高一数学必修教案大全(15篇)
编写教案可以帮助教师更好地把握教学进度和教学效果。教案的编写需要考虑学生的兴趣、学习方式和认知发展特点。以下是小编为大家整理的一些优秀教案范例,供大家参考。希望通过这些范例,大家能够更好地理解教案的编写思路和方法,进一步提升自己的教学水平。在教育教学的道路上,让我们一起努力,不断探索和创新,为学生的成长和未来贡献自己的力量。总结起来,编写教案不仅仅是一种任务,更是一种责任和使命。让我们共同努力,打造出更优秀的教案,为教育事业添砖加瓦。
高一数学必修教案篇一
(2)了解区间的概念;。
(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;。
【问题诊断分析】在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。
问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.
1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?
1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?
设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。
问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的`图象,都有的一个臭氧层空洞面积s与之相对应。
问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。
设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。
高一数学必修教案篇二
(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像。
二、重点难点分析。
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉。教学的难点是领悟函数单调性,奇偶性的本质,把握单调性的证实。
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点。
三、教法建议。
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来。
(2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。
函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式时,就比较轻易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。
高一数学必修教案篇三
用坐标法解决几何问题的步骤:
第二步:通过代数运算,解决代数问题;
第三步:将代数运算结果“翻译”成几何结论、
重点与难点:直线与圆的方程的应用、
问 题设计意图师生活动
生:回顾,说出自己的看法、
2、解决直线与圆的位置关系,你将采用什么方法?
生:回顾、思考、讨论、交流,得到解决问题的方法、
问 题设计意图师生活动
3、阅读并思考教科书上的例4,你将选择什么方 法解决例4的'问题
生:自 学例4,并完成练习题1、2、
生:建立适当的直角坐标系, 探求解决问题的方法、
8、小结:
(1)利用“坐标法”解决问对知识进行归纳概括,体会利 师:指导 学生完成练习题、
生:阅读教科书的例3,并完成第
问 题设计意图师生活动
题的需要准备什么工作?
(2)如何建立直角坐标系,才能易于解决平面几何问题?
(3)你认为学好“坐标法”解决问题的关键是什么?
高一数学必修教案篇四
忙碌的日子总是过得很快,转眼间期中考试的时间又到了,我们高一数学必修四的教学也进入了最后的复习冲刺阶段。回顾半学期以来,我对前面的教学感受颇深。
必修四由三角函数、平面向量、和三角恒等变换三章构成,三角函数与三角恒等变换是高中数学课程的传统内容,平面向量基本上也是,因此,本模块的内容属于“传统内容”。与以往的教科书相比较,本书在内容、要求以及章节安排、处理方法上都有新的变化。
在内容安排上,第一章三角函数的学习为第二章平面向量作了必要的准备,同时应用第二章平面向量的知识推导两角差的余弦公式,使第三章三角恒等变换可以独立成章。学习完后,心中有几点体会如下:
高一数学必修教案篇五
掌握三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型·。
·利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·。
一、练习讲解:《习案》作业十三的第3、4题。
(精确到0·001)·。
米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?
本题的解答中,给出货船的`进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。
练习:教材p65面3题。
三、小结:1、三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型·。
2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·。
四、作业《习案》作业十四及十五。
高一数学必修教案篇六
o通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力·。
教学难点:平行向量、相等向量和共线向量的区别和联系·。
(一)向量的概念:我们把既有大小又有方向的量叫向量。
(二)(教材p74面的四个图制作成幻灯片)请同学阅读课本后回答:(7个问题一次出现)。
1、数量与向量有何区别?(数量没有方向而向量有方向)。
2、如何表示向量?
3、有向线段和线段有何区别和联系?分别可以表示向量的什么?
4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?
6、有一组向量,它们的方向相同或相反,这组向量有什么关系?
7、如果把一组平行向量的起点全部移到一点o,这是它们是不是平行向量?
这时各向量的终点之间有什么关系?
课后小结。
1、描述向量的两个指标:模和方向·。
2、平面向量的概念和向量的几何表示;
3、向量的模、零向量、单位向量、平行向量等概念。
高一数学必修教案篇七
一、除了高等植物成熟的筛管细胞和哺乳动物成熟的红细胞等极少数细胞外,真核细胞都有细胞核。植物的导管细胞是死细胞(主要运输水分、无机盐),筛管主要运输有机物。
二、细胞核控制着细胞的代谢和遗传。
三、细胞核的结构。
2.染色质(主要由dna和蛋白质组成,dna是遗传信息的载体。
4.核孔(实现核质之间频繁的物质交换和信息交流)核孔有选择透过性,上面有载体,大分子物质(蛋白质和mrna)出入细胞需要能量和载体,细胞代谢越旺盛,核孔越多,核仁体积越大。
四、细胞分裂时,细胞核解体,染色质高度螺旋化,缩短变粗,成为光学显微镜下清晰可见的圆柱状或杆状的染色体。分裂结束时,染色体解螺旋,重新成为细丝状的染色质。染色质(分裂间期)和染色体(分裂时)是同样的物质在细胞不同时期的两种存在状态。
五、细胞既是生物体结构的基本单位,又是生物体代谢和遗传的基本单位。
高一数学必修教案篇八
教学目标。
理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.
教学重难点。
1.教学重点:两角和、差正弦和正切公式的推导过程及运用;。
2.教学难点:两角和与差正弦、余弦和正切公式的灵活运用.
教学过程。
高一数学必修教案篇九
1、教材(教学内容)。
2、设计理念。
3、教学目标。
情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、
4、重点难点。
重点:任意角三角函数的定义、
难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、
5、学情分析。
6、教法分析。
7、学法分析。
本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标。
高一数学必修教案篇十
教学目标。
熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。
掌握两角和与差的正、余弦公式,能用公式解决相关问题。
教学重难点。
熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。
教学过程。
复习。
两角差的余弦公式。
用-b代替b看看有什么结果?
高一数学必修教案篇十一
一、创设情景,激趣导入。
学生活动:学生猜测各种可能性,你一言我一语地发表自己的高见。师:大家的猜测都有自己的道理,但答案到底是什么呢?暂时老师还不想告诉你们,我想通过下面的活动,大家一定能自己找到答案的。
二、探究体验,经历过程。
1、教学例1.
方法一:
师:学校准备从每个班中选几名热爱运动的学生参加体育训练,为下学期的校运动会做准备。下面是三(1)班参加跳绳、踢毽比赛的学生名单。
学生可能回答;
一共有17人,9+8=17(人)。
可是,参加这两项活动的没有17人呀。
我发现有的人两项活动都参加了。
应该是一共有14人参加了,算式是9+8-3=14(人)。
师:到底怎么回事呢?为什么有人说一共是14人呢?为什么要减去3呢?
生:因为有3个人重复了。
生:因为这3个人既参加了跳绳,又参加了踢毽。
生:因为跳绳的9人里面有这3个人,踢毽的8人里面也有这3个人,所以计算的时候就不能是9+8=17(人),还应该减去3人,所以是9+8-3=14(人)。
生:因为9+8就把这3个人重复算了,也就是多算了一遍,所以要减掉3人。
师:同学们的发言真是精彩,报名参加校体育训练的一共有多少名同。
学呢?
生:14人。
方法二:
师:为了能使同学们更方便的看清楚,我们把一项活动演示一遍,请班里的`14名同学分别对应的替代其中一人,自己选一个替代的对象吧。
班内的14名学生分别选定自己要替代的人。
生:不知道站哪边。
师:哦?为什么?怎么会出现这样的情况呢?
生:站中间。
三位同学都站到了讲台的中间。
师:那左边、右边、中间分别表示什么?
生:左边表示参加跳绳的同学,右边表示参加踢毽的同学,中间就是两种训练都参加的同学。
方法三:
师:谁能用画图的方法来表示一下刚才看到的情形?
学生组内讨论,画出自己设计的图来,教师巡视观察了解情况并及时指导创作。
分组展示自己设计的图画,并介绍自己的创意或想法。
学生可能会说:
生1:我觉得左边的同学是代表参加跳绳的,应该圈在一起;右边的同学代表参加踢毽的,他们也应该圈在一起;中间的同学再画一个圈。师:这样的话,能不能让大家一看就知道中间的是既参加了跳绳的,又参加了踢毽的呢?再想想,看还有没有更好的画法。
生2:中间的同学也应该和左边的圈在一起,因为他们也参加了跳绳的呀。
生3:那我还说中间的还可以圈到右边呢,他们还参加了踢毽呢。师:那就按你们说的试试吧。
学生动手试着画图,并向全班展示。
方法四:
师:看图,说说每一部分分别表示什么?生:左边,表示只参加跳绳的;右边,表示只参加踢毽的;中间既参加跳绳又参加踢毽的。
师:你能列式计算这两个小组的人数吗?
生:9+8-3=14(人)。
生:(8-3)+3+(9-3)=14(人)。
高一数学必修教案篇十二
教学目标。
o了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量。
o通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别。
o通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力。
教学重难点。
教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量。
教学难点:平行向量、相等向量和共线向量的区别和联系。
教学过程。
(一)向量的概念:我们把既有大小又有方向的量叫向量。
(二)(教材p74面的四个图制作成幻灯片)请同学阅读课本后回答:(7个问题一次出现)。
1、数量与向量有何区别?(数量没有方向而向量有方向)。
2、如何表示向量?
3、有向线段和线段有何区别和联系?分别可以表示向量的什么?
4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?
6、有一组向量,它们的方向相同或相反,这组向量有什么关系?
7、如果把一组平行向量的起点全部移到一点o,这是它们是不是平行向量?
这时各向量的终点之间有什么关系?
课后小结。
1、描述向量的两个指标:模和方向。
2、平面向量的概念和向量的几何表示;
3、向量的模、零向量、单位向量、平行向量等概念。
高一数学必修教案篇十三
教学目标。
1、理解平面向量的坐标的概念;。
2、掌握平面向量的坐标运算;。
3、会根据向量的坐标,判断向量是否共线.
教学重难点。
教学重点:平面向量的坐标运算。
教学难点:向量的坐标表示的理解及运算的准确性.
教学过程。
平面向量基本定理:。
什么叫平面的一组基底?
平面的基底有多少组?
引入:。
1.平面内建立了直角坐标系,点a可以用什么来。
表示?
2.平面向量是否也有类似的表示呢?
高一数学必修教案篇十四
对课堂教学的有效性,我们不仅应该有全面衡量的意识,也应该有从定性与定量两方面衡量的意识。就当前课堂教学而言,我们要特别关注数学教学层次问题。以《平面向量基本定理》为例,采用“一个定理+三项注意”的模式,重点放在学生接受平面向量的基本定理和例题、习题的模仿与训练上,是一个层次;告诉学生平面向量基本定理蕴含着分解、转化思想,重点放在定理的得出和证明的方法上是另一层次;理解平面向量基底的作用与意义,师生共同探讨为什么要研究这个问题,怎样研究这个问题,搞清楚其中体现的数学思维是更高的一个层次;如果学生能由平面向量基本定理体会到“事物是相互联系、相互转化的”,“事情是由一定的基本要素构成的,可以用构成它的基本要素来表示”,“研究事物可转化为对它的基本要素的研究”,有助于养成理性地、有条理地思考和探究问题的习惯,那就更理想。
高一数学必修教案篇十五
1、使学生了解奇偶性的概念,回会利用定义判定简单函数的奇偶性。
2、在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和非凡到一般的思想方法。
3、在学生感受数学美的同时,激发学习的爱好,培养学生乐于求索的精神。
重点是奇偶性概念的形成与函数奇偶性的判定。
难点是对概念的熟悉。
投影仪,计算机。
引导发现法。
一。引入新课。
前面我们已经研究了函数的单调性,它是反映函数在某一个区间上函数值随自变量变化而变化的性质,今天我们继续研究函数的另一个性质。从什么角度呢?将从对称的角度来研究函数的性质。
(学生可能会举出一些数值上的对称问题,等,也可能会举出一些图象的对称问题,此时教师可以引导学生把函数具体化,如和等。)。
学生经过思考,能找出原因,由于函数是映射,一个只能对一个,而不能有两个不同的,故函数的图象不可能关于轴对称。最终提出我们今天将重点研究图象关于轴对称和关于原点对称的问题,从形的特征中找出它们在数值上的规律。
二。讲解新课。
2、函数的奇偶性(板书)。
学生开始可能只会用语言去描述:自变量互为相反数,函数值相等。教师可引导学生先把它们具体化,再用数学符号表示。(借助课件演示令比较得出等式,再令,得到,详见课件的使用)进而再提出会不会在定义域内存在,使与不等呢?(可用课件帮助演示让动起来观察,发现结论,这样的是不存在的)从这个结论中就可以发现对定义域内任意一个,都有成立。最后让学生用完整的语言给出定义,不准确的地方教师予以提示或调整。
(1)偶函数的定义:假如对于函数的定义域内任意一个,都有,那么就叫做偶函数。(板书)。
(给出定义后可让学生举几个例子,如等以检验一下对概念的初步熟悉)。
提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?(同时打出或的图象让学生观察研究)。
学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义。
(2)奇函数的定义:假如对于函数的定义域内任意一个,都有,那么就叫做奇函数。(板书)。
(由于在定义形成时已经有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)。
例1。判定下列函数的奇偶性(板书)。
(1);(2);
(3);;
(5);(6)。
(要求学生口答,选出12个题说过程)。
解:(1)是奇函数。(2)是偶函数。
(3),是偶函数。
学生经过思考可以解决问题,指出只要举出一个反例说明与不等。如即可说明它不是偶函数。(从这个问题的解决中让学生再次熟悉到定义中任意性的重要)。
从(4)题开始,学生的答案会有不同,可以让学生先讨论,教师再做评述。即第(4)题中表面成立的=不能经受任意性的考验,当时,由于,故不存在,更谈不上与相等了,由于任意性被破坏,所以它不能是奇偶性。
可以用(6)辅助说明充分性不成立,用(5)说明必要性成立,得出结论。
(3)定义域关于原点对称是函数具有奇偶性的必要但不充分条件。(板书)。
由学生小结判定奇偶性的步骤之后,教师再提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明。
例2。已知函数既是奇函数也是偶函数,求证:。(板书)(试由学生来完成)。
(4)函数按其是否具有奇偶性可分为四类:(板书)。
例3。判定下列函数的奇偶性(板书)。
(1);(2);(3)。
由学生回答,不完整之处教师补充。
解:(1)当时,为奇函数,当时,既不是奇函数也不是偶函数。
(2)当时,既是奇函数也是偶函数,当时,是偶函数。
(3)当时,于是,
当时,,于是=,
综上是奇函数。
教师小结(1)(2)注重分类讨论的使用,(3)是分段函数,当检验,并不能说明具备奇偶性,因为奇偶性是对函数整个定义域内性质的刻画,因此必须均有成立,二者缺一不可。
三。小结。
1、奇偶性的概念。
2、判定中注重的问题。
四。作业略。
五。板书设计。
2、函数的奇偶性例1.例3.
(1)偶函数定义。
(2)奇函数定义。
(3)定义域关于原点对称是函数例2。小结。
具备奇偶性的必要条件。
(4)函数按奇偶性分类分四类。
(1)定义域为的任意函数都可以表示成一个奇函数和一个偶函数的和,你能试证实之吗?
(2)判定函数在上的单调性,并加以证实。
在此基础上试利用这个函数的单调性解决下面的问题: