨天运进货物 吨,今天运出货物 吨,“运进”和“运出”,其意义是相反的.
同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的量才好呢?
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量筒明地表示出来了.
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;
运进纲物 吨,记作+ ;运出货物 吨,记作- .
教师讲解:什么叫做正数?什么叫做负数.
(三)、运用举例 变式练习
例1 所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:
-11,4,8,+73,-2,7, , ,-8,12, - ;
正数集合 负数集合
课堂练习
任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:
正数集合:{ …},
负数集合:{ …}
1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度
3.在下列各数中,哪些是正数?哪些是负数?
-16,0,004,+ ,- , 25,8,-3,6,-4,9651,-0,1.
4.如果-50元表示支出50元,那么+200元表示什么?
7.一物体可以左右移动,设向右为正,问:
(1)向左移动12米应记作什么?(2)“记作8米”表明什么?
1.1.2正数和负数
1、知识技能:进一步理解正、负数及零的意义,熟练掌握正负数的表示方法,会用正、负数表示具有相反意义的量。
2、数学思考:体会数学符号与对应的思想。
3、情感态度:师生合作,联系实际。培养学生的想象能力、理论联系实际的能 力、分析解决问题的能力,培养学生良好的个性品质和学习习惯。
教学重点:进一步理解正、负数及零表示的量的意义
教学难点:理解负数及零表示的量的意义
习题引入:
1.给出一组数,请学生说说哪些是正数、负数。
2.学生举例说明正、负数在实际中的应用。
【例1】
1、各组派一名同学进行如下活动:按老师的指令表演,看哪一组获胜。
2、分小组完成,用卷尺或皮尺量桌子的高度、桌面的长度和宽度,并将它们表示出来。(超出1米的部分用正数表示,不足1米的部分用负数表示。)
【例2】
1 .一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个 月的体重的增长值。
在学生已初步掌握新知识的前提下,由问题1 、2提高学生综合解决实际问题的能力
2.课堂练习: p5. 4 5
这堂课我们学习了那些知识?你能说一说吗?
教师引导学生回忆本节课所学内容。学生回忆、交流。教师和学生一起补充完善。教师要努力使学生自己回忆、总结、梳理所学的知识,将所学的知识与以前学过的知识进行紧密联结,完善认知结构。
p5 7 、8题
正数与负数的教案篇十二
例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值.
2.20xx年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.
写出这些国家20xx年商品进出口总额的增长率.
分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数.负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.
解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.
2.六个国家20xx年商品进出口总额的增长率分别为:
美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.
归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利-2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走-7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的意义.
正数与负数的教案篇十三
2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.
深化对正负数概念的理解.
正确理解和表示向指定方向变化的量.
(一)知识回顾和理解。
通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.
[问题1]:“零”为什么既不是正数也不是负数呢?
学生思考讨论,借助举例说明.
参考例子:用正数、负数和零表示零上温度、零下温度和零度.
思考“0”在实际问题中有什么意义?
归纳“0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.
如:水位不升不降时的水位变化,记作:0m.
(二)深化理解,解决问题。
[问题3]:(课本p3例题)。
【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:。
美国减少6.4%,德国增长1.3%,。
法国减少2.4%,英国减少3.5%,。
意大利增长0.2%,中国增长7.5%.
写出这些国家这一年商品进出口总额的增长率.
解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的`增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.
巩固练习。
1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.
2.让学生再举出一些常见的具有相反意义的量.
3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:。
中国减少866,印度增长72,。
韩国减少130,新西兰增长434,。
泰国减少3247,孟加拉减少88.
(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;。
(2)如何表示森林面积减少量,所得结果与增长量有什么关系?
(3)哪个国家森林面积减少最多?
(4)通过对这些数据的分析,你想到了什么?
阅读与思考。
问题:1.直径为30.032mm和直径为29.97mm的零件是否合格?
2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.
(三)应用迁移,巩固提高。
1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是.
3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:。
星期一二三四。
增减-5+7-3+4。
类比例题,要求学生注意书写格式,体会正负数的应用.
(四)课时小结(师生共同完成)。
正数与负数的教案篇十四
情感与态度:在负数概念的形成过程中,培养学生的观察、归纳与概括的能力。
负数的引入和意义。
创设情景,生活实例引入,观察猜想,合作探究。
(一)、从学生原有的认知结构提出问题。
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.
为了表示一个人、两只手、,我们用到整数1,2,
为了表示半小时、四元八角七分、,我们需用到分数1/2和小数4.87、
为了表示没有人、没有羊、我们要用到0.
但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.
(二)、师生共同研究形成正负数概念。
某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.
它们是具有相反意义的两个量.
现实生活中,像这样的相反意义的量还有很多.
例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,高于和低于其意义是相反的.
又如,某仓库昨天运进货物吨,今天运出货物吨,运进和运出,其意义是相反的.
同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的.量才好呢?
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上+或-号,就把两个相反意义的量筒明地表示出来了.
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;。
运进纲物吨,记作+;运出货物吨,记作-.
教师讲解:什么叫做正数?什么叫做负数.
(三)、运用举例变式练习。
例1所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:
-11,4,8,+73,-2,7,,,-8,12,-;。
课堂练习。
任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:
正数集合:{},
负数集合:{}。
1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度。
3.在下列各数中,哪些是正数?哪些是负数?
-16,0,004,+,-,,25,8,-3,6,-4,9651,-0,1.
4.如果-50元表示支出50元,那么+200元表示什么?
7.一物体可以左右移动,设向右为正,问:
(1)向左移动12米应记作什么?(2)记作8米表明什么?
正数与负数的教案篇十五
1、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号-的数)叫做负数。而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上+(正)号,例如,+3,+2,+0.5,+,就是3,2,0.5,一个数前面的+、-号叫做它的符号,这种符号叫做性质符号。
2、随堂练习。
3、小结。
4、课后作业。
十、课后反思。