比例的意义教学教案范文(19篇)
教案是教师在教学过程中编写的一种指导性文件,它包含了教学目标、教学内容、教学方法、教学步骤等内容,是教师进行教学的重要依据。每一节课都需要有一个完整的教案来指导教师进行教学活动。教案的编写需要严格遵循课程标准和教学大纲的要求。下面是一份优秀的教案范文,供大家参考和借鉴。
比例的意义教学教案篇一
教学内容:
教科书练习十三的第9~13题。
教学目标:
1.使学生进一步理解正比例和反比例的意义,弄清它们的联系和区别,掌握它们的变化规。
律,能够正确地判断成正、反比例的关系。
2.进一步提高学生的分析、比较、抽象、概括等能力。
3.进一步感知数学与生活的联系。
教学重点:
弄清正比例和反比例的量的意义。
教学难点:
找生活中成正、
教学准备:多媒体。
教学过程:
一、揭示课题,回顾整理。
1、师:前几节课,我们学习了什么内容?这节课,我们练习正比例和反比例的有关知识。(板书课题)。
2、回忆正、反比例意义。
二、比较分析,区分特征。
1、出示练习十三第9题。
观察两张表格并思考回答书中第69页的问题。(表略)。
2、全班交流。
3、引导比较、总结正、反比例的特点(根据学生回答,板书)。
4、讨论:判断两种相关联的量成不成正比例或者反比例关系的关键是什么?
三、巩固练习,感知应用。
1、出示练习十三第11题。
先填一填、想一想,再组织讨论和交流。
要求学生完整地说出判断的思考过程。
2、练习十三第10题。
看图填表。
3、练习十三第12题。
先独立判断,再交流判断理由。
4、a、b、c三种量的关系是:a×b=c。
如果a一定,那么b和c成()比例。
如果b一定,那么a和c成()比例。
如果c一定,那么a和b成()比例。
5、判断。
(1)两种相关联的量,不成正比例就成反比例。()。
(2)在一定的距离内,车轮周长和它转动的圈数成反比例。()。
(3)x和y表示两种变化的相关联的量,同时5x-7y=0,x和y不成比例。()。
6、练习十三第13题。
找出生活中成正比例和成反比例的量的实例,用表格表示出来。
小组讨论完成表格。
说说是怎样想的?
四、总结评价。
通过学习你有何收获?
学生交流。
五、作业。
完成《练习与测试》相关测试。
板书设计:
成反比例的量。
比例的意义教学教案篇二
教学目标:
1、使学生理解并掌握比例的意义和基本性质,学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。
2、认识比例的各部分的名称。
3、培养学生的观察能力、判断能力。
学法引导:
引导学生观察、讨论、试算,探究比例的意义和比例的性质。
教学重点:
教学难点:应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。
教学步骤:
一、铺垫孕伏。
师:同学们,今天我们数学课上有很多有趣的问题等你来解决,希望大家努力。我们首先来解决两个问题。
(二)反馈:(1)谁买的本子便宜些?能简单地说说你的理由。
(2)还有别的方法吗?
(3)这两个比可以用一个什么符号将它们连起来?为什么?
(三)(出示):2、3月10日下午2点,学校8米高的旗杆影子长5米,旁边一棵高120厘米的香樟树影子长75厘米,说出旗杆和香樟树与各自影长的比。(8:5120:75)。
这两个比能用一个等号连接起来吗?为什么?
二、探究新知。
(一)比例的意义。
2、得出结论:表示两个比相等的式子,叫做比例。(板书课题:比例的意义)。
3、完成“做一做”。
下面哪组中的两个比可以组成比例?把组成的比例写出来。(见书上“做一做)。
5、反馈:(1)你给5:8找的朋友是(),组成的比例是(),向大家介绍你用了什么方法找到的。
6、师生小结:如果判断两个比能否组成比例,最关键是看什么?
1、认识比例各部分的名称。
(1)自学课本。
前几节课上,我们已经知道,比中两个数分别叫做比的前项和后项。今天学习的比例中的四个数也有新名字,想知道吗?请看课本第二页是怎样给它们取名的。
(2)反馈:让学生看下面这些比例,说出它的外项和内项各是多少。
45:27=10:66:10=9:15。
:=6:406:02=:
2、探究比例的基本性质。
(2)学生汇报:
我发现在这两个比例里,两个外项的积都等于两个内项的积。
(3)查一查:你随便找几个比例,看一看这些比例中有没有这个有趣的现象?
(学生合作学习,汇报交流,得出结论)。
在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。
(板书课题:加上“和基本性质”,使课题完整。)。
3、练一练。
(1)小游戏:下面我们轻松一下,由你出题考老师,规则是:请你说出10以内4个不同的自然数,看老师能为能马上告诉你,它们是否能组成比例?(学生报数,老师回答)。
谁能说出老师的秘诀?
(2)现在轮到我考你:4、3、6、86、9、4、7。
(学生回答后让他说出判断理由)。
(3)请你独立用4、3、6、8写比例,然后小组交流讨论,把最好的办法推荐给大家。
(4)阅读教科书第1——2页的内容并填空。
三、全课小结。
这节课我们学会了什么?
四、随堂练习。
1、说一说比和比例有什么区别。
2、练习一第2、3题。
比例的意义教学教案篇三
教学目标:1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
教学重点:认识正比例的意义。
教学难点:掌握成正比例量的变化规律及其特征。
设计理念:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。
教学步骤教师活动学生活动。
一、复习铺垫激情促思。
1、说出下列每组数量之间的关系。
(1)速度时间路程。
(2)单价数量总价。
(3)工作效率工作时间工作总量。
2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。
学生口答,相互补充。
二、初步感知探究规律1、出示例1的表格(略)。
说说表中列出了哪两种量。
(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。
初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)。
(2)引导学生观察表中数据,寻找两种量的变化规律。
根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。
根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?
根据学生的回答,板书关系式:路程/时间=速度(一定)。
(板书:路程和时间成正比例)。
2、教学“试一试”
学生填表后观察表中数据,依次讨论表下的4个问题。
根据学生的讨论发言,作适当的板书。
3、抽象表达正比例的意义。
根据学生的回答,板书:=k(一定)。
揭示板书课题。
先观察思考,再同桌说说。
大组讨论、交流。
学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。
学生根据板书完整地说一说表中路程和时间成什么关系。
学生独立填表。
完整说说铅笔的总价和数量成什么关系。
学生概括。
三、巩固应用深化规律。
1、练一练。
生产零件的数量和时间成正比例吗?为什么?
2、练习十三第1题。
先算一算、想一想,再组织讨论和交流。
要求学生完整地说出判断的思考过程。
3、练习十三第2题。
先独立判断,再有条理地说明判断的理由。
4、练习十三第3题。
先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。
分别求出每个图形的周长和面积,并填写表格。
讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。
讨论、交流。
独立完成,集体评讲。
说明判断的理由。
说一说,画一画。
填一填,议一议。
讨论。
四、总结回顾评价反思。
这节课你学会了什么?你有哪些收获?还有哪些疑问?
评价总结。
比例的意义教学教案篇四
教学内容:教科书94页“练习与实践”的第7~10题。
教学目标:
1、使学生进一步理解比的意义和基本性质以及比与分数、除法的关系的理解。
2、能运用比和比例的知识解决一些简单实际问题,积累解决问题的经验。
教学重点:
使学生加深认识比例的意义和基本性质。
教学难点:
能判断两个比能能不能组成比例,能比较熟练地解比例。
教学准备:多媒体。
教学过程:
一、整理与反思。
今天我们一起来复习正比例和反比例相关知识。
怎样判断两种量是否成正比例或反比例关系?
学生交流。
二、练习与实践。
1.完成“练习与实践”第7题。
让学生先独立完成,再点评。
2.完成“练习与实践”第8题。
引导学生列举几组对应的数值。
再分析每组中两个数的关系,再判断。
3.完成“练习与实践”第9题。
第1小题让学生根据图中标出的点的位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的耗油量是6升。)。
第2小题让学生在教材提供的方格图上描点、连线,
引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。
体会数形结合在解决问题方面的价值。
4.完成“练习与实践”第10题。
什么叫比例尺?比例尺有几种类型?举例说说它的意思?(重点是线段比例尺)。
怎样求图上距离?怎样求实际距离。
学生量出的图上距离。
利用提供的线段比例尺,求出相应的实际距离。
三、小结。
通过学习你有什么收获?
学生交流。
四、作业。
完成《练习与测试》相关作业。
板书设计。
关于正比例和反比例的复习。
比例的意义教学教案篇五
1、理解和掌握比例的意义和基本性质,认识比例的各部分的名称,体会数学的规律美。
2、利用比例知识解决实际问题。
3、培养学生自主参与的意识、主动探究的精神,激发学生的审美愉悦。培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。
一、 谈话导入,创设情境:
我们的祖国方圆960万平方公里,幅员辽阔却能在一张小小的地图上清晰可见各地位置。建筑设计师可将滨江四区的设计构想展示在一张纸上。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。
二、 自主探究,学习新知
(一) 教学比例的意义
1、 8厘米
出示
6厘米
4厘米
3厘米
(1)根据表中给出的数量写出有意义的比。[生汇报]
(2)哪些比是相关联的?[生说,师板书]
(3)根据以往经验,可将相等的两个比怎样?(用等号连接)
教师并指出这些式子就是比例。
2、 让学生任意写出比例,并让学生用自己的语言描述比例的意义。
3、 教师板书:表示两个比相等的式子叫做比例。比例也可用分数形式表示。
4、 写出比值是1/3的两个比,并组成比例。
(二) 教学比例的基本性质
1、 比例和比有什么区别?
2、 认识比例的各部分
(1)让学生自己取。
(2)组成比例的四个数叫做比例的项,两端的两项叫做比例的
外项,中间的两项叫做比例的内项。
板书: 8 : 6 = 4 : 3
内 项
外 项
(3)让学生找出自己举的比例的内外项。
( )
12
2
( )
=
(4)找出分数形式比例的内外项位置又是怎样的?
3、 出示 【启迪学生思维,展开审美想象】
(1) 这个比例已知的是哪两项,要求的又是哪两项?学生试填。
(2) 学生反馈,教师板书。
(3) 你发现了什么?
(4) 指导学生概括出比例的基本性质,并板书:在比例里,两个外项之积等于两个内项之积。
4、 用比例性质验证你所写比例是否正确。
5、练习 8 : 12 = x : 45
0.5
x
20
32
=
求比例中的未知项,叫做解比例。
如何证明你的解是正确的?
(三) 小结:今天这堂课你有什么收获?
三、 巩固练习
1、下面哪几组中的两个比可以组成比例。
4
1
12 : 24 和18 : 36
0.4 : 和0.4 : 0.15
14 : 8 和7 : 4
5
2
2、根据18 x 2 = 9 x 4 写出比例。【体会到数学的逻辑美,规律美】
比例的意义教学教案篇六
《比例的基本性质》这节课在学生理解比例的意义的基础上教学的,为下节课教学解比例打下基础。教材利用三角形的缩小做素材,引导学生根据图中的数据写出不同的比例,以其中一个比例为例教学比例各项的名称,在让学生说出其他几个比例的内项和外项。在观察各个比例中的内项和外项的基础上,发展规律,揭示比例的基本性质。教材还介绍了分数形式的比例基本性质的表达方法。“试一试”教学利用比例的基本性质判断两个比能否组成比例的方法。“练一练”和练习十第1-4题对所学知识进行巩固。
传统的课堂教学,学生面对的都是些经过人类长期积淀和锤炼的间接经验。由于教学大纲规定,许许多多的知识点,使得教师只能用简单的“传授——接受”的教学方式来进行。而学生只是记忆、再现这些知识点,沦为考试的奴隶。其实知识是死的,课堂教学绝不仅仅让学生拥有知识,更应该让学生拥有智慧,拥有获取知识的方法。
从教育心理学角度看,学生智慧的发展,离不开智慧的熏陶。智:是人类个体的认识过程或认知结构,即对外部信息的感知、整理、联想、储存很搜索、提取、操作,或通过此过程形成的认知水平。慧:是人类个体所认知事理的评判过程和评判标准。我校通过创设智慧课堂,使教学触及学生的世界,伴随他们的认知活动,做到了“以智促知”。
1、注重从学生已有的知识出发,主动建构知识。在教学“比例的基本性质”时,让学生自己选择例子来探索,在探索中发现规律,得到结论。让学生处于积极探索的状态,唤醒了学生学习中一些零散的体验,并在教师的引导下主动将这些体验“数学化”,提炼出数学知识。
在教学中,不仅要求学生掌握抽象的数学结论,更应注重学生的“发现”意识,引导学生参与探讨知识的形成过程,尽量挖掘学生的潜能,能让学生通过努力,自己解决问题。这一教学过程,让学生通过计算、观察、发现、自学的方式,使学生在自己探索中学习知识,发现知识,并通过讨论,说出判断两个比能否组成比例的依据,促进了学生学习的顺利进行。
2、用教材教,体现教学的民主性。因为学生对比的知识了解甚多,所以在研究“比例的基本性质”的时候,不是教师出示教材中的例子,而是让学生自己举例研究,使研究材料的随机性大大增强,从而提高结论的可信度。这样也能让学生体会到归纳法研究的过程,并渗透科学态度的教育。
整个教学过程力求体现学生自主探索、独立思考、合作交流的学习过程,从中提高学生的数学学习的能力。如要求学生用自己的语言归纳比例的基本性质,重视在练习中发挥教师的指导作用,使练习的针对性更强,巩固练习在层次上由易到难,在形式上由封闭走向开放,让学生的聪明才智、才能得到充分的发挥,真正主动学习,成为学习的主人。
3、在运用比例的基本性质进行判断时,要求学生讲明理由,培养学生有根据思考问题的良好习惯;在填写比例中未知数时,不仅要求学生说出理由,还要求学生进行检验,这样培养学生良好的检验习惯和灵活解决问题的能力,培养良好的学习习惯。
4、给予学生自主探究的时间、自由驰骋的思考空间,允许他们有不同的想法、不同的方法,在开放式、个性化的学习中生成灵感,碰撞智慧。正是学生用自己独特的学习方式来解决问题,课才变得生动和真实,学习才显得如此活泼和有效。数学的学习成了充满灵性的创造过程,成了放飞心灵的快乐之旅。课堂已不仅是学科知识传递的殿堂,更是智慧培育的圣殿。
叶澜教授曾说:“把课堂还给学生,让课堂焕发生命活力”,确实我们教师应该把课堂看作是学生演绎精彩生命的舞台,把主动权、选择权下放给学生,让学生去思考、去探索、去实践,才能激起学生的求知欲望,才会有层出不穷的生成,使课堂充满生命的活力。
“比例的意义和基本性质”这节课是概念教学,不太好讲。在上课之前我感觉自己做了充分的准备。从学生已有的知识经验入手,方便快捷,为新课做好准备。激发学生的学习兴趣和求知欲望,使学生在探索中学习。然后在教学比例的基本性质时,我让学生看书自学,再小组交流,这样符合“新课标”的要求,体现了教师的主导作用和学生的主体地位。本节课的学习方式是多样的,有观察比较、小组交流、师生交流、同位交流、多方验证。另外,为了培养学生的能力,我采用了自主观察与讨论相结合的教学方式,而且整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。
但是上完课之后,我发现还存在很多问题。
1、教师激励性的语言还欠缺,还不能用多种语言来激励学生。如果感情更深些,更能激起学生的学习兴趣,使他们能更好的参参与学习。
2、上课心态、情绪还不够平稳,计算机技能、教学机智、自身素养还有待提高。为促进教学目标的顺利完成最后有点赶时间。
3、面对一些即时生成的课程资源,我还不能及时抓彩,把这些有效的教学资源开发、放大,让它临场闪光,从而激发学生参与课堂的热情,让“死”的知识活起来,让“静”的课堂动起来,变单纯的“传递”与“接受”为积极主动的“发展”与“建构”。
我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。作为一名教师,在今后的日子里,还要好好努力,在实践中不断完善自己的教学方法。
比例的意义教学教案篇七
教学目标:1、使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。
2、使学生在认识成反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
教学重点:认识反比例的意义。
教学难点:掌握成反比例量的变化规律及其特征。
设计理念:课堂教学中注重从学生的已有的生活经验出发,引导学生观察、分析,从而发现成反比例量的规律,概括成反比例量的特征。努力为学生提供探究的时空,让学生自己发现、自己探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去。
教学步骤教师活动学生活动。
一、复习铺垫1、怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?
2、判断下面两种量是否成正比例?为什么?
时间一定,行驶的路程和速度。
除数一定,被除数和商。
3、单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?
4、导入新课:
如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。
学生口答,相互补充。
二、探究新知1、出示例3的表格(略)。
学生填表。
2、小组讨论:
(1)表中列出的是哪两种相关联的量?它们分别是怎样变化的?
(2)你能找出它们变化的规律吗?
(3)猜一猜,这两种量成什么关系?
3、全班交流。
4、完成“试一试”
学生独立填表。
思考题中所提出的问题。
组织交流,再次感知成反比例的量。
5、抽象表达反比例的意义。
根据学生的回答,板书:x×y=k(一定)。
揭示板书课题。
学生填表。
小组讨论、交流。
学生初步概括。
相互补充与完善。
独立填表。
交流汇报。
学生概括。
三、巩固应用1、练一练。
每袋糖果的粒数和装的袋数成反比例吗?为什么?
2、练习十三第6题。
先算一算、想一想,再组织讨论和交流。
要求学生完整地说出判断的思考过程。
3、练习十三第7题。
先独立思考作出判断,再有条理地说明判断的理由。
4、练习十三第8题。
先填表,根据表中数据进行判断,明确:长方形的面积一定,长和宽成反比例;长方形的周长一定,长和宽不成反比例。
5、思考:
100÷x=y,那么x和y成什么比例?为什么?
6、同桌学生相互出题,进行判断并说明理由。
讨论、交流。
独立完成,集体评讲。
说一说。
填一填,议一议。
讨论。
相互出题解答。
四、总结反思。
评价总结。
比例的意义教学教案篇八
教学目标:1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺,会求一幅图上的比例尺,会把数值比例尺与线段比例尺进行转化。
2、使学生在观察、比较、思考和交流等活动中,培养分析、抽象、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。
教学重点:使学生理解比例尺的意义,能看懂线段比例尺,会求一幅图的比例尺。
教学难点:使学生理解比例尺的意义,会求一幅图的比例尺。
设计理念:本课设计结合具体的情境,出示不同地图,引发学生思考。再通过比的有关知识介绍比例尺的意义,利用具体生活实例引导学生建构比例尺这一概念,为强化对比例尺的认识,设计中,通过不同形式比例尺的分析比较,以及系列学生自主活动,进一步加深对概念的理解,培养学生分析、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。
教学步骤教师活动学生活动。
一、设置情境。
比较引入演示:出示出示一组大小不同的中国地图。
师:通过观察,你发现了什么?什么变了?什么没变?
师:想知道地图是怎样绘制出来的吗?今天我们就学习这方面的知识。
(板书课题:比例尺)学生观察。
学生回答。(可能出现:形状没变、大小变了。)。
二、自主探究。
认识新知。
1、出示例6。
师:题中要我们写几个比?这两个比分别是哪两个数量的比?
什么是图上距离?
什么是实际距离?
2、认识探索写图上距离与实际距离比的方法。
师:图上距离与实际距离的单位不同,怎样写出它们的比?
(学生独立完成后,展示、交流写出的比,强调要把写出的比化简。)。
3、比例尺的意义及求比例尺的方法。
师:像刚才写出的两个比,都是图上距离和实际距离的比。我们把图书距离和实际距离的比,叫做这幅图的比例尺。
题中草坪平面图的比例尺是多少?
师:怎样求一幅图的比例尺?
根据学生的回答,相机板书:
图上距离:实际距离=比例尺。
4、进一步理解比例尺的实际意义。
图上距离/实际距离=比例尺。
指出:为了计算简便,通常把比例尺写成前项是1的最简单整数比。像1:1000这样的比例尺,通常叫做数值比例尺。
5、认识线段比例尺。
比例尺1:1000还可以用下面这样的形式来表示。
0102030米。
师介绍线段比例尺。
问:图上1厘米表示实际多少米?3厘米呢?
指出像这样的比例尺通常叫做线段比例尺。学生读题,理解题意,尝试写出两个数量的比。
学生交流,明确方法:
把图上距离与实际距离的单位统一成相同单位,写出比后再化简。
学生总结:图上距离:实际距离=比例尺。
学生在小组里说说,再全班交流。
学生交流:1:1000的意思是图上1厘米的线段表示实际距离1000厘米的距离,也表示图上距离是实际距离的1/1000,还表示实际距离是图上距离的1000倍。
学生:图上1厘米的距离表示实际距离10米。
四、独立练习。
巩固提高1、做“练一练”第1题。
2、做“练一练”第2题。
独立相互说,指名说。先说说每幅图中比例尺的实际意义。
学生各自测量、计算,再交流思考过程。
五、总结评价。
生活延伸1、你学会了什么?你有哪些收获和体会?
2、在生活中找找,哪些会用到比例尺学生交流。
比例的意义教学教案篇九
导学目标:
2、通过引导探究、概括归纳、讨论、合作学习,培养学生抽象概括能力。
3、使学生初步感知事物间是相互联系、变化发展的。
导学重点:比例的意义和基本性质。
导学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。
预习学案。
1、什么是比?
2、口算下面各比的值,哪些比的比值相等?
12:1634:185:310:66:10。
导学案。
探究比例的意义。
例1一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下。
时间(时)25。
路程(千米)80200。
80:2=200:55:3=10:66:10=9:15802=。
像这样由两个相等的比组成的式子我们把它叫做比例。
练习:
应用比例的意义判断下面的比例是否正确。
1、20:5=1:42、12:133、0.6:0.2=34:14。
先独立完成,再在小组内交流。
我们已经知道组成一个比的两个数分别叫做这个比的前项和后项,组成比例的四个数也叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
看课本48页,在图上这四面国旗的尺寸中,能找出哪些比来组面比例?
四人小组讨论,老师巡视,给予指导。
请小组汇报讨论结果,老师根据学生的汇报,将组成的比例分类板书在黑板上。
老师结合板书归纳:根据同学们找的结果,我们看到,这四面国旗的长与宽的比值都相等,所以每两面国旗的长与宽的比都可以组成比例。同样,这四面国旗的宽与长的比值也都相等,所以每两面国旗的宽与长的比也都可以组成比例。另外我们还发现每两面国旗的长与长的比值与宽与宽的值也相等,所以每两面国旗的长与长的比,与宽与宽的比也可以组成比例。根据两个相等的比可以组成比例,从四面国旗的尺寸中,我们可以组成许多个比例。
二、比例的基本性质。
板书:
80:2=200:55:3=10:66:10=9:15。
内项。
外项。
观察黑板上的比例式,你以发现比例的内项与外项之间有什么关系吗?小组讨论。教师在学生讨论的基础上总结并在比例式下板书如下,并说明:通过计算,我们发现两个外项的乘积等于两个内项的乘积。
802=200580×5=2×200。
53=1065×6=3×10。
610=9156×15=10×9。
小组合作,举几个这样的例子验证一下。
从上面的计算我们发现,在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
观察黑板上分数形式表示的比例式,内项乘内项怎样乘?外项乘外项怎样乘?得到分子与分母交叉相乘。
练习。
1、6:3=8:52、0.2:2.5=4:50。
3、2:3=12:134、1.2:0.6=10:5。
课堂检测新课标第一网。
1、应用比例的意义判断下面的比例是否正确:
(1)3:5=9:15。
(2)2.5:5=25:0.5。
(3)1002=。
(4)13:2=16:4。
(1)6:9=9:12。
(2)1.4:2=7:10。
(3)5:2=58:14。
(4)34:110=7.5:1。
3.选择题(把正确答案的序号填入括号内)。
(1)()与3:5能组成比例。a.10:6b.13:15c.30:50。
(2)()与5:8能组成比例。a.15:18b.10:16c.3:5。
(3)4:5与()能组成比例。a.14:15b.8:10c.15:12。
(4)7:9与()能组成比例。a.70:90b.17:19c.3:4。
你能比较一下“比”与“比例”有什么联系与区别吗?
板书设计。
一、比例的意义二、比例的基本性质。
表示两个比相等的式子叫做比例。两个外项的积等于两个内项的积。
比例的意义教学教案篇十
教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。
2、使学生能利用正反比例的意义正确解答应用题。
培养学生的判断分析推理能力。
教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。
教学过程:
(一)复习。
1.说说正、反比例的意义。
(1)一辆汽车行驶速度一定,所行的路程和所用时间。
(2)从a地到b地,行驶的速度和时间。
(3)每块砖的面积一定,砖的块数和总面积。
(4)海水的出盐率一定,晒出的盐和海水重量。
3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。
(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。
(二)新课。
(1)用以前方法解答。
(2)研究用比例的方法解答。
题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?
能不能利用这个关系式列比例解答?
解比例,同学自已完成,及时纠正。检验。
改变例1中的条件和问题。
1、以前的发法解答。
2、怎样用比例知识解答?
3讨论结果填书上。
4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。
整理和复习。
教学要求:
2、使学生能正确理解正、反比例的意义,能正确进行判断。
3、培养学生的思维能力。
教学过程:
知识整理。
1回顾本单元的学习内容,形成支识网络。
2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。
复习概念。
什么叫比?比例?比和比例有什么区别?
什么叫解比例?怎样解比例,根据什么?
什么叫呈正比例的量和正比例关系?什么叫反比例的关系?
什么叫比例尺?关系式是什么?
基础练习。
1填空。
六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。
小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是()。
甲乙两数的比是5:3。乙数是60,甲数是()。
2、解比例。
5/x=10/340/24=5/x。
3、完成26页2、3题。
综合练习。
1、a×1/6=b×1/5a:b=():()。
2、9;3=36:12如果第三项减去12,那么第一项应减去多少?
3用5、2、15、6四个数组成两个比例():()、():()。
实践与应用。
1、如果a=c/b那当()一定时,()和()成正比例。当()一定时,()和()成反比例。
将本文的word文档下载到电脑,方便收藏和打印。
比例的意义教学教案篇十一
第3课时(总第22课时)。
一、教材内容。
【复习内容】。
教科书第12册第112页“整理与反思”和第115页“练习与实践”第5、6题。
【知识要点】。
1.中位数、众数、平均数有什么不同。
2.怎样求一组数据的平均数。
3.体会有关统计量在表示数据特征方面的特点和作用。
4.掌握简单统计量的计算方法。
【教学目标】。
1.让这生进一步体会数据与现实生活的的密切关系。
2.进一步明确各种统计图在描述数据方面的特点及作用,
3.进一步体会有关“平均数、众数、中位数”在表示数据特征方面的特点和作用。
4.进一步掌握简单统计量的基本计算方法。
二、教学建议。
众数和中位数是根据《标准》的要求新增加的教学内容,众数和中位数都是统计量,在平均数不能有效地反映出一组数据的基本特点时,往往选用众数或中位数来表达数据的特点,在复习时应通过对“整理与反思”中第三个问题的讨论,不仅要让学生进一步明确中位数、众数和平均数的求法,而且要让学生体会到:中位数、众数和平均数都是表示一组数据特征的统计量,但由于数据自身特点不同,这几种统计量在表示数据特征时所具有的代表性也就有所区别。
三、知识链接。
统计、众数、中位数(六上p79、80例2、例3)。
四、教学过程。
集体讨论复习:
1.什么是“中位数、众数与平均数”?并说说它们有什么不同?
2.举例说说怎样求平均数、众数和中位数?
(一)出示龙城超市上个星期售出的甲、乙两种品牌的饮料箱数如下图。
(1)在这个星期中,两种品牌饮料的销售量在哪一天相差最大?
(2)甲饮料周日的销售量比周一多百分之几?
(3)甲饮料这个星期平均每天销售多少箱?乙饮料呢?
(二)出示生物小组的同学每次用10粒绿豆做发芽试验,下面是他们经过整理的10次发芽情况。
发芽粒数0578910。
次数124111。
(1)这10次试验中,发芽的绿豆一共有多少粒?总的发芽率是多少?
(2)这10次试验中,发芽粒数的众数是多少粒?
(三)出示教材中115页第5题。
1、先让学生把图中每个直条所表示的人数标出来。
3、从整体上比较两个年级学生牙齿健康情况。
4、指导一年级学生龋齿颗数的众数。
一年级共有50个学生,那么就有50个反映每个人龋齿颗灵敏的数据,而这50个数据中,龋齿是1颗的共有19个,所以一年级龋齿颗数的众数是“1颗”
5、引导回答,六年级龋齿颗数的众数。
6、学生独立计算第(3)个问题。
(四)出示第6题,引导观察表格。
1、指导学生用计算器计算平均数。
2、指导学生计算每组数据的中位数,组织学生讨论计算中位数要注意什么?
(先把数据按从大到小或从小到大的顺序进行排列)。
3、表示这组男生体重的一般情况,平均数和众数哪个更合适?
(用中位数代表男生体重的一般情况比较合适,因为男生体重的数据中,有8个低于平均数,只有两个高于平均数,平均数的位置明显偏离这组数据的中心。)。
习题精编。
一、基础训练。
1.在47、25、36、18、47、58、25、47中,众数是(),中位数是(),平均数是()。
每人销售件数1800540250210150120。
人数113532。
2.某公司销售部人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量,如下表:
这15人销售件数的众数是()。
二、综合应用。
1.某超市工作人员月工资如下表:
经理副经理员工a员工b员工c员工d员工e员工。
f员工g员工h员工。
i
(1)这个超市人员工资的平均数是(),众数是(),中位数是()。
(2)哪个数据表示这个超市人员的月工资水平比较合适?为什么?
2.在海陵2007年青年歌手大奖赛中,11位评委给一位歌手的打分如下。
9.79.79.89.69.59.69.49.19.49.69.6。
(1)这组数据的平均数、中位数、众数各是多少?
3.某鞋店上个月女鞋进货和销售的情况如下表:
尺码353637383940。
进货数量/双30100150905020。
销售数量/双1794120833715。
(1)你认为这样进货合理吗?为什么?
(2)鞋店在确定进货量时利用了哪些统计知识?
第4课时(总第23课时)。
一、教材分析。
【复习内容】。
【教学目标】。
1、使学生通过复习,进一步体会事件发生的可能性的含义,知道可能性是有大小的,会用分数表示一些简单事件发生的可能性大小。
2、进一步体会游戏规则的公平性,能判断简单游戏规则是否公平,能设计简单的公平游戏规则。
3、使学生通过复习,进一步体会可能性与现实生活的密切联系,感受到生活中很多现象都具有随机性,培养简单的推理能力,增强学习数学的兴趣。
【内容分析】。
原来我国小学数学教材中只有统计而没有概率,并且只占很小篇幅。这可能与我国传统文化重整合轻分析,重人伦轻自然,重义轻利,重道轻器有关;另一方面,在计划经济时期人们遇到更多的是确定的现象,没有感受到统计与概率的必需。而在《标准》中“统计与概率”却受到了前所未有的重视。
苏教版的这一套新教材共安排了四次概率知识的教学。一次安排在二年级上册,主要让学生感受确定现象与不确定现象,初步体会可能性的含义。第二次安排在三年级上册,主要是让学生能用“可能”、“不可能”、“一定”等词语描述生活中一些事件发生的可能性,让学生体会事件中的各种情况发生的可能性有时相等,有时不相等,学会用经常、偶尔等词语来描述生活中一些事情发生的可能性。第三次安排在四年级上册,进一步体会事件发生的可能性有大有小,可能性不相等会影响游戏规则的公平性,从而修改或设计简单的公平游戏规则。最后一次安排在六年级上册,主要是让学生学会用分数来表示事件发生的可能性,能设计一个方案,符合指定的要求,并能对简单事件发生的可能性作出预测,阐述自己的理由。
概率是一个既难教又难学的内容,因为概率有其固有的思想方法,有别于讲究因果关系的逻辑思维和确定性思维。特别是学生在正式开始学概率之前就已经形成了一些错误概念,我们的教学即便是基于对错误概念了解之上,某些错误还是顽固得难以消除。因此,教师在复习中一方面要特别注意创设情境,鼓励学生用真实的数据、活动以及直观的模拟实验去检查、修正或改正自己对概率的认识。另一方面,教师也要注意将统计与概率、分数与百分数等知识相结合,进一步沟通知识间的内存联系,体会数学学习的价值。
二、教学建议。
【容易出错之处】。
1、对于随机事件发生的可能性,由于学生头脑中固有的错误认识的影响,学生对于“不可能、一定、可能”等可能性含义仍会发生混淆,教师在复习中要注意引导学生通过具体、现实性的例子来说明事件发生的可能性。
2、让学生独立设计一些游戏规则,这一方面有利于学生加深对游戏规则公平性的认识,另一方面也要让学生在交流设计方案的过程中,逐步形成一定的思路,教师要引导学生根据自己的规则进行适当的检验,以确认选择的方法是否符合指定的要求。
【策略提示】。
1、练习与实践的第1题要让学生说说连线的思考过程,突出有些事件的发生是确定的,有些事件的发生是不确定的,而不确定中,有些结果出现的可能性会大一些,而有些结果出现的可能性会小一些。
2、第2题(2)要突出判断的理由。交流后教师可再引导学生思考,任意摸1个球,球上的数是素数的可能性大,还是合数的可能性大?还可以让学生说说球上的数是大于3的可能性大,还是小于3的可能性大?充分利用教材中的素材,加深对可能性含义的认识。
3、第3题要先让学生说说对“明天的降水概率是80%”的理解,然后再进行判断。
4、第4题学生对做“石头、剪刀、布”游戏,来判断谁先套圈的方法,理解上会有一定的困难,六年级上册教材关于这个问题,书上出示了游戏产生的所有结果,再让学生进行判断。教学中如果学生理解有困难,也可以让学生统计出游戏的所有结果,再作出判断。关于第(3)题设计游戏规则,教师要提醒学生,设计的方法应该有可能出现三种结果,而且每种结果出现的可能性要相等。
5、第5题(2)可以鼓励学生根据指定的可能性设计不同的选法,以培养学生思维的灵活性和开放性,也要提醒学生在每次选择后及时进行验算,以确认选择的方法是否符合指定的要求。教师也可以同桌互相出题,设计选法,让学生积极主动地参与学习的过程。
三、知识链接。
1、三年级上册p95.
2、四年级上册p81。
四、教学过程。
一、复习可能性的含义以及可能性的大小。
1.出示下列四个图形。
3.师小结:有些事情的发生是确定的,有些事情的发生是不确定的,这些都是事件发生的可能性。
4.用分数来表示图3、4的口袋中摸到黑球和白球的可能性大小.
二、完成后进行交流。
三、完成练习与实践的1-3题。
1、完成第1题,要让学生连线后,说说连线时的思考过程。
2、第2题在学生独立判断的基础上,再说说思考的方法。
3、第3题,要抓住怎样理解“明天的降水概率是80%”这句话的?再让学生按要求进行判断。
四、复习游戏规则的公平性。
1、创设游戏情境,让学生判断游戏是否公平,为什么?
2、启发学生思考,要使游戏规则公平,你认为口袋里可以怎样放球,为什么?
3、小结:不管怎样放球,只要使参加游戏的小朋友摸到指定的球的可能性大小相等,这样的游戏规则就是公平的。
五、指导完成练习与实践的4-5题。
1、让学生交流对题目的理解。
2、让学生各自判断第(1)题中的三种方法是否公平,再交流思考的过程。
3、交流时可让学生排一排“石头、剪刀、布”的游戏,可能有几种不同的结果。
4、完成第5题。着重要让学生说说每个分数的思考过程,注意让学生从不同的角度进行思考。
六、全课小结。
通过这节课的复习,你对可能性又有了哪些新的认识?课后再收集一些有关可能性的例子,从中提出一些问题进行解答。
习题精编。
1、判断。
(1)我扔硬币4次,正面朝上的一定有2次。()。
(2)浙江的夏天温度可能超过30℃。()。
(3)明天我遇到的第一个人一定是我班的同学。()。
(4)不遵守交通规则,发生事故的可能性很大。()。
2、连线。
4、利用下边的空白转盘设计一个实验,转盘上设计红色、黄色和绿色三块区域,使指针停在红色区域的可能性分别是停在绿色区域和黄色区域的2倍。
5、在一个书包里放3只黄乒乓球和5只白乒乓球,让你每次任意摸出1只球,这样摸100次。
(1)摸出黄乒乓球的次数大约占总次数的几分之几?
(2)摸出的黄球大约会有多少次?
球队。
比分。
场次甲队乙队。
第一场20。
第二场21。
第三场11。
第四场12。
第五场23。
过关测试。
1、某班40名同学在一次体育课上跳高的成绩如下:(单位:厘米)。
9499911149210910710592103。
9592100951061001081099795。
106105104107102114100949799。
99103104959810410810296102。
根据上面的成绩填写下表,并回答下面的问题。
某班同学跳高成绩统计表4月3日。
人数。
占总人数的百分数。
(1)跳高100厘米及以上的同学有()人,占全班同学的()%。
(2)这组数据的平均数、中位数、众数各是多少?哪一个统计量最能反映这个班跳高成绩。
(3)制成条线统计图。
2、画一画。
(1)摸出的一定是(2)摸出的不可能是。
3、看图回答问题。
2006年成才出版社两套六年级辅导用书销售情况统计图。
2007年1月。
(1)《数学二级跳》第二季度销量比《数学一点通》多()%。
(2)《数学一点通》2006年全年销售()万册。
(3)()2006年开始销量大一些,()的销量全年一直呈上升趋势。
(4)该出版社准备2007年保留其中一套,应该保留哪一套?为什么?
4、7月份,小华家缴当月水费40元,当月电费90元,当月煤气费70元。三种费用各占水、电、气总支出的百分之几?利用下面的图形制成扇形统计图。
6、有两个圆形转盘,任意转动指针,要使a盘指针停在红色区域的可能性为,使b盘指针停在红色区域的可能性为,请你设计各转盘颜色区域。把你的设计画出来,并涂上颜色。
ab。
编写单位:泰州师专泰兴附属实验小学。
责任编辑:严红梅。
编写人员:朱国华翁桃严红梅。
比例的意义教学教案篇十二
本堂课是在学生学习了正比例的基础上学习反比例,由于学生有了前面学习正比例的基础,加上正比例与反比例在意义上研究的时候存在有必须的共性,所以学生在整堂课的学习上与前面学习的正比例相比有明显的提高,紧随着课之后教材安排了一堂正反比例比较、综合的一堂课,对学生在出现正反比例有点模糊的时候就及时地加以纠正。
反比例关系和正比例关系一样,是比较重要的一种数量关系,学生理解并掌握了这种数量关系,能够加深比较例的理解,并能应用它解决一些简单的正、反比例方面的实际问题。同时经过反比例的教学,能够进一步渗透函数思想,为学生今后学习中学数学和物理、化学打下基础。反比例的意义这部分资料是在学生理解并掌握比和比例的意义、性质的基础上进行教学的,但概念比较抽象,学习难度比较大,是六年级教学资料的一个教学重点也是一个教学难点。
在确定过程中,学生容易被概念的最终一句话所迷惑(两种量中相对应的两个数的积必须或比值必须,这两种量间的关系就是反比例或正比例),学生简单地经过确定两种量积必须还是比值必须,匆匆下了定论,而忽略了成正反比例的前提条件:必须是两种相关联的量,并且一种量会随着另一种量的变化而变化。上题中,一个圆的周长如果必须,那么它的直径也必须,至于圆周率更是一个常数,圆直径和圆周率这两种量是不会变化的,所以它们是不成比例的。诸如这样的习题还有很多,如:正方形的边长必须,它的面积和边长是不成比例的。
所以我们在确定成正或反比例时,必须要学生经过三步骤:一是先看题中给的两种量是否有关联;二是看这两种量会不会变化,怎样变化;三再看这两种量的积必须还是比值必须。这样才能确保学生做出正确的确定,为用正反比例知识解决问题打下扎实基础。
比例的意义教学教案篇十三
知识目标:理解比例的意义,掌握组成比例的关键条件。
能力目标:能正确的判断两个比能否组成比例。
情感目标:通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。
重点解比例的意义,掌握组成比例的关键条件。
难点正确的判断两个比能否组成比例。
教学过程教学预设个性修改。
目标导学复习激趣目标导学自主合作汇报交流变式训练。
一、创设情境,导入新课
师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢?(生自由回答)
师:同学们都说出了自己的想法,说明你们都很热爱我们的国家,希望你们以后一定要好好学习,做一个有用的人,把我们的国家建设的更加美好!五星红旗是庄严而美丽的,并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容:比例(板书课题:比例)
二、新授(课件出示不同大小的国旗图案)
(板演,观察到比值相等,教师板书:两个比相等)
师:那我们就可以将这两个比用等号连接。(教师板书生汇报的两个相等的比)
教师边指着这组相等的比一边说:好,像这样表示两个比相等的式子就叫做比例。(把定义补充完整)。这就是比例的意义(把课题板书完整)请同学们齐读。
请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?(生回答,等式;有两个相等的比)
(教师再强调:一定是比值相等的两个比才能组成比例。)
师:你还能从四面国旗中找出哪些比例?
(写在练习本上,然后汇报。教师板书)
师:我们在学习比的时候,可以把比写成分数的形式,比如:60:40=60/40,那比例也能写成分数的形式吗?怎么写?(口答)
师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?
从形式上区分:比由两个数组成;比例由四个数组成。
从意义上区分:比表示两个数之间的倍数关系;比例表示两个比相等的式子。
拓展应用下面哪些组的两个比可以组成比例?如果能,在()打对号。
10:2和35:42()0.6:0.2和):4和3:():和12:8()
作业布置做一做。
板书设计比例的意义
2.4:1.6=60:40=
2.4:1.6=60:40
(或)=
比例的意义教学教案篇十四
1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律、
启发引导法。
自主探究法。
课件。
一、定向导学(5分)。
1、已知路程和时间,求速度。
2、已知总价和数量,求单价。
3、已知工作总量和工作时间,求工作效率。
4、导入课题:今天我们来学习成正比例的量。
5、出示学习目标。
2)能根据正比例的意义判断两种量是不是成正比例。
二、自主学习(8分)。
自学内容:书上45页例1。
自学时间:8分钟。
自学方法:读书法、自学法。
自学思考:
1、举例说明什么是成正比例的量,成正比例的量要具备几个条件?
(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。例如底面积一定,体积和高成正比例。
y/x=k(一定)。
(4)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是175立方米,225立方厘米的水有9厘米。
2、归类提升。
三、合作交流(5分)。
1、正比例图像是什么样子的?
2、完成46页做一做。
3、各组的b1同学上台讲解。
四、质疑探究(5分)。
1、第49页第1题。
2、第49页第2题。
3、你还有什么问题?
五、小结检测(8分)。
1、什么是正比例关系?如何判断是不是正比例关系?
2、检测:49页第3题。
六、堂清作业(9分)。
练习九页第4、5题。
比例的意义教学教案篇十五
1、理解比例的意义,能运用比例的意义判断两个比能否组成比例,并会组比例。
2、探索国旗中蕴含的数学知识,渗透爱国主义教育,提高学生的认知能力。
3、体验获得成功的乐趣,建立学好数学的自信心。
教学难点:应用比例的意义判断两个比能否组成比例。
ppt课件。
请同学们回忆一下上学期我们学过的比的知识,谁能说说:
1、什么叫做比?比的书写形式有哪些?
2、什么叫做比值?
一、情境引入。
同学们,每个星期一的早上我们学校都会举行什么活动?我们一起说吧。
(生齐声说:升旗仪式)。
课件出示:升旗仪式的情景。
你们对这个情景已经非常熟悉了,你们对这面国旗的长和宽分别是多少了解吗?
不了解是吧?那老师告诉大家:
课件出示并介绍:我们这面国旗的长是2.4米、宽是1.6米。
提问:你除了在升旗仪式上还在生活中的哪些地方加到过国旗呢?
指名回答(学校周一升旗时操场上的国旗、会议桌上的国旗、教室后面的国旗、)。
在很多的场合像我们的教室、还有大型的庆典活动上我们都可以看到庄严的国旗。
那么你们知道这些国旗的尺寸大小吗?追问:知道不知道?
那么下面呢我们看一下老师收集到的一些信息。
课件出示不同场合下的国旗。
课件出示:不同场合下的国旗。
提问:谁能用最简短的语言描述一下这四面国旗分别出现在什么地方?并读出它的长和宽(1)天安门广场的国旗,长5米,宽10/3米。
(2)学校的国旗长2.4米,宽1.6米。
(3)教室里面的国旗长60厘米,宽40厘米。
(4)会议桌上的国旗长15厘米,宽10厘米。
那我们现在看到的这些国旗的大小都一样吗?
师小结:在不同的场合的国旗的大小是不一样的。
追问:它们的形状相同吗?(相同)。
尽管它们的大小不一样,但形状相同。我们看上去每面国旗在我们的眼中还是那么的庄严和美丽,那么的和谐和统一是吗?那么到底按照怎么样的标准才能制作出这种大小不同、形状相同的国旗呢?其实每面国旗的里面是否也蕴含着我们的数学知识呢—比例!(板书课题:比例)下面我们就一起来研究这个问题。
二:探究新知。
下面请同学们拿出练习本,听清要求:
先写出图中国旗长与宽的比然后再求出它的比值。
学生自主计算,教师巡视。
提醒:同学们在计算时,一定要认真。注意计算结果的准确性。
哪个同学愿意和大家来分享你的成果?和大家勇敢的分享你的成果。指名回答。
根据学生汇报并分类板书。
5:10/3=3/2。
2.4::16=3/2。
60:40=3/2。
15:10=3/2。
大家同意他的计算结果吗?
师:请同学们观察黑板上的计算结果,看看有什么发现。
指名回答。
板书:5:10/32.4:1.6。
来大家一起把这个等式念一下(学生齐读)5:10/3=2.4:1.6。
提问:那么谁能根据这四个5:10/3=3/2。
2.4:1.6=3/2。
60:40=3/2。
15:10=3/2。
相等的比也像老师一样写一个等式呢?
指名回答并根据汇报板书。
我们写的这些等式数学上把它叫做比例。谁能根据自己的理解说说什么叫做比例?指名回答。
老师明确:我们把表示两个比相等的式子叫做比例。(重点强调比值相等)。
大家齐读两遍,开始。
学生齐读。
板书课题。
提问:在读了比例的意义以后,在这句话里你认为那些字非常重要呢?
指名回答。
教师明确:两个比相等并在这句话的字的下面标上黑点。
表示两个比相等的式子叫做比例。
那大家看一看:15∶3和60∶12能组成比例吗?你是怎样判断的?对,15∶3的比值是5;60∶12的比值也是1.5,所以说15∶3和60∶12能组成比例。
那同学们,要判断两个比能不能组成比例,关键是看什么啊?对,判断两个比能不能组成比例,关键要看它们的比值是否相等。
追问并出示课件:那同学们,要判断两个比能不能组成比例,关键是看什么啊?
(指名回答)。
大家同意吗?
对学生的回答进行评价。
追问:如果不相等的话,能组成比例吗?
教学比例的另外一种写法:同学们知道比还有另外一种写法(分数的写法)像2.4:1.6=15:10这个比例还可以写成2.4/1.6=15/10,这是两种不同的写法!
(3)、合作探究:在四面国旗的长和宽的数据中,你还能找出哪些比可以组成比例??
请同学们在小组内讨论讨论!看哪个小组的同学找的多,开始吧!
班内交流:哪位同学说一说你们小组找出来哪些比例?
展示:2.4:1.6=60:40(长:宽=长:宽)。
1.6:2.4=40:60(宽:长=宽:长)。
2.4:60=1.6:40(长:长=宽:宽)。
这里能组成的比例还有很多,同学们课下再找出其他的比例吧!
(1)同学们,以前学了比,现在又学比例,那你觉得比和比例一样吗?现在老师有个问题需要同学们帮忙解决一下,请看屏幕,“比和比例有什么区别?”下面请同学们小组内探讨,一会儿告诉老师好吗?好,开始吧!
(2)交流:谁愿意来说一说你们小组讨论的结果?
(生答)。
三、智慧城堡。
师小结:今天这节课同学们表现得特别好,我们一起去智慧城堡闯闯关同学们有没有信心?
四、谈收获。
五、全课总结:
师小结:比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。
比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。
比例的意义教学教案篇十六
1、使学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别,能应用比例的意义和比例的基本性质判断两个比能否组成比例。
2、激发学生的学习兴趣,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。
应用比例的意义和性质判断两个比是否成比例。
1、什么叫比?
2、求出下面各比的比值(小黑板)。
12:161/4:1/3和9:124.5:2.710:6。
(3)2:5和80:200能组成比例吗?你是怎样判断的?
(4)完成第45页“做一做”
(1)在一个比例里,有四个数,这四个数分别叫什么名字?
(2)请同们分别找出80:2=200:5和2分之80=5分之200的内项和外项。
(3)你们任意找一个比例,把它们的内项和外项分别乘起来,双可以发现什么?
(4)指导学生归纳后,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
(5)指导学生完成第一46页“做一做”第1题。
这节课你学到了哪些知识?
创意作业:
有一房间,窗子的长是6分米,宽是4分米;门的长和宽分别是21分米和14分米,你能用已知的四个数组成多少个比例?比一比哪个同学组成的多。
x
1、理解和掌握比例的意义和基本性质,认识比例的各部分的名称,体会数学的规律美。
2、利用比例知识解决实际问题。
3、培养学生自主参与的意识、主动探究的精神,激发学生的审美愉悦。培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。
一、谈话导入,创设情境:
我们的祖国方圆960万平方公里,幅员辽阔却能在一张小小的地图上清晰可见各地位置。建筑设计师可将滨江四区的设计构想展示在一张纸上。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。
二、自主探究,学习新知。
1、8厘米。
出示。
6厘米。
4厘米。
3厘米。
(1)根据表中给出的数量写出有意义的比。
(2)哪些比是相关联的?
(3)根据以往经验,可将相等的两个比怎样?(用等号连接)。
教师并指出这些式子就是比例。
2、让学生任意写出比例,并让学生用自己的语言描述比例的意义。
3、教师板书:表示两个比相等的式子叫做比例。比例也可用分数形式表示。
4、写出比值是1/3的两个比,并组成比例。
(二)教学比例的基本性质。
1、比例和比有什么区别?
(1)让学生自己取。
(2)组成比例的四个数叫做比例的项,两端的两项叫做比例的。
外项,中间的两项叫做比例的内项。
板书:8:6=4:3。
内项。
外项。
(3)让学生找出自己举的比例的内外项。
()。
12。
2
()。
=
(4)找出分数形式比例的内外项位置又是怎样的?
3、出示【启迪学生思维,展开审美想象】。
(1)这个比例已知的是哪两项,要求的又是哪两项?学生试填。
(2)学生反馈,教师板书。
(3)你发现了什么?
(4)指导学生概括出比例的基本性质,并板书:在比例里,两个外项之积等于两个内项之积。
4、用比例性质验证你所写比例是否正确。
5、练习8:12=x:45。
0.5。
x
20。
32。
=
求比例中的未知项,叫做解比例。
如何证明你的解是正确的?
(三)小结:今天这堂课你有什么收获?
三、巩固练习。
1、下面哪几组中的两个比可以组成比例。
4
1
12:24和18:36。
0.4:和0.4:0.15。
14:8和7:4。
5
2
2、根据18x2=9x4写出比例。【体会到数学的逻辑美,规律美】。
3、从1、8、0.6、3、7五个数中。
(1)选出四个数,组成比例。
(2)任意选出3个数,再配上另一个数,组成比例。
(3)用所学知识进行检验。
四、实际应用。
不久前,汪骏强家的菜地边高高矗立起一个新铁塔,这天午后,阳光明媚,邻居家刚读一年级的小明又拉着汪骏强来到铁塔下,玩着玩着,小明问道:“强强哥哥,这铁塔干嘛用?”“铁塔嘛,架设高压线用的,以后等电线架好了,可不能再来玩了,更不能攀登,高压线可危险了!”“那这个铁塔有多高压呀?”
同学们,如果你是汪骏强,你准备怎么办?
执教者方艳。
比例的意义教学教案篇十七
1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
成正比例的量的特征及其判断方法。
理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律.
启发引导法
自主探究法
课件
一、定向导学(5分)
1、已知路程和时间,求速度
2、已知总价和数量,求单价
3、已知工作总量和工作时间,求工作效率
4、导入课题
今天我们来学习成正比例的量。
5、出示学习目标
1、理解正比例的意义。
2、能根据正比例的意义判断两种量是不是成正比例。
二、自主学习(8分)
自学内容:书上45页例1
自学时间:8分钟
自学方法:读书法、自学法
自学思考:
1、举例说明什么是成正比例的量,成正比例的量要具备几个条件?
2、正比例关系式是什么?
(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。例如底面积一定,体积和高成正比例。
y/x=k(一定)
(4)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是175立方米?225立方厘米的水有9厘米。
2、归类提升
引导学生小结成正比例的量的意义和关系式。
三、合作交流(5分)
第46页正比例图像
1、正比例图像是什么样子的?
2、完成46页做一做
3、各组的b1同学上台讲解
四、质疑探究(5分)
1、第49页第1题
2、第49页第2题
3、你还有什么问题?
五、小结检测(8分)
1、什么是正比例关系?如何判断是不是正比例关系?
2、检测
1、49页第3题。
六、堂清作业(9分)
练习九页第4、5题。
板书设计:
成正比例的量
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。
关系式:
y/x=k
比例的意义教学教案篇十八
正、反比例知识,内容抽象,学生难以接受。学好正比例知识是学习反比例知识的基础。因此,使学生正确的理解正比例的意义是本节课的重点。在实际教学中,我注意了以下几点:
1、联系生活,从生活中引入。数学来源于生活,又服务于生活。新的《数学课程标准》明确要求“使学生感受数学与生活的密切联系,从学生已有的生活经验出发,让学生亲历数学的过程”。关注学生已有的生活经验和兴趣,通过现实生活中的素材引入新课,使抽象的数学知识具有丰富的现实背景,为学生的数学学习提供了生动活泼、主动的材料与环境。例1表格中的数量与单价是学生所熟悉的,贴近了学生的生活,故很快将学生带入轻松愉快的学习环境,创设了良好的教学情境,学生及时进入状态,手脑并用,课堂气氛十分活跃。让学生从生活中学习数学,让学生感觉到数学就在我们身边,从而对数学产生亲切感。
2、在观察中思考。小学生学习数学是一个思考的过程,“思考”是学生学习数学认知过程的本质特点,是数学的本质特征,可以说,没有思考就没有真正的数学学习。本课教学中,我注意把思考贯穿教学的全过程。例如:在教学例题时,出示了小红买彩带是营业员阿姨所出示的数量与总价的表格,先观察这两个表格,然后根让学生据学习菜单思考的问题。
思考题中“更有”两个字对学生的思维有一定定向作用,让学生着重去寻找表1中的规律。在学生深入观察、独立思考、合作交流后,必会发现表1中的两个量变化的规律。另外,由于事例熟悉,且数据计算起来很简单,便于学生口算,学生学习时能将更多的时间和精力用于思考这两种量的变化规律上,进而便于提示正比例的意义。
3、在合作中感悟。新的数学课程标准提倡:引导学生以自主探索与合作交流的方式理解数学,解决问题。在本课的设计中,我本着“以学生为主体”的思想,放手让学生先独立思考,后采取小组合作的方式学习,让学生在小组里进行合作探究,最后小组汇报学习结果。这样,就做到了:学生自己能学的自己学,自己能做的自己做,培养合作互动的精神,从而归纳出正比例的意义,并学会运用正比例的意义正确判断两种量是否成正比例关系。
4、在知识的系统中学习。知识与知识之间是相互联系的,相互联系的知识就形成知识系统。如果学生能在知识的系统中学习,在知识的对比中学习,在学习中体会知识的联系和区别,那么学生就会对所学知识有更深刻的'认识,更利于学生建立、完善科学的认知结构。如,教材中设计的练习中有判断正方形的面积与边长是不是正比例关系的问题。
我在教学中就添加了判断正方形的周长与边长是不是正比例关系的问题,并与判断正方形的面积与边长是不是正比例关系的问题一同出示,让学生在对比中学习,学习的思维就会更为深刻,知识的系统性就会更强。由于本节课概念性教学,因此教学后学生还不能非常清楚地表达自己的思维,这与课堂上让学生说的不够充分有关。因此,课下要求学生重视对新学概念的理解与识记。
比例的意义教学教案篇十九
教学目标:
1、结合具体情境,通过计算,能说出比例的意义。
2、能应用比例的意义判断两个比能否构成比例。
3、通过观察、比较说出比和比例的区别。教学重点:
比例的意义,应用比例的意义判断两个比是否能构成比例。教学难点:
应用比例的意义判断两个比是否能构成比例。教学过程:
一、复习旧知、导入新课。
1、什么是比?
2、比的各部分又叫什么?
3、什么是比值?
4、求比值。
提问:你有什么发现?还能举什么样的例子?
关于比值相等的比它们之间还有什么什么关系呢,这是我们今天要学习的的内容。
(设计意图:把新知建立在已有知识经验上,复习旧知为新知做铺垫。)。
二、比较分析,探究新知。
1、出示国旗,说一说都在哪些地方见过中国国旗。
问题:你从中可以知道哪些信息?可以提出怎样的问题?它们变形了吗?为什么??
2:观察、计算一下,国旗的长和宽的比值是多少?
3、探求共性,概括意义。
师:比较一下,你什么发现?师:那既然这两个比的比值相等,请你想想用什么符号把这种关系表示出来!
生:用等号(师把左右两个中间板书=)。
生:表示相等的两个比。生:表示两个比值相等的比。(师板书:比相等)。
师:像这样表示两个比相等的式子叫做比例。板书齐读。这个就是今天我们学习的——比例的意义(板书:比例的意义)(设计意图:通过国旗对学生进行爱国主义教育,通过自己发现提出问题,归纳得到本课所要学习的比例的概念。)。
三、合作探究,进一步理解比例。
(一)、探索组成比例的条件思考:
1、比例由几个比组成?
2、这两个比必须具备什么条件?
3、怎么判断两个比能不能成比例,关键是什么?
(教师再强调:一定是比值相等的两个比才能组成比例。)(二)、寻找比例。
师:你还能从三面国旗中找出哪些比例?(学生写在练习本上,然后汇报。)。
3、介绍比例的第二种表示方法。
师:我们在学习比的时候,可以把比写成分数的形式,那比例也能写成分数的形式吗?怎么写?(学生口答,教师板书)。
4、区分比和比例。
师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?(小组交流)。
从形式上区分:比由两个数组成;比例由四个数组成。
从意义上区分:比表示两个数相除;比例表示两个比相等的式子。
(通过进一步在国旗中找比例,加深对比例组成的理解,掌握本课的重点.)。
四、根据意义,判断比例。
生:看比值是不是相等。
1、完成“做一做”。(注意明确成比例的条件,必须是两个比的比值相等,应计算)。
(利用所学的知识判断能否组成比例,对新知进行应用,突破本课的难点。)。
四、目标检测。
1、书本40页做一做第二题。
2、练习八第一题。
(进一步对所学的知识进行巩固。)。
五、总结。
师:这节课,大家都非常积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)。
六、拓展。
写出比值是五的比,并组成比例,说一说你的发现?
七、板书设计:
操场上的国旗:2.4∶1.6=1.5。
教室里的国旗:60∶40=1.5。
2.4∶1.6=60∶40也可以写成表示两个比相等的式子就叫做比例。
七、课后反思。
通过本次的教学展示,总体感觉自己整节课的教学流程清晰,教师对本节课的两个重点突破较好,学生都理解了比例的意义,能正确地读写比例,并且能根据比例的意义正确地写出比例。也理解并掌握比例的意义,学会了应用比例的意义判断两个比能否组成比例,并能正确组成比例。练习设计,能体现学生思维的递进性,练习有层次。为帮助学生理解、掌握本课的教学任务起到了很好的巩固作用。但本节课也存在着一些不足之处:(1)整节课一味担心自己的教学任务不能完成,对学生放手不够,牵着学生走的多。(2)对学生出错的地方强调不够。在今后的教学中将加大“放手”力度,多注意培养学生创新思维;语言力争简练,把更过的时间还给学生探究问题和独立解决问题。