六年级数学抽屉原理说课稿(汇总15篇)
不管做什么事情,都要有始有终,才能取得好的结果。一个优秀的总结应该具备客观性和客观分析能力,避免主观臆断和片面偏见。下面给大家分享一些成功的经验和故事,或许能给我们一些启发。
六年级数学抽屉原理说课稿篇一
六年级数学下册70页、71页例1、例2。
1、理解“抽屉原理”的一般形式。
2、经历“抽屉原理”的探究过程,体会比较、推理的学习方法,会用“抽屉原理”解决简单的的实际问题。
4、感受数学的魅力,提高学习兴趣,培养学生的探究精神。
经历“抽屉原理”探究过程,初步了解“抽屉原理”。
理解“抽屉原理”的一般规律。
相应数量的杯子、铅笔、课件。
让五位学生同时坐在四把椅子上,引出结论:不管怎么坐,总有一把椅子上至少坐了两名学生。
师:同学们,你们想知道这是为什么吗?今天,我们一起研究一个新的有趣的数学问题。
1、探究3根铅笔放到2个杯子里的问题。
师:现在用3根铅笔放在2个杯子里,怎么放?有几种放法?大家摆摆看,有什么发现?
摆完后学生汇报,教师作相应的板书(3,0)(2,1),引导学生观察理解说出:不管怎么放总有一个杯子至少有2根铅笔。
2、教学例1
(2)、学生汇报放结果,结合学具操作解释。教师作相应记录。
(4,0,0) (3,1,0) (2,2,0) (2,1,1)
(学生通过操作观察、比较不难发现有与上个问题同样结论。)
(3)学生回答后让学生阅读例1中对话框:不管怎么放,总有一个杯子里至少放进2根铅笔。
师:“总有”是什么意思?“至少”呢?让学生理解它们的含义。
师:怎样放才能总有一个杯子里铅笔数最少?引导学生理解需要“平均放”。
教师出示课件演示让学生进一步理解“平均放”。
3、探究n+1根铅笔放进n个杯子问题
师:那我们再往下想,6根铅笔放在5个杯子里,你感觉会有什么结论?
让学生思考发现不管怎么放,总有一个杯子里至少有2根铅笔。
师:7根铅笔放进6个杯子,你们又有什么发现?
……
学生回答完之后,师提出:是不是只要铅笔数比杯子数多1,总有一个杯子里至少放进2根铅笔?让学生进行小组合作讨论汇报。
学生汇报后引导学生用实验验证想法。
师:把10根小棒放在9个杯子里呢,总有一个杯子里至少有几根小棒?(2根)
师:把100根小棒放在99个杯子里,会有什么结论呢?(2根)
4、总结规律
a、先同桌摆一摆,再说一说。
b、你怎么分的?
引导学生知道再把两根铅笔平均分,分别放入两个杯子里。
(2)探究把15根铅笔放在4个杯子里的结论。
(3)、引导学生总结得出结论:商加1是总有一个杯子至少个数。
(4)教学例2
课件出示:
1、把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
2、把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
3、把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
学生汇报
小结:不管怎么放,总有一个抽屉里至少有“商加1”本书了。
师:这就是有趣的“抽屉原理”,又称“鸽笼原理”,最先同19世纪的德国数学家狄里克雷提出来的,所以又称“狄里克雷原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些今人惊异的`结果。
1、7枝笔入进5个笔筒里,不管怎么放,总有一个笔筒中至少有2枝笔。为什么?
2、8只鸽子飞回3鸽笼,不管飞,总有一个鸽笼里至少有3只鸽子。为什么?
板书设计:
抽屉原理
铅笔数(物体数) 杯子数(抽屉数) 总有一个杯子(抽屉)至少放进物体数
3 2 2
4 3 2
6 5 2
7 6 2
100 99 2
n+1 n 2
5 3 5÷3=1…2 1+1
15 4 15÷4=3…3 3+1
总有一个抽屉里至少放进物体的个数:商数+1
六年级数学抽屉原理说课稿篇二
抽屉原理是人教版数学六年级下册的知识。作为数学广角,目的是拓宽学生的思维方式方法,教给学生一种思考方式。我上完这节课后,感觉这节课中的知识学生理解起来真的很难。所以,课程的建模过程应该以活动为载体,带动学生的.思考。在充分活动的基础上理解总有与至少的含义。如进行坐椅子游戏,5个人坐在4把椅子上,不管怎样坐,总有一把椅子上至少有2个人。又如,4个桃子放在3个盘子里,不管怎样放总有一个盘子里至少有2个桃子。3支笔放进2个笔筒里,不管怎样放,总有一个笔筒里至少有2支笔。多次操作,分一分,描一描,说一说等活动体会总有与至少的含义,这些知识有只可意会不可言传的感觉。在建模后在分析具体问题时,先让学生说说把什么放在什么地方,体会待分物体与抽屉的关系,这样才能更好的找到至少数。
六年级数学抽屉原理说课稿篇三
“抽屉原理”应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。所以,本节课根据学生的认知特点和规律,在设计时着眼于开拓学生视野,激发学生兴趣,提高解决问题的能力,通过动手操作、小组活动等方式组织教学。
反思我的教学过程,有几下几点可取之处:
1、情境中激发兴趣。
兴趣是最好的老师。课前“抢椅子”的小游戏,简单却能真实的反映“抽屉原理”的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。
2、活动中恰当引导。
教师是学生的合作者,引导者。在活动设计中,我着重学生经历知识产生、形成的过程。4根吸管放进3个纸杯的结果早就可想而知,但让学生通过放一放、想一想、议一议的过程,把抽象的说理用具体的实物演示出来,化抽象为具体,发现并描述、理解了最简单的“抽屉原理”。在此基础上,我又主动提问:还有什么有价值的问题研究吗?让学生自主的想到:吸管数比纸杯数多2或其它数会怎么样?来继续开展探究活动,同时,通过活动结合板书引导学生归纳出求至少数的方法。
3、游戏中深化知识。
学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在试一试环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。
教学永远是一门遗憾的艺术。回顾整节课我觉得在学生体验数学知识的产生过程中,老师处理得还是有点粗,应该让学生加强动手操作,将动手操作与原理紧密结合,只有样才能使学生真正地经历数学知识的产生过程,学生才能真正地学到、理解知识。
将本文的word文档下载到电脑,方便收藏和打印。
六年级数学抽屉原理说课稿篇四
首先,我对本节教材进行一些分析:
本节内容在全书及章节的地位:《抽屉原理》是义务教育课程标准实验教科书第十二册第五单元第一节。本节共三个例题,例1、例2的教材通过几个直观例子,借助实际操作向学生介绍抽屉原理,例3则是在学生理解抽屉原理这一数学方法的基础上,用这一原理解决简单的实际问题。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生的展示数学原理的灵活应用,让学生感受数学的魅力,贯穿初步的数论及组合知识。
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
1、基础知识目标:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
2、能力训练目标:
1)、会用“抽屉原理”解决简单的实际问题。
2)、通过操作发展学生有根据、有条理地进行思考和推理的能力,形成比较抽象的数学思维。
3、个性品质目标:
通过“抽屉原理”的.灵活应用感受数学的魅力,产生主动学数学的兴趣。
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点。
重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。通过设计教学环节让学生动手操作,自主探索,小组合作交流的方法找到解决问题的关键,总结出解决问题的办法。
难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。通过不同类型的练习,以及观看鸽巢原理演示图,建构知识,从本质上认识抽屉原理,将抽屉原理模型化,从而突破难点。
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。由于本节课的教学内容较为抽象,着重采用情境教学法,直观演示法与谈话法相结合的方式进行教学。
教学最重要的就是让学生学会学习的方法。授之以渔,而非授之以鱼!因此在教学中要特别重视学法的指导。本节课学生主要采用了自主、合作、探究式的学习方式。
由鲁宾孙航海故事引入:把三枚金币放进两个盒子里,至少有一个盒子会放几枚金币?把教学内容转化为具有潜在意义的让学生感兴趣的问题,让学生产生强烈的求知欲望,使学生的整个学习过程成为“探索”,继而紧张地沉思,寻找理由,证明过程。
在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。
本题从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
六年级数学抽屉原理说课稿篇五
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
教学重、难点。
经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教学过程。
向大家介绍一位德国数学家,狄利克雷,他在数学上的贡献涉及数学的各个方面,他痴迷于数学,关于他有一件趣事:他的第一个孩子出世时,向岳父写的信中只写上了一个式子:2+1=3。
今天我们就来学习狄利克雷首先明确提出来的抽屉原理。
齐读课件上的话。
下面让我们一起探究抽屉原理。
抽屉是做什么用的呢?-----放东西的板书抽屉。
有了放东西的,还要有什么?----要放的东西我们就假设要放的东西是苹果板书苹果。
下面我们就来研究往抽屉里放苹果,(1)苹果数抽屉数。
师解释:今天我们研究物品数比抽屉数多的情况,比如,7个苹果任意放入6个抽屉……。
(2)任意放………任意放是什么意思呢?
生:想怎么放就怎么放。
如果我们来把4个苹果任意放入3个抽屉会有几种放法呢?
学生发言,师点击课件。
判断:把4个苹果任意放入3个抽屉,总有抽屉比其他抽屉放的苹果多。(课件出示)。
指明判断并说出理由。(大家听明白他的发言了吗?)。
大家看老师把“总有”加圈圈了。
“总有”是什么意思?
生……。
师:总有就是肯定存在,抽屉原理就是对存在性的研究板书:存在性。
有的同学要说好简单,这就是抽屉原理吗?我告诉你,比其他抽屉放的苹果多的抽屉就是抽屉原理的研究对象.
第一种放法里我们要研究的抽屉是哪一个?
第二种放法里我们要研究的抽屉是哪一个?
第三种放法里我们要研究的抽屉是哪一个?
第四种放法里我们要研究的抽屉是哪一个?
研究对象我们已经找到了,研究什么呢?请看题.
把4个苹果任意放入3个抽屉,总有抽屉比其他抽屉放的苹果多。这个抽屉里至少有()个苹果。(课件出示)。
师:“至少有2个苹果是什么意思?”“至少有2个”加圈圈。
生:(也可能比2个苹果多)。
师:为什么比其他抽屉放的苹果多的抽屉里至少有2个苹果?
学生很自然说1、1、2的放法。
师:你为什么选择用这种方法说明至少放2个苹果,而不是其他三种呢?
生:其他三种都有空抽屉,做“至少”的结论没有说服力。
同学们,考虑最糟糕的情况这在数学上叫做“最不利原则”板书最不利原则。
师:谁能用一个除法算式来表示这种放法呢?
生4÷3=1……1。
师板书并问:4表示什么?板书苹果。
3表示什么?板书抽屉。
1表示什么?
1表示什么?
这个算式其实是在把4个苹果怎样分给3个抽屉?
生:平均分师板书:平均分。
课件:5个人中至少2人在同一个季节出生的.
这位算命先生算得准吗?为什么?
这个原则可以用一个什么算式表示呢?
生5÷4=1……1。
师板书并问:5表示什么?板书苹果。
4表示什么?板书抽屉。
1表示什么?这个1表示什么?
怎样得到至少几人在同一个季节出生?1+1=2。
刚才算命先生的判断中什么相当于苹果?什么相当于抽屉?
我给大家介绍抽屉原理时说,抽屉原理也叫做鸽巢原理。
下面的练习就用鸽子和鸽笼。
课件6只鸽子飞回5个笼子,至少有2只鸽子飞进同一个笼子。为什么?
什么相当于苹果?
什么相当于抽屉?
用一个什么算式表示呢?
生6÷5=1……1……。
师:一个抽屉里至少放几个苹果与什么有关?
生:与苹果数量和抽屉数量有关。
师:这几个算式有什么共同特点?
生:苹果总比抽屉多一个。
那么如果改变苹果总比抽屉多一个的条件,你还能找出一个抽屉里至少放几个苹果吗?下面我们继续研究抽屉原理.
7只鸽子飞回5个笼子,至少有()只鸽子飞进同一个笼子。为什么?
课件演示。
用一个什么算式表示呢?
生7÷5=1……21+1=2。
把5本书进2个抽屉中,不管怎么放,总有一个抽屉至少放进()本书。这是为什么?
用一个什么算式表示呢?
生5÷2=2……12+1=3。
8只鸽子飞回3个笼子,至少有()只鸽子飞进同一个笼子。为什么?
用一个什么算式表示呢?
生8÷3=2……22+1=3。
你发现什么规律了呢?
一个抽屉里至少放几个苹果与什么有关?
生:与苹果数量和抽屉数量有关。
引导学生思考:到底是“商+1”还是“商+余数”呢?谁的结论对呢?(课件返回配合演示)。
总结:苹果除以抽屉数,再用所得的商加1。
板书:商加1。
2、要保证有2种不同花色至少抽多少张?
生:5张牌。
若不除去大小王,从中随意抽几张牌,总有两张牌是同一花色的?
4、若不除去大小王,要保证有2种不同花色至少抽多少张?
板书设计:。
抽屉原理研究:存在性问题。
方法:平均分。
依据:最不利原则。
苹果抽屉至少。
4÷3=1……12。
5÷4=1……12。
6÷5=1……12。
7÷5=1……22。
5÷2=2……13。
8÷3=2……23。
六年级数学抽屉原理说课稿篇六
学生的数学学习过程就是利用学生已经学过的只是和现在有的经验基础,然后理解更高更深更复杂的知识。数学强调从学生的生活经验出发,将教学活动置于真实的生活背景之中,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,体会到数学就在身边。这个游戏都是抽屉原理在生活中的.运用,使生活问题数学化,数学教学生活化,让学生在数学学习中得到发展!活动化的数学课堂,使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考、主动探索、主动创造;使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。
只有学生主动参与到学习活动中,才是有效的教学。在4个苹果放入3个抽屉学习中,充分利用学具操作,为学生提供主动参与的机会,让学生想一想、圈一圈,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学。这节课我能充分为学生营造宽松自由的学习氛围和学习空间,能让学生自己动脑解决一些实际问题,从而更好的理解抽屉原理。在教学过程中能够及时地去发现并认可学生思维中闪亮的火花。
不足之处在于教学过程中应更多的关注学困生的思维活动,及时的给予认可和指导,使教学能够面向全体学生。
六年级数学抽屉原理说课稿篇七
我的几点看法:
最近我一直正在关注抽屉原理,刚好听了高玉东老师的这节课,我来谈一下我的几点看法。
一:我认为高老师的课三言两语直入主题,节省了时间,这是构建高效课堂的基础。有的老师讲课导入部分太长,浪费了时间,我们应该借鉴一下,缩短我们导入新课的时间。
二:过程清晰。高老师吃透了教材,把教学过程呢设计的由易到难,层层递进,是学生易于接受。这凸显了高老师把握教材的能力,使我感受很深,也是我今后努力的'方向。
三:我讲一下我的几点看法。我研究了抽屉原则的几个主要方面。
1.我认为在教学的过程中应结合具体的例题讲一下什么是至少,让学生先理解了至少的含义在具体的教学。抽屉原则这类的题我考过其他的成年人,他们刚读题时不理解至少的含义,所以做错了,我认为学生也不好理解,所以讲一下至少的含义再继续往下教学。
六年级数学抽屉原理说课稿篇八
今天上午听了是老师的《比例的意义》一课,感觉这是一堂轻松自然、扎实有效的一堂课。整节课,教师导得自然,学生学得主动。可见教师驾驭课堂的能力之娴熟。主要有以下几点印象深刻的地方:
1、各环节的命名每次听课都会给人耳目一新的感觉,能充分吸引学生的眼球,调动学生的思维。如:“展示小组风采”、“辩是非,展口才”“回头一看,我想说”等等。
2、情景创设一方面帮助学生复习了比的知识,另一个方面很自然的过渡到新知的学习,这里,教师的一个启发还检查了学生的预习情况。“怎样连接就是我们这节课要学的内容?”学生初步感受到了比和比例的联系和区别。
3、小组合作学习形式运用自如,教师给小组和个人都创设了竞争的机会,调动了学生的积极性。
4、注重对学生表达能力、总结能力的培养。“辩是非,展口才”一环节,学生说出的理由后,教师再将理由简明的呈现出来,给学生更深的印象。
5、练习设计很有层次。将本课难点和学生易混易错的地方呈现出来,并且给学生充足的时间交流。学生学得特别扎实。
商讨的地方:比例的定义表达是否有点欠妥。
六年级数学抽屉原理说课稿篇九
《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。
六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。激趣是新课导入的抓手,喜欢和好奇心比什么都重要,游戏,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的.结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。
1、使学生初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。
2、使学生经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。
3、使学生通过“抽屉原理”的灵活应用感受数学的魅力;提高解决问题的能力和兴趣。
经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
一、课前游戏,导入新课。
游戏请5名同学到前面来,老师这有4张凳子,老师喊123开始,要求每位同学都必须坐在凳子上,引导:5位同学坐在4张椅子上,不管怎么坐,总有一把凳子上至少坐两个同学。
我们刚才做了个小游戏,但小游戏蕴含着一个有趣的数学原理。今天我们就来研究这个有趣的数学原理——抽屉原理。
二、通过操作,探究新知。
(一)活动一。
1、出示题目:把4根小棒,放在3个杯子里,怎么放?有几种不同的放法?
(板书:小棒4杯子3)。
提出要求:把所有的摆法都摆出来,看看你会有什么发现?
(1)同桌之间互相合作,动手摆,把各种情况记录下来。
(3)引导学生观察发现:不管怎么放,总有一个杯子里至少有2根小棒。(板书:总有一个杯子里至少有)。
(4)师生共同理解“总有”“至少”有2枝什么意思?
(5)明确:刚才同学们把所有摆法一一列举出来,得到了这样的结论,我们称之为“枚举法”。
2、要把6根小棒放进5杯子里,你感觉会有什么结果呢?
(1)启发学生猜想结果。
把6根小棒放入五个杯子里,你感觉一下,不要动手摆,你感觉一下会有什么样的结论?
(2)引导学生选择合适的方法。
提出要求:想一个快速而又简单的方法,只摆一种情况,你就可以得到这个结论?
(3)学生尝试操作验证。
(4)全班交流,操作演示。
预设:如遇到每个杯子摆两根,有的杯子空的,这样有说服力吗?有的杯子还空着,要先把每个杯子都装上小棒才行。
(5)明确结论:把6根小棒放进5个杯子里,不管怎么放,总有一个杯子里至少有2枝小棒。
3、课件出示:
把100根小棒放进99个杯子呢?
谈话:要不要也准备100根小棒和99根杯子呢?可以怎么办?
引导用假设法进行思考:假设每个杯子放1跟,99个杯子,就已经放了99根,还有1根不管怎么放,总有一个杯子至少有2根小棒。
这也是数学中一种很重要的方法“假设法”。
引导学生观察小棒数和杯子数,你有什么发现?
明确:这里的小棒数都比杯子数多1,当小棒数比杯子数多1时,总有一个杯子至少放了两根小棒。
(二)活动二。
谈话:接下来,我们把数学书当做物体数放入抽屉里,看看又有什么发现?
课件出示:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
板书:书抽屉总有一个抽屉放入算式。
5235÷2=2……1。
六年级数学抽屉原理说课稿篇十
纵观全课,蔡老师能细研教材,结合实际,灵活组织教材,通过截取“乘法口诀”、“数的排列”与“图形排列”三个知识环节,引导学生探求给定事物中隐含的规律及其变化趋势,鼓励学生探索数字之间、图形之间以及现实生活中蕴涵的数学规律。现主要从以下几个方面来赏析及商榷,评得不到之处请见谅。
兴趣是孩子最好的老师,好的开课能让人耳目一新,通过“猜数魔术”开课,能充分激发孩子的学习热情,教师的语言及教态,此时都能散发出一种强大的气场。稍为遗憾的是教师陈述结果时不够干脆利落,还略有疑虑及出错现象,这稍有降低“魔术”的神秘色彩及吸引力;另外,由于时间关系,在课尾没有看到这个“魔术”的揭秘环节,略为遗憾。
数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。学生的学习不仅是认知的参与,更需要情感的投入。蔡老师在课堂教学中创设了人文和谐的师生对话情景,旨在为学生营造一种宽松、愉悦的氛围,让学生在自由、轻松的气氛下,尽情地发挥聪明才智,进行创造性地学习。
通过呈现“乘法表”让学生观察表格探索其中的规律,教师能启发学生从不同的角度观察及渗透思维的有序性,把以前分散学习的知识进行系统整理,帮助学生沟通知识之间的联系,此环节个人感觉还是挖掘得不够,如:当学生的思维只停留在横看竖观的观察层面时,教师还可以启发或呈现斜看或其它更多的观察层面所隐含的规律,如第一行“9的乘法口诀”中乘积的两数之和都等于9这些规律,同时引伸拓展能被9整除的数的特征,以及如何判断等,又如寻找乘积相同的两个因数成反比例关系的规律,旨意在于拓宽孩子的思路,渗透多层面寻找事物之间所隐含的规律性。
通过呈现“数的排列”及“桌椅的摆放”知识,让学生探索研究并填空这两个环节,教师能启发学生逐一进行充分探究,抓住变与不变的规律去解决问题,还从多角度地揭示规律并反馈交流,引领孩子在采撷丰盛的思维成果时体悟到了成功的喜悦。但感觉在时间的分配上有失偏颇,在挖掘规律的深度也有待商榷。比如“数的排列”环节,能否只选取其中三几个题例进行精讲,其余略讲,放手给学生尝试练习,又比如有“桌椅的摆放”环节,能否将孩子找出来的各种字母表达式:6+4(n+1),6n—2×(n—1)……作一个合并同类项的计算,揭示出最简字母表达式:4n+2。
总的来说,教师都能根据本班实际情况对教材作一个重新调整,细致的分析,引领孩子充分地探究,只是在时间的安排上略为遗憾,没能看到孩子当堂在练习中去检测知识的巩固运用。
六年级数学抽屉原理说课稿篇十一
张老师执教的《组合图形面积》一课,能大胆地整合教材,整个教学流程设计合理、流畅,整节课以三步导学为线,把教师的主导作用和学生的主体作用紧密结合起来。让学生在观察操作中形成表象,动手实践割补中悟出方法,在讨论辨析中进行方法优化,使学生亲身经历了知识形成的全过程。小组合作扎实有,生本课堂初见成效,我个人认为本节课有以下四个亮点:
组合图形面积的计算,有利于综合应用平面图形面积计算的知识,进一步发展学生的空间观念,基于这一理念,围绕本节课的教学目标,教师设计了两个教学任务:(1)认识组合图形。(2)会计算组合图形的面积。根据教学重点(求组合图形的面积)张老师大胆将教材进行了整合。将例题求侧面墙的面积换成了求客厅面积的计算,增加了难度,提升了思维,充实了课堂。这样使教材内容变动为静,变单一为多项,变封闭为开放,激发了学生主动参与,积极探究的热情。
对第一次接触组合图形的孩子来说,如何把一个组合图形通过分割或添补的方法转化为基本图形,既是教学的重点又是教学的难点。教学中,张老师从生活出发,先让孩子们初步感知组合图形,接着再计算组合图形的面积。在完成第二个教学任务时,张老师分三个层次进行,由自主学习到小组合作再到全班交流,整节课以学生为主体,大胆尝试放手,相信学生的能力,鼓励学生自主探究,合作交流,充分发挥了学生的自主能动性,调动了学生学习的积极性。在小组合作交流的过程中,生生互动,“动”出思维,“动”出激情,“动”出创造,不仅培养了学生的发散思维能力,同时也形成了群体学习的优势,真正发挥了小组合作的作用。
本节课无不渗透着用多种方法解决问题的策略。在教学例题时,在巩固练习时,在检测导结时,通过让学生自主动手画一画,想办法把它转化成几个基本图形时,让学生用不同的方法来解决问题,然后通过小组汇总到全班交流,展示自己的算法,学习他人的解题策略。在比较.鉴别.学习中提升自我,体现了新课标让不同的人在数学课上得到不同的发展。
练习是数学课堂教学的重要组成部分,是教学过程中学生实践的主要形式,也是检验学生课堂学习的一个重要环节。为此,张老师在设计课堂练习时“提升思维,上不分顶”,检测练习时“基于基础,下要保底”,这样既使优生吃得饱,又使差生吃得了,人人都有不同程度的提高,节节课都能基本达到教学要求。
总之,本节课的教学说明了小组合作在课堂教学中已生根发芽,还有不足,还需大家勤浇水,多施肥。相信,在不远的将来,通过我们各位老师的努力,一定会使生本课堂在教学这块试验田里开花结果的。谢谢大家,不足之处,恳请指正。
六年级数学抽屉原理说课稿篇十二
1、整节课思路清晰,环环相扣,师生互动性良好。
2、整堂课体现了大容量快节奏,练习设计形式多样.本课教学设计紧凑,环环相扣,容量大,节奏快,充分利用了课上的每一分钟.无论在学生验证猜想时,还是探究化简比的方法时,教师都要求全员参与.练习设计层次性强,有梯度,题型灵活多样,供不同层次的学生选择,关注了全体.
3、这节课教师通过几个简短地师生对话,应用新旧知识间的迁移引入新知,干脆利落。
4、在数学教学中,教师都会特别强调一些关键性知识、易混淆知识和易疏忽知识时,常会采用加重语气、改变字样、运用比较或反复训练等方法,让学生特别重视这些注意点,防患于未然。而这节课里冯老师采取放手让学生去判断,形成认知冲突。通过这节课我体会到:其实强调一些关键性知识、易混淆知识和易疏忽知识,也可以采用先让学生“吃一垫”来加深体验,然后“长一智”而自觉引起注意,成熟于已然。
5、各环节的连接都是在师生默契的对话中顺利进行。
6、我们知道,在数学教学中,每个教学内容一般都以活动的形式表现出来。由于每次活动的目的与要求、内容与形式不尽相同,就可能造成活动板块之间的割裂。教师一般通过设计过度语言或采用前呼后应等手法来弥补这种“裂痕”,使各个环节融会贯通、浑然一体。但在具体操作上难免有生硬预设嫌疑,冯老师注重联系点的有效生成,所以自然、流利。
这节课美中不足的是:冯老师面部表情再和蔼可亲一些会更好。
六年级数学抽屉原理说课稿篇十三
我听了王老师的课后,受益匪浅,本节教学课王老师着眼于学生的发展,凸显数学学习的生活化;注重发挥多媒体教学的作用,通过课件演示、动手操作、游戏活动等方式组织教学,引导学生观察比较。同时,还注意研究学生获取知识的思维过程,体现教师的引导下学生的主动探究过程。本课教学中王老师在改变学生学习方式方面做了些尝试,努力改变以前过于强调接受学习、机械训练的学习方式,实施新课程倡导的建立具有“主动参与,乐于探究,积极交往”等特征的新的学习方式,收到较好的成效。
这一堂课中有以下几个亮点,是值得我学习的地方:
1、在新课的学习中,王老师着力调动学生的学习积极性,让全体同学都主动参与到学习中,并给予学生上台操作演示的机会。在整个课堂教学中,王老师并没有完整地小结公式之类的规律,更多的是引导学生学会学习,懂得思考问题的方式方法,从“无序”走向“有序”,激发了学生学习数学的参与热情,真正促进了学生思维的发展。
2、努力培养学生的数学情感,让学生学习生活中的数学,做到让数学生活化,使学生从生活开始、在生活中学、到生活中用。同时又不乏情趣调动学生学习积极性和主动性,以此培养学习数学的兴趣。
根据学生生活经验,教学中选取了学生熟知的身边的实例活动,密切了数学与学生现实生活的联系,调动了学生原有的生活经验,使学生觉得数学就在自己的身边。这样就激发了学生探究问题的强烈欲望,激活了学生的思维,发挥了学生的主动性。引导学生把所学知识运用到日常生活中,并延伸到课堂外,让学生继续探寻知识,感悟了新知,发展了数感,体验了成功,获取了数学活动经验,真正体现了学生在课堂教学中的主体作用。
根据教学设计多媒体课件应用恰当好处。教学中,王老师通过演示形象生动的课件,让学生理解6只鸽子飞进5个鸽舍,至少有一个鸽舍里有2只鸽子。既成功地突破了教学的重点与难点,又激发学生学习的兴趣,并在应用规律解决问题中获得成功的情感体验。
不足之处:课堂中对学生的评价不够,例如:赵祥在回答问题时,他的观点很独特,这是教师应给予评价,但教师这是什么也没说,这样对学生的学习积极性有所打击。
六年级数学抽屉原理说课稿篇十四
今天,观看了王老师执教的《自行车里的数学》一堂课,我感触颇深。总的说来,王老师的这这一堂课遵循了《新课程标准》的要求:“学生是学习的主人,教师是引导者、引领人。”一节课下来,学生在轻松愉快的氛围中学到了新知识。现就本节课谈一点自己粗浅的看法。
今天,观了老师执教的《自行车里的数学》一堂课,我感触颇深。总的说来,王老师的这这一堂课遵循了《新课程标准》的要求:“学生是学习的主人,教师是引导者、引领人。”一节课下来,学生在轻松愉快的氛围中学到了新知识。现就本节课谈一点自己粗浅的看法。
首先,王老师把直观的图片以及实物自行车展示在学生面前,给学生以初步的印象,明白了本节课的学习内容一定与自行车有关。再联系生活,问及学生是否会骑自行车?这更激起了学生学习的兴趣。最后,王老师抛出一个问题:“自行车是怎样向前运动的?”设置悬念这一环节,可以调动学生的学习欲望,让他们想更进一步的了解新知识。
其次,在讲授新知这一环节,王老师把握住了这一教学重点。她先引导学生说出自行车是怎样转动的,这就是按照《课标》的要求:“要把数学与生活有机的联系起来。”学生通过已有的生活经验解决了老师提出的问题。在逐步的引导中,老师总结出了一个计算公式。公式的推导会让学生的学习更方便,这就为后面的练习奠定了基础。
然后,通过新知识的讲授后,王老师马上让学生进行课堂练习。练习这一环节,王老师照顾了全体学生,先进行简单的练习,再逐此文转自步推进,进行稍微复杂一些的练习。练习时,王老师还是以学生为主,先让学生自主练习,再汇报交流。在探究问题时,她还适时让学生采取小组讨论交流的方式进行。
王老师不仅是一个善于教学的人,还是一个善于倾听的人。在课堂上她能仔细倾听学生的回答,及时的采用不同的方式鼓励学生,对学生有些不太准确的回答也能及时给予纠正。由于老师对学生的重视,使得整个课堂非常的活跃,老师教得轻松,学生也学得轻松。
总的来说,王老师的这一节课教学设计环环相扣、重点突出;把学生放在了学习的主体地位,让学生在层层的练习中学到了新知识,并把它们与生活联系了起来,这就印证《课标》中提出的:“生活中有数学,数学中也有生活”的原则。从王老师的这一堂课,我学到了很多,为我今后的教学获取了不少宝贵的经验。
六年级数学抽屉原理说课稿篇十五
在公开课中上六年级课的不多,上六年级复习课的更是少见。在以往的毕业班数学教学实践中,我也深深地体会到六年级的教学任务重要性与困难性。在分数百分数应用题这一块知识体系中,许多学生在理解上存在弱点,周老师运用他多年的教学经验,融入现代教育思想,把分数百分数应用题中的许多思考方法,像一条珍珠项链一样连成了一个完整的体系。
周老师为学生安排了多个层次的.练习,采用步步深入的方法,知识从易到难,学生得到了全面的训练,更获得了综合能力的提高。
1、练习内容丰富,选材贴近学生,贴近生活,体现数学教学的本质特征。练习内容包括:求一个数是另一个数的百分之几,求一个数比另一个数多(少)百分之几,知道单位“1”求对应量,以及求单位“1”的量等等。
2、以学生认知水平和已有知识经验为基础进行练习,体会数学知识的前后联系。周老师设计的这些练习题都是按照先易后难,循序渐进的规律出现,而且问题都不是直接出示,而是让学生自己发现,提出问题,再自主解决问题,把知识让学生自己梳理,规律让学生自己寻找,错误让学生自己判断,充分调动了学生学习的积极性和主动性。
本节课给我印象尤其深刻的是,周老师不仅交给了学生灵活的解题技巧,而且交给了学生更加实用的数学思想。《数学课程标准》中明确指出:“数学思想方法是对数学规律的理性认识。学生通过数学学习,形成一定的数学思想方法是数学课程的一个重要目的,应在教学中加强渗透。”本课中周老师适时恰当地对数学方法给予提炼和概括,让学生有明确的印象。