2023年数学教案-平行四边形的面积(汇总22篇)
编写教案可以帮助教师对所教授的知识、技能和情感态度进行更加深入的理解和整合。选择合适的教学方法和教学资源,激发学生的学习兴趣和主动性。以下是一些优秀教案的分享,供各位教师参考和学习。
数学教案-平行四边形的面积篇一
2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
掌握平行四边的面积计算公式,并能正确运用。
把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
动手操作、小组讨论、演示等。
2、“同学们真会用数学的眼光观察,老师还有一上问题,门口的这两个花坛哪一个比较大呢?”
1、用数方格的方法验证:
2、猜测:
不数方格,你有什么好方法验证?能把平行四边形转变成我们学过的图形来计算它的面积吗?可以转变成什么图形呢?怎么样才能用最简单的方法把平行四边形转变成长方形?(小组讨论)请同学们借助手中的平行四边形、剪刀等学具剪一剪,拼一拼(学生操作,四人小组比一比谁剪得快、好)。
学生边操作边叙述自己实验过程。“你把平行四边形转化成了什么图形?你是怎样转化的?”教师演示。“这两种方法都沿着什么来剪?为什么?”
小组讨论:平行四边形转化成长方形后,什么变了?什么没变?
转化后,长方形的长与平行四边形的底有什么关系?宽与平行四边形的高有什么关系?
平行四边形的面积怎样计算吗?(板书:平行四边形的面积=底x高)(字母式)。
小结:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。
刚才大家不仅验证了前面提出的猜想,还继续应用了“转化”的思想,转化是一种很重要的数学方法,大家在以后还会经常用到。
3、应用:出示例1,谁来说一说你是怎么做的?
要求平行四边形的面积,我们必须知道哪些条件?
反思:在本节课中,本来操作应能提高学生学习的积极性,但在引导学生把平行四边形转化成长方形时,交待不清,学生不明白老师要求做什么,怎么做。欠缺形式,气氛不够热烈。教师在备课时应预设学生的反应,不应只关注自己的设计和练习。语言不够精练,激励语言较少,生生互动少。
数学教案-平行四边形的面积篇二
1、使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
:学习卡,每个学生准备一个平行四边形。
一、导入。
1、观察主题图(课件出示),让学生找一找图中有哪些学过的图形。
3、引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。
1、用数方格的方法计算面积。
(1)用多媒体出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中。
(2)独立完成。
(3)汇报结果。
(4)观察表格的数据,你发现了什么?
通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
学生讨论,鼓励学生大胆发表意见。
(2)归纳学生意见,提出:是不是这样计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
请学生演示剪拼的过程及结果。
教师用课件或教具演示剪—平移—拼的过程。
(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?(小组讨论)。
小组汇报,教师归纳:
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。
3、教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
4、出示例1。读题并理解题意。
三、巩固和应用。
1、判断,并说明理由。
2、计算。
四、体验。
五、作业:练习十五第1、2题。
六、板书设计。
s=ah。
数学教案-平行四边形的面积篇三
内容分析:
九年义务教育六年制小学数学教材关于几何初步知识的安排特点是:从一年级第一册教材起逐步安排学生能够接受的几何初步知识,其中第六册教材中安排了长方形和正方形的面积计算;第八册教材中安排了平行四边形、三角形和梯形的认识,清楚了其特征及底和高的概念。而本册(第九册)教材中“平行四边形的面积”,是在学生掌握上述内容的基础上安排的。所以若想使学生理解掌握好平行四边形面积公式,必须以长方形的面积与平行四边形的底和高为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外平行四边形面积公式这一内容学习得如何,直接与学习三角形和梯形的面积公式有着直接的关系。
教学目标:
1.使学生理解并掌握平行四边形面积计算公式,会运用平行四边形的面积公式求平行四边形的面积。
2.发展学生的空间思维能力。
教学重点:
使学生能够运用平行四边形面积公式正确计算出平行四边形面积。
教学难点:
将本文的word文档下载到电脑,方便收藏和打印。
数学教案-平行四边形的面积篇四
平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。
五年级的学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
1、知识目标:使学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积。
2、能力目标:通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。
3、情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。
教学重点:使学生理解和掌握平行四边形的面积的计算公式,并能正确地计算平行四边形的面积。
教学难点:使学生理解平行四边形面积公式的推导方法及过程。
1、情景导入(出示课件)。
板书:长方形的面积=长×宽。
正方形的面积=边长×边长。
1.用数方格的方法计算面积。
(1)课件出示教材第80页方格图:现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。说明要求:一个方格表示1平方米,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。
(2)合作完成,汇报结果,可展示学生填好的表格。
(3)观察表格的数据,你发现了什么?
通过学生讨论,得到:平行四边形的底与长方形的长相等、平行四边形的高与长方形的宽相等;这个平行四边形面积等于长方形的面积。
(1)引导:我们已经知道长方形的面积用长乘宽计算,平行四边形的面积怎样计算呢?请大家大胆猜测一下吧。
(3)引导解决方法:这只是我们的一种猜想,是不是这样呢,需要验证一下。能不能把平行四边形转化成长方形呢?实践操作是验证猜想的好办法。
(4)学生活动:拿出你们准备的平行四边形,以四人为一小组,用课前准备的平行四边形和剪刀进行剪拼,教师巡视指导。
(5)学生汇报演示剪拼的过程及结果。
(6)教师用课件演示剪—平移—拼的过程。
(8)出示讨论题,小组讨论。
(9)小组汇报交流,教师归纳:
把平行四边形转化成一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
3.教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
s=a×h。
s=a.h或s=ah。
1、出示例1、一块平行四边形花坛的底是6米,高是4米,它的面积是多少?
(1)读题并理解题意。
(2)学生试做,交流做法和结果。
s=ah=6×4=24(m2),。
答:它的面积是24平方厘米。
2、我们的生活中,有很多图形是不规则的,比如我国台湾省的地形图。台湾地形图的实际底大约是300千米,实际高大约是120千米,你有办法算出它的大概面积吗?(课件出示)。
s=a.h。
=300×120。
=36000(平方千米)。
答:台湾省的大概面积是36000平方千米。
这节课你是怎么学习的?你有哪些收获?
我们今天学习了平行四边形面积的计算方法,智慧爷爷想出题来考考大家。请听听:
1、猜谜游戏:有一个平行四边形,它的面积是12平方分米,请你猜一猜它的底和高各应是多少?看谁猜出的答案最多。
2、思考:用求平行四边形面积的方法,想一想三角形的面积可以怎样求?
数学教案-平行四边形的面积篇五
教学内容。
教材64~66页的例题和“做一做”,练习十六的第1~3题。
教学目标。
能力目标:通过操作进一步发展学生思维能力。培养学生运用转化的方法解决实际问题的能力,发展学生的空间观念。
情感目标:引导学生运用转化的思想探索规律。
教学重点。
教学难点。
教学准备。
powerpoint课件、平行四边形纸片、剪刀。
教学过程。
教学环节。
师生活动。
设计意图。
复习引入。
(二)出示不规则图形1。
15米,宽10米,底7米,高21米)求出长方形的面积比平行四边形的面积大,在学生选择清洁区的同时进行思想品德教育。
3、课堂质疑(主要解决学生用平行四边形的底乘以斜边求出面积的问题。)。
结合学生原有认知水平,创设问题情景,把生活问题转化为数学问题,利用矛盾,激发学生的学习兴趣,让学生感受到知识来源于生活,从而产生学习数学的需要。
突破以往的教学思路,不但引导学生转化图形还要让学生明白图形转化的依据,为以后的图形转化起了一个导航的作用。整个过程以学生为主体,培养学生自主探索、合作学习,鼓励他们大胆质疑,开拓和发展学生的创造思维,培养学生发现问题,提出问题,解决问题的能力。同时配合教师的适时点播质疑,把问题引向深入,从而也发挥教师引导者的作用。
公式的推导,建构了学生头脑中新的数学模型:转化图形(依据特征)---建立联系---推导公式。整个过程是学生在实践分组讨论中,不断完善提炼出来的,教师完全把学生置于学习的主体,把学习数学知识彻底转化为数学活动,培养了学生观察、分析、概括的能力。利用所学知识解决了课前矛盾,恰当的进行了思想品德教育,提高了学生学习数学的兴趣。
练习反馈。
底5厘米,高3.5厘米底6厘米,高2厘米。
2、计算下面图形的`面积哪个算式正确?(单位:米)。
83。
4
6
3×83×64×86×83×44×6。
56平方厘米8厘米。
5、开放题:山西地形图。先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。
课堂小结:回忆一下今天推导平行四边形面积公式的过程,(转化图形)---(建立联系)---(推导公式)。而转化图形和建立联系这两个环节都利用了图形的特征来进行。
分层习题的设置为不同的学生提供了各自施展的舞台,同时也体现数学知识生活化,开放的山西地形图,不仅拓宽了学生的思路,使数学同学生的课外知识配合,而且培养了学生估算的能力,更建立起了学科之间的联系,进一步培养了学生学习数学的兴趣。
全课总结反思体验。
这节课我们学习了什么?你有哪些收获?
小结:面对着求平行四边形面积的问题,我们利用割补的方法把平行四边形转化成学过的长方形,用旧知识解决了新问题,以后我们还要用这种思想方法继续学习其他图形的面积计算。
作业。
数学教案-平行四边形的面积篇六
义务教育课程标准实验教科书人教版小学数学五年级上册第五单元《平行四边形的面积》第一课时(包括教材80―81页例1、例2和“做一做”,练习十五中的第1―4题。)通过实验、操作、观察图形的拼摆、割补理解平行四边形的面积计算公式的来源,从而进行分析、概括出面积计算公式,进一步发展学生的思维能力和发展学生的空间观念。
学情分析。
1、学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形的面积计算,加上这些平面图形在生活中随处可见,应用也十分广泛,学生学习时并不陌生。
2、从学生的现实生活与日常经验出发,设置切近生活的情境,把学习过程变成有趣的活动。
教学目标。
知识与技能。
过程与方法:
2、发展学生的空间观念。
情感态度与价值观:引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力。通过演示和操作,使学生感悟数学知识内在联系的逻辑之美,加强审美意识。
教学重点和难点。
重点、难点:理解和掌握平行四边形的面积计算公式;理解平行四边形的面积计算公式推导过程。
教学过程。
一、复习导入。
1、什么叫面积?常用的面积计量单位有那些?
2、出示一张长方形纸,他是什么形状?它的面积怎么算?
二、探究新知。
2、用数方格的方法计算面积。
(1)用幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。
(2)同桌合作完成。
(3)汇报结果,可用投影展示学生填好的表格。
(4)观察表格的数据,你发现了什么?通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
(2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。
a、学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
b、请学生演示剪拼的过程及结果。
c、教师用教具演示剪。
数学教案-平行四边形的面积篇七
师:我们一起回忆一下,已经学过长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)。
师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)。
生活动后汇报如下:
长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米。
(1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米。
1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。
你觉得哪种更合理?能不能举个例子,证明哪种是错误的。
生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。
师:这位同学想到了平行四边形容易变形的特征。大家觉得有道理吗?
生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。
师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)。
生:(兴奋地)高!
3、师:用什么办法可以比较它们的面积大小呢?
生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。
师:变成长方形后,面积大小变了没有?
生:没有。
生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。
生:6是长方形的长,也是平行四边形的'底,3是拼成后的长方形的宽,也是平行四边形的高,所以第二种猜想是正确的。
师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。
师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。
根据学生反馈情况进行课件演示,出现几种拼法(略)。
师:这几种剪拼方法有什么相同之处?
生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。
生:在剪拼过程中,图形的形状变了,面积不变。
生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。
师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?
生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。
师:我们用s表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为s=ah。
师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?
数学教案-平行四边形的面积篇八
九年义务教育六年制小学数学第九册70页一72页。
1.使学生理解平行四边形面积计算公式的来源,能运用公式正确地计算平行四边形的面积,并会计算一些简单的有关平行四边形面积的实际问题。
2.培养学生初步的逻辑思维能力和空间观念。
3.结合教材渗透转化思想。
课前准备:投影器、长方形框架、平行四边形纸片等。
师:同学们,你们知道曹冲称象的故事吗?曹冲是怎样称出大象的重量的?
学生自由发言。
师:长方形花坛的面积你们肯定会算,知道什么就可以了?平行四边形的面积会算吗?今天咱们就一起来探讨平行四边形的面积。(板书)。
1、自主探索。
出示一平行四边形纸片,这是一张平行四边形的纸片,想一想,你们有办法知道它的面积吗?也可以和组里的同学商量讨论,如果有需要的材料可以到我给大家准备的学具袋里去找一找,咱们比比看,哪个小组的同学最先知道这个平行四边形的面积!
学生以小组为单位开展活动,教师巡视。
汇报、反馈:都有结果了吧,哪个小组先来汇报?
各小组派代表发言。
2、对比分析。
每个小组都得到了这个平行四边形的面积,咱们一起来看看这些方法。课件展示学生的主要方法。
3、归纳总结。
1、(课件出示例题)这是五二班选的花坛的相关数据,现在能求出它的面积了吧?
2、p82看第2题。
3、课件出示:p83第题,这两个平行四边形的面积相等吗?为什么?
数学教案-平行四边形的面积篇九
本节课教法上最大的特点是让学生动手操作,把静态知识转化成动态,把抽象数学知识变为具体可操作的规律性知识。指导学生理论联系实际,开展多次讨论,使他们自主、快乐地解决问题。
在本节课中,我还力图体现出学生学习方法的转变:从被动接受学习变为在自主、探究、合作中学习。让学生自己提出问题,再自己想办法解决,并能以小组为单位共同合作完成;让学生亲身体验知识的形成过程,促进学生思维的发展。
在导入部分我采用了创设生活情境,设疑引入的方法来激发学生的学习兴趣,这为充分发挥学生主体作用奠定了基础。
在探究过程中,我很重视学生动手操作、自主探索和合作交流的学习方式,大胆放手,给学生时间和空间,让他们在熟悉的具体情境中,通过探究和体验,感受新知;联系生活经验,构建新知;小组合作交流,扩展新知;创新活动设计,超越新知。
数学教案-平行四边形的面积篇十
本节课主要探索并掌握平行四边形面积计算公式,如何把平行四边形转化成长方形是本节课教学的重要内容。掌握这个过程和方法,将为学生探索三角形、梯形等面积的计算打下基础。教材从实际出发,设计了四个递进的问题。第一个问题是猜想如何求平行四边形的面积;第二个问题是借助方格纸验证猜想是否正确;第三个问题是运用割补法把平行四边形转化为长方形;第四个问题是探究平行四边形面积的计算公式。
二年级同学们已经学过如何计算长方形的面积,在四年级同学们已经认识了平行四边形,在上一节课中又认识了平等四边形的底和高,并能在平行四边形中正确画出与指定底边相对应的高,知道了平形四边形有无数条高。本节课则通过动手操作探究,推导出平行四边形面积计算公室,并能运用平行四边形面积公式解决相关问题。
经历平等四边形面积猜想与验证的探究活动,体验数方格及割补法在探究中的应用,获得成功探索问题的体验。
掌握平行四边形面积计算公式,并能正确计算平形四边形的面积。
能运用平形四边形的面积计算公式解决相关的问题。
实验探究、推理验证、小组合作学习。
课件、剪刀、准备平行四边形若干。
一、开门见山,导入新课。
二、新知探究。
1.分析平行四边形给定的3个数据所表示的意义。
猜想:
(1)借助长方面的面积计算方法,用相邻的两边相乘来计算的。
(2)提出来数方格的。方法来试一试。看选择哪两个数来计算比较好。
3.借助方格纸数一数,比一比。
学生动手,可以用长为6厘米,宽为5厘米的长方形摆一摆,也可以用主题图中等比例缩放的平行四边形放在方格纸上数一数。
要求:
(1)独立完成。
(2)小组内交流一下你的想法。
(3)方法展示。
这只是我们的猜想,那如何来验证我们的猜想是否成立呢?
4.平形四边形如何转化为长方形,验证猜想。
(提示:你也可以用剪刀将图形剪一剪。看能不能转化成我们已经学过的知识来解决这个问题)。
(1)学生经且为单位,动手操作,体会平行四边形转化为长方形的过程。
(2)是不是沿任意一条高剪开都可以拼成长方形呢?
动手操作,验证猜想。
(3)将转化后的长方形与原来的平等四边形比一比,它们之间什么变了,什么没变?
生:它们的形状变了,由平形四边形转化成了长方形。周长变小了,面积没有变。
(4)再仔细观察,你还有什么发现?
生:转化后的长方形的长相当与原平行四边形的底,转化后的长方形的宽相当与原平等四边形中与底所对应的高。因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
(2)你会填吗?
a、把一个平行四边形转化成一个长方形,它的面积与原来平形四边形的面积(),长方形的长相当于平行四边形的(),长方形的宽相当于平行四边形的(),因为长方形的周长=(),所以平行四边表的面积=()。
b、如果用s表示平行四边形的面积,用a和h分别代表平行四边形的底和高,那么平等四边形的面积公式可以写成:s=()。
三、实践应用,巩固与提高。
1.计算下列图形的面积(抢答)。
(1)底为4厘米,高为2厘米。
(2)底为5分米,高为9分米。
(3)底为3米,高为7米。
2.判断,并说明理由。
四、课堂小结。
1.你今天学习了什么?有何收获?
长方形的面积=长×宽。
s=ah。
数学教案-平行四边形的面积篇十一
本节课中,学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我认为教学成功的关键在于学生是通过自主探究得到了知识,获得了发展。主要体现在以下几个方面:
一、创设卡通情境,激发探究欲望。
卡通人物是学生喜闻乐见的,所以我选用咖啡猫来创设情境。创设学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去,使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。著名数学家华罗庚说过:“人们对数学早就产生了枯燥乏味、神秘、难懂的印象,原因之一便是脱离了实际。”所以在教学中,教师要善于把这些有价值的问题置于学生熟悉的、感兴趣的实际生活情境中,使数学知识成为学生看得见、摸得着、听得到的现实,让数学贴近学生的生活,学生就会真正体会到生活中充满了数学,感受到数学的真谛与价值,从而喜欢数学。而本节课的情境创设正是在这种理念的支撑下,把问题赋予儿童化的色彩,使学生觉得好象不是在学习新的知识,而就是为了帮咖啡猫解决问题而寻找方法,所以学生都很乐意也很愿意主动去探究。
二、在动手中学习,在动手中思维。
“学习任何知识的最佳途径是通过自己的实践活动去发现,因为这样发现理解最深,也最容易掌握。”学生学习数学知识是主动建构过程,也就是说,学生学习数学只有通过自身的操作活动和主动参与的去做才能产生效果。现代教育理论主张让学生动手去“做”科学,而不是用耳朵“听”科学。这节课我给了学生足够的时间和空间去动手操作,都是学生的智慧,然后让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,真正使学生在动手中学习,在动手中思维,学习主人翁的地位充分展现。
三、初步体验科学探究的方法。
科学探究的方法是创新能力的必要基础,是每个公民必须具备的基本素质。纵观整个教学过程,初步体现了“提出问题——大胆猜测——反复验证——总结规律——灵活运用”这一科学探究的方法,让学生通过自身的实践活动对科学探究的方法有了初步的了解,体验到知识的产生都经历了曲折艰苦的创新过程。因此,我在把握教材内涵的基础上,把教材的知识结论变成学生主动参与、探究问题、发现规律的创新过程,培养了学生科学探究的精神,不仅使学生的智慧、能力得到发展,而且获得了深层次的情感体验。
本课教学中也有待于修正的地方,在学生动手操作,想想能不能把平行四边形转化为以前学过的图形时,学生的思路非常活跃,但有些同学没有明确转化的目的是为了计算平行四边形的面积,有的说能转化为两个三角形,有的说能转化成两个梯形……没有想转化后的图形面积会不会计算,所以教师在这时,应重点强调:能不能把平行四边形转化为原来学过的长方形,这样目的明确了,当学生转化为长方形后,就易于发现两个图形之间的关系,从而推导出平行四边形面积计算公式。所以,教师在备课时,应该充分备学生,多想想学生的理解、学生的思维、想法,这样才能使课堂教学更紧凑,让学生充分利用上课时间,学习最多的知识。
读书破万卷下笔如有神,以上就是为大家整理的4篇《五年级数学《平行四边形的面积》教案》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在。
数学教案-平行四边形的面积篇十二
我说课的内容是新世纪版数学五年级上册中的《平行四边形的面积》,我从以下几方面来说明:
一、教材分析、学生分析。
教材分析。
几何知识的初步认识贯穿在整个小学数学教学中,是按由易到难的顺序呈现的。平行四边行面积的计算是在学生已经掌握并能灵活运用长方行面积计算公式,理解平行四边行特征的基础上,进行教学的'。而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,扎实其几何知识学习的重要环节。
学生分析。
新课程沐浴下成长的五年级学生,在市级实验校的灵活开放的课堂中,学生们善于独立思考,乐于合作交流,课上表现极为活跃,语言表达能力较强,十分愿意发表独立见解,有较好的学习数学的能力。本单元前几节内容中,学生已经对数格子法、平移重合法、剪割拼补法有了一定的了解,但是,让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解平面图形之间的变换关系,发展空间观念。
教材处理。
依据新课程对图形与空间的教学要突出探究性活动的要求,体现《数学课程》的“过程性”目标,同时根据学生忆有的知识水平,我确立了本节课教学的重难点:
难点:使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。
二、教学目标。
根据新课标的要求及教材的特点,以“学生的全域发展”作为标准,从“知识与技能,过程与方法,情感、态度与价值观”三个维度确定如下教学目标:
知识目标:使学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积。
能力目标:通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。
情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。
三、教学方式、学习方式及评价方式。
教学方式:标准中指出:有效的数学活动不能单纯地靠模仿与记忆,动手操作、自主探索与合作交流是学习数学的重要方式。本节课,采用了情境教学法和引导探究法,组织学生开展丰富多彩的数学活动。在活动中充分调动学生学习的积极性、主动性,为他们创建一个发现、探索的思维空间,使学生更好地去发现、去创造。
学习方式:数学学习活动充满着观察、操作、推理、比较、交流、实验、模拟等探索性与挑战性的活动,本课多次鼓励学生自主探究、合作实践,组织学生认真观察、分析和讨论,在解决生活实际问题的过程中,通过动手实践、合作梳理来完成探究任务。
评价方式。
1、恰当评价学生的基础知识和基本技能。
2、注重对学生数学学习过程、学习状况、学习态度的评价。
3、重视对学生探究能力、解决问题能力的评价。
4、评价主体多元化,采用自评、互评、师评相结合的方式。
四、教学手段。
为了再现生活情境和展示知识的形成过程,使抽象的数学知识更直观形象地展现在学生眼前,采用多媒体课件来帮助学生理解知识形成过程与内在联系。
将本文的word文档下载到电脑,方便收藏和打印。
数学教案-平行四边形的面积篇十三
生1:卡片。
生2:奖品。
(学生逐个上台从信封中拿出物品)
生1:我拿出的是剪刀,打算用它剪东西。(师:板书:剪)
生2:我拿出的是一格格的东西,打算用它来量。
师: 我们给它一个名字,透明方格纸,用它量什么呢?
生2:我想用它量书本。
师: 书本的 (停顿)
生2:书面有几格?
师: 书的表面有几格其实就是它的面积,我们用1平方厘米的`方格纸数它的面积 。(板书:数)
生3:我拿出的是平行四边形(学具),我想知道它的许多秘密。
师: 平形四边形的秘密,这词用得真好!你的写作水平一定高。待会我们来研究它
这节课我们就用刚才这些学具来研究平行四边形的面积。
数学教案-平行四边形的面积篇十四
在《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。这节课我设立的教学目标是:
(2)通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
1、注重数学学习方法的渗透在数学教学中,要注重数学思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。我在这节课中,先让学生回忆长方形的面积是怎样求的?引出你能求平行四边形的面积吗?做到用“旧知”引“新知”,把“旧知”迁移到“新知,有利于有能力的同学向转化的方法靠拢。重视转化思想的渗透,通过自主探究和合作学习解决实际问题。通过把不熟悉的图形转化成我们熟悉的图形来计算它的面积,这在数学学习中是一种好的方法。让学生进一步理解转化思想的好处。为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。我有意识的引导学生多种方法剪拼,想突破平行四边形高有无数条,拼法也有无数种,可是没有达到预想的效果。在充分动手操作的基础上采用小组合作的方法比较平行四边形和长方形长和宽的关系,推导出平行四边形面积的计算公式。
2﹑充分给足学生自主探索的时间。
本节课的教学重点是掌握平行四边形的面积计算公式,并能正确运用公式解决实际生活问题。教学难点是把平行四边形转化已学过的基本图形,通过找关系推导出平行四边形的面积公式。所以我在本课设计了让学生自己动手剪,移,拼,把平行四边形转化成一个长方形,接着小组合作完成推到过程:长方形的面积与原平行四边形的面积相等,长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。学生通过亲自动手实践,实现新旧图形的转化,有利于学生主动构建新的认知结构,使知识的掌握更长久、牢固。同时在动手操作的过程中,学生的主体地位得到确立,边操作边思考,边观察边寻思,从中有所悟。
1、在进行把平行四边形转化为长方形时,让学生理解长方形的长、宽分别和平行四边形的底和高相等是学生推导平行四边形公式的关键,其中有两个学生到演示台上展示剪拼的方法的时候,说发现他们的面积相等,而我只强调了拼后的面积相等这个概念,为什么面积相等?这个关键的问题我却没有追问,由于担心时间不够也省了,忽视了学生在动手操作中,即将探究出的知识薄而未发,这样就使得学生的操作只停留到了表面,而没有在操作的过程深层次经历知识的形成过程,正因为在这个关键问题上疏忽,导致了学生对平行四边形面积推导过程茫然的情况。
2、学生在剪拼时,只注重结果,没有适时归纳过程。让学生理解只要沿着平行四边形的一条高剪下,都可以拼成一长方形。这一环节处理层次不够清晰,导致时间过长。虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。例如,平行四边形不但可已转化成长方形,如果是一个菱形(也就是四边相等的平行四边形),通过割补、平移是可以转化成正方形的,因为担心自己不能很好的把握课堂节奏,完不成教学任务,所以这节课我只处理了将平行四边形转化成长方形的一种情况,这样就限制了学生的思维,没有给学生思维的空间和机会。所以我在讲梯形和三角形的面积时便吸取了这次的经验教训。给学生思维的空间和机会,让他们从众多的方法中找到最适合自己的,加深学生对新知识的理解和掌握。
教学是一门有着缺憾的艺术。我相信做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
数学教案-平行四边形的面积篇十五
教学目标:
2、培养学生初步的逻辑思维能力及空间观念。
3、渗透转化的数学思想,培养学生的创造意识。
教学重点:
教学难点:
教学过程:
一、复习长正方形的面积,渗透转化思想。
1、复习长方形、正方形面积公式。
提问:(1)我们已经学过了哪些平面图形的面积?
(2)怎样计算?
数学教案-平行四边形的面积篇十六
10月12日我校开展小学数学图形与几何教学研讨活动,特级教师苏云燕为我们展示了一节高效的数学课《平行四边形的面积》,下面我就谈谈自己听课的体会:
1、使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2、通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。整个教学设计中,注重了学生空间观念的培养,主要体现在让学生经历获取知识的过程,整个教学活动让学生经历“发现问题,分析问题,大胆猜测,动手转化,验证猜想,解决问题”的过程,让学生不止获取了知识,对知识获取的过程更是记忆深刻。学生动手操作,把已知知识运用到未知知识中,将未知知识转化为已知知识。
一、注重数学思想方法的渗透。
苏老师先是课件出示学生喜爱的动画卡通人物熊大、熊二,吉吉国王给它们分了两块地(等底等高的长方形与平行四边形),熊二不高兴认为自己的地小了,苏老师先让学生大胆猜测,这两块地,到底那一块大?再让学生通过动手操作、验证平行四边形的面积,发现其实这两块地的面积是一样大的。这样的导入激发了学生学习的兴趣。
二、注重了师生互动、生生互动。
三、注重学生数学思维的发展。
数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的`心理活动统一起来。在这节课中,苏老师设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
数学教案-平行四边形的面积篇十七
1、掌握平行四边形的面积计算公式,并运用平行四边形的面积计算公式解决实际问题。
2、通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
3、在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。
课前布置预习第87――88页内容,完成预习单。
一、创设情境,导入新课。
1、课前交流与小故事。
师:同学们,今天我们班上来了非常多的老师听课,你们的心情怎么样呢x。
生紧张,激动……。
师:同学们,你们知道曹冲称象的故事吗x谁来说一说x。
生:古时候有一个叫曹冲的人看到一群人围着一头大象,没有办法把它称重。曹冲想了一个办法,先把大象赶到船上,然后做好标记,再把石头装入船上到了刚刚大象称的刻度,那石头的重量就是转化成了大象的重量。
师:说的非常好,讲的非常详细,小小老师。对,曹冲称象其实就是把大象的重量转化成了石头的重量。转化是数学中非常重要的'数学思想,转化就是把我们没有学过的转化成学过的,把复杂的转化成简单的,今天我们也来学习关于转化的数学问题。
师:同学们,看老师手上拿着的是什么图形呢x。
生:长方形。
生:表面的大小,面积计算公式是长乘宽。
师:对。说的很好,长方形的面积等于长乘宽。那现在老师手上拿着的又是什么图形呢x。
师:平行四边形的面积怎么计算呢x今天我们就一起来学习探究平行四边形的面积。(板书:平行四边形的面积)。
数学教案-平行四边形的面积篇十八
教具学具的准备:投影机,平行四边形,剪刀,三角板。
教学过程():
一、创设情景,设疑导入。
从小朋友劳动图片,出示长方形,平行四边形清洁区,设疑导入课题。
二、初步探究,数格求积。
分别出示一个平行四边形,长方形,用数方格的方法求出它们的面积。
三、动手操作,获取新知。
1、小组动手剪拼图形。
2、交流剪拼法及发现。
4、自学课本第64、65页的内容。
5、利用公式解决课前问题。(比较两块清洁区的大小,在学生选择清洁区的同时进行思想教育)。
6、课堂质疑:验证用公式算出来的结果和用数方格求出来的结果是否一样。
四、拓展练习,开创思维。
五、开放题。
六、通过这节课的学习,你有什么收获?
板书设计:
数学教案-平行四边形的面积篇十九
教具学具的准备:投影机,平行四边形,剪刀,三角板。
教学过程:
一、创设情景,设疑导入。
从小朋友劳动图片,出示长方形,平行四边形清洁区,设疑导入课题。
二、初步探究,数格求积。
分别出示一个平行四边形,长方形,用数方格的方法求出它们的面积。
三、动手操作,获取新知。
1、小组动手剪拼图形。
2、交流剪拼法及发现。
4、自学课本第64、65页的内容。
5、利用公式解决课前问题。(比较两块清洁区的大小,在学生选择清洁区的同时进行思想教育)。
6、课堂质疑:验证用公式算出来的结果和用数方格求出来的结果是否一样。
四、拓展练习,开创思维。
五、开放题。
六、通过这节课的学习,你有什么收获?
板书设计:
数学教案-平行四边形的面积篇二十
一、教学目标:
2、透过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的潜力。
3、感受数学与生活的联系,激发学数学的兴趣。
二、教学重点:掌握平行四边形的计算公式,能正确运用。
三、教学难点;把平行四边形转化成长方形,找到长方形与平行四边形的关系,从而顺利推导出平行四边形的面积计算公式。
四、教学过程:
1、创设情境、激趣导入。
生:想。
师:你们准备怎样解决?
师:怎样才能明白这块长方形菜地的面积?
生:测出菜地的长和宽,用长乘宽就等于面积。
生:不明白。
师:那我们这天就来研究怎样求平行四边形的面积(板书课题;平行四边形的面积)。
2、探究发现、提出猜想。
生:数格子。
师:下方我们就用这种方法来算算平行四边形的面积。(学生数格子,在书上填表)。
师:谁愿意帮老师把这个表格填一填(生上黑板填写)。
师;能告诉大家你是怎样数的吗?
生:我是先数整格,再数半格。
师:还有不一样数法吗?
生:……。
生:不方便。
师:既然不方便,那么不数格子,能不能计算出平行四边形的面积呢?
师:请同学们仔细观察表格中的数据,你发现了什么?
生:我发现平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。
生:我还发现这个平行四边形的底是6,高是4,而面积是24,正好是6与4的乘积。
师:他说的对不对呢?下方让我们动手操作验证一下吧。(学生验证,师巡视)。
3、验证猜想、推导公式。
师:哪个小组说说你们是怎样验证的?
生:我们小组把这个平行四边形沿着高剪开,然后拼成了一个长方形,这个长方形的长相当于平行四边形的底,宽相当于平行四边形的高。长方形的面积等于长乘宽,平行四边形的面积就就应等于底乘高。
师:这组同学想到了用剪拼的方法,将平行四边形转化成了长方形,用旧知识解决了新问题,十分好!这种转化的方法在数学中经常用到。
师:哪个小组再来说说你们是怎样验证的?
生:我们组也是沿着平行四边形的高剪的,把平行四边形拼成了长方形,得到平行四边形的面积公式是底乘高。(教师板书平行四边形的面积公式)。
师:平行四边形的面积还能够用字母表示,如果用s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高。怎样用字母表示平行四边形的面积。
生:s=ah。
4、解决问题,拓展延伸。
生列式。
师:这两块地的面积相等吗?能够换吗?
生:相等,能够换。
师口述例1、一个平行四边形花坛的底是6米,高是4米,它的面积是多少?
生:24平方米。
生:32÷4=8(米)。
师:老师这还有两道决定题。
师:任何一个平行四边形都能割补成长方形。
生:对。
生:不对,因为面积单位是平方米。
师:同学们表现真好,书中还为我们准备了一些搞笑的练习,我们去看一看吧。
生看第6题回答32÷4=8(米)8×8=64(米)。
生:周长没有变化。
师:你真是一个善于发现的孩子。
5、全课总结、深化认识。
生:我还明白任意一个平行四边形都能够拼成一个长方形。
师:同学们的收获真不少,老师很佩服你们!想一想,能不能用这节课的方法推导出三角形、梯形的面积公式?课后研究研究,老师相信你们必须能有所发现,有所收获的,这节课就上到那里。
数学教案-平行四边形的面积篇二十一
1、掌握平行四边形的面积计算公式,并运用平行四边形的面积计算公式解决实际问题。
2、通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
3、在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。
掌握平行四边形的面积计算公式,能运用公式解决实际问题。
理解平行四边形面积计算公式的推导方法与过程。
平行四边形、学习单等。
课前布置预习第87——88页内容,完成预习单。
一、创设情境,导入新课。
1、课前交流与小故事
师:同学们,今天我们班上来了非常多的老师听课,你们的心情怎么样呢?
生紧张,激动……
师:同学们,你们知道曹冲称象的故事吗?谁来说一说?
生:古时候有一个叫曹冲的人看到一群人围着一头大象,没有办法把它称重。曹冲想了一个办法,先把大象赶到船上,然后做好标记,再把石头装入船上到了刚刚大象称的刻度,那石头的重量就是转化成了大象的重量。
师:说的非常好,讲的非常详细,小小老师。对,曹冲称象其实就是把大象的重量转化成了石头的重量。转化是数学中非常重要的数学思想,转化就是把我们没有学过的转化成学过的,把复杂的转化成简单的,今天我们也来学习关于转化的数学问题。
师:同学们,看老师手上拿着的是什么图形呢?
生:长方形
生:表面的大小,面积计算公式是长乘宽。
生:平行四边形
师:平行四边形的面积怎么计算呢?今天我们就一起来学习探究平行四边形的面积。(板书:平行四边形的面积)
数学教案-平行四边形的面积篇二十二
教学目标:
知识目标:通过长方形面积计算知识迁移,理解长方形面积的计算公式,并能正确计算平行四边形面积。
能力目标:在比一比,动一动中发展空间观念,在看一看,想一想中初步感知等积转化的思想方法,提高分析问题、解决问题的`能力。
情感目标:通过活动,激发学习兴趣,培养互相合作、交流、探索的精神,感受数学与生活的密切联系。