五年级数学解决问题的策略教案(模板17篇)
编写好的教案不仅可以帮助教师提高教学质量,还可以为学生提供有效的学习指导。教案的评价不仅仅是对教师教学效果的评价,更是对教学过程和教材的评价,为教学改进提供有力支持。教案的编写和实施是一个不断完善和提高的过程。
五年级数学解决问题的策略教案篇一
1.提高学生在具体情境中运用列举法解决实际问题的能力。
2.使学生深入感受使用列举法时的有序性。
3.培养学生运用数学方法解决生活问题的意识,提高解决问题的能力。
教学光盘。
一、复习导入。
通过谈话,复习前两节课的学习内容并了解学生的学习收获。
二、指导练习。
1.完成练习十一中的第6题。
让学生说出他们是怎么想的,然后总结出在使用列举法解决问题时需要注意的内容。
2.完成练习十一中的第7题。
指名读题,让学生观察表格并回答问题:“48个1平方厘米的正方形拼成的.长方形周长是多少?”
引导学生认真思考问题,然后给出解题方法。
3.完成练习十一中的`第8题。
指名读题,让学生理解“只是向东、向北走”的含义,并使用字母代替路线上的直线交点。
4.完成练习路线十一中的第9题。
出示题目,并要求学生仔细阅读题目。
三、完成思考题。
出示思考题并让学生独立完成,并进行集体订正。
五年级数学解决问题的策略教案篇二
关于线段图学生接触得不多,但是有所了解,昨天让学生完成了本节课的预习作业,早晨看了一下,发现大家还是喜欢用列表的方式解决,我想原因有两个:一是列表法曾经学过,二是列表比画线段图要简单得多。但是,简单的列表,并不能清楚地呈现题目的条件和问题,更无法体现他们之间的内在联系,今天的新课上,一定要让学生体会画图的优越性,不能只图列表简单,要从解题的实用价值出发。
早读课上正好有时间,就把预习作业先解决吧!我先把学生的列表和画图呈现出来,然后根据题意让学生指出图中需要改进的地方,然后有我完善画图,接着我把题目隐藏,让学生看图和列表试着编题,这时学生初步体会到画图的优越性,然后试着用两种方法解决,居然连金燕同学也能准确地列式,然后我就让学生谈谈两种方法给你的感觉,虽然画图麻烦些,但还是很值得的。
有了这一铺垫,新课就轻松了许多,但是也发现了比较有趣的问题:许多学生画线段图是从局部着手,逐渐拼成完整的线段图,我就发挥了示范作用,知道他们应该从整体考虑,然后根据题意进行分割,逐渐表示所有的条件,应该有一中宏观的眼光。这一示范的效果还是可以的,课堂练习中我让学生解决了两道简单的形成问题,在巡视的过程中,基本没问题。拓展性的习题只能另找时间了。
五年级数学解决问题的策略教案篇三
1、引导学生经历解决问题的过程,能有序、有效地思考、分析数量关系,初步学会用假设的策略解决含有两个未知数的实际问题。
2、能对解决问题的过程进行反思,初步感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。
3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
能有序、有效地思考、分析实际问题中的数量关系。
感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。
课件、导学单、教具。
一、复习铺垫。
1、出示下面的问题,让学生列式解答。
把720毫升果汁倒人9个同样的小杯子里,正好倒满。平均每个杯子的容量是多少毫升?
数量关系:个小杯的容量=720毫升。
口头列式解答。
提问:和第1题相比,这道题难在哪里?(第1题是把720毫升果汁倒入一种杯子里,可以直接用除法计,这一道题是把720毫升果汁倒入两种杯子里,题中有两个未知数量。)。
3、揭示课题:这道题可以怎样解答呢?今天我们就来研究解决这样的实际问题的策略。(板书课题:解决问题的策略)。
二、探索策略。
1、教学例1。
(1)理解题意。
谈话:请同学们先观察题中的条件和问题,想一想,根据题意,你。
能找到怎样的数量关系,和小组里的同学说说你是怎样理解这些数量关系的。
揭示:6个小杯的容量+1个大杯的容证=720毫升。
大杯的容量x=小杯的容量小杯的容量x3=大杯的容量。
(2)确定思路。
谈话:我们知道,在遇到比较复杂的问题时,要想办法把复杂的问题转化成简单的问题。你有办法把这个问题变得简单吗?请先联系刚才理解数量关系式想一想,再和同学说说你准备怎样解决这个问题。
反馈:请把你的解题思路分享给大家。
学生想到的思路可能有以下几种,结合学生的交流,分别作如下引导:
思路一:假设把720毫升果汁全部倒入小杯。
问:把720毫升果计全部倒入小杯,1个大杯要换成几个小杯?把大杯换成小杯后,正好倒满多少个小杯?先画线段图分析。
思路二:假设把720毫升果汁全部倒入大杯,6个小杯换成几个大杯?把小杯换成大杯后,正好倒满多少个大杯?先画线段图分析。
思路三:列方程解。
小结:根据题中的数量关系,同学们想到了解决问题的.不同思路。上面的'几种思路都是抓住哪一个数量关系展开思考的?像这样通过假设把复杂问题转化为简单问题的方法,也是常用的解决问题的策略。(板书:假设)。
(3)列式解答并检验。
谈话:选择一种方法完成解答,并检验解题的过程和结果。
完成解答后,让学生说说列式、检验的方法和结果。
(4)回顾反思。
(5)教学第二种思路。
学生独立思考,列式计算,教师巡视。
指名交流解题时的思考过程,以及列式计算的过程和结果。
(6)比较和回顾。
提回:通过解答上面的问题,你有哪些收获和体会?
让学生先在小组里说一说,再组织全班交流。
2、完成“练一练”。
(1)出示题目,提问:要求桌子和椅子的单价、可以怎样进行假设?让学生按自己的思路完成解答,教师巡视。
(2)让不同思路的学生展示自己解题的过程。
三、巩固练习。
完成练习十一第1—3题。
四、课堂总结。
今天这节课我们学了什么?你有哪些收获和体会?还有什么疑问?
五年级数学解决问题的策略教案篇四
1、从解决简单的实际问题的过程中,体会用“一一列举”策略的特点和价值,能不遗漏,不重复找到符合要求的所有答案。
2、通过反思和交流,进一步积累解决问题的经验,发展思维的条理性和严密性,从而使学生获得解决问题的成功体验,树立学好数学的自信心。
体会策略的价值,感受策略带来的好处,使学生能主动运用所学的策略解决问题。
在学习过程中,能主动反思自己的解题过程提升对策略的认识。
一、导入。
出示草原牛羊成群图。
二、探究策略。
1、初次探究。
小黑板出示:用18根1米长的栅栏围成一个长方形的羊圈。
问:根据这句话的信息你想采用什么方法来帮牧民叔叔呢?
2、进一步探究。
问:你能把符合要求的长和宽可能性一一列举出来吗?
学生填写第63页的表格。
3、体会列表的特点。
问:反思一下刚才的思考过程,你有什么体会?
板书:有序(有条理)一一列举不遗漏不重复。
让学生再次说说应该怎样有条理地思考。
出示:像这样有条理的把可能性一一列举出来,从而找到问题的答案,这种解决问题的策略就叫列举。在列举时要注意按照一定的顺序,这样才能做到不重复、不遗漏。
4、进一步引导。
这几种围法中牧民叔叔会喜欢那种呢?为什么呢?
出示:周长相等的长方形,长和宽的差越大,面积就越小;长和宽的差越小,面积就越大。
三、体会策略中的技巧。
出示例题2。
读题后问:“最少订阅1本,最多订阅3本”是什么意思?
小组讨论并集体交流。
展示不同的思考方法:
(1)用1、2、3代表不同的杂志。
(2)用a、b、c代表不同的杂志。
(3)用甲、乙、丙代表不同的杂志。
(4)用(0、00、000)代表不同的杂志……。
3+3+1=7种。
(有一定的规律列举,不重复,不遗漏。)。
四、巩固练习。
问:根据题意你想到了什么?用什么策略解决这个问题?
交流,说出列举思考的过程。
五、交流中总结收获。
这节课你最大的收获是什么?“一一列举”对我们解决生活问题有什么好处?
六、课堂练习。
做练习十一的第1—3题。
解决问题的策略这一单元是采用列表的方法收集,整理信息,并在列表的`过程中寻求解决实际生活问题的有效方法。体会解决问题的策略常常是多样的,同一个问题可以用不同的策略,从不同的角度去分析。例1利用学生对长方形与它的长和宽关系的已有认识,要求学生找出用18根1米的栅栏围成长方形的各种方法,在寻找策略中体会“一一列举”的特点和价值。例2是在例1的基础上启发学生用“一一列举”的策略解决实际问题时,要不重复、不遗漏地进行思考过程。在探讨中让学生积极参与,感受解决问题的策略是在具体生活中的运用,从而激发学生主动运用所学到的策略解决简单的实际问题的兴趣。
五年级数学解决问题的策略教案篇五
有效的数学学习是建立在学生合适的数学现实的基础之上的,五年级学生在以往数学学习过程中都积累了不少“转化”的体验,但这种体验基本上处于无意识的状态,只有合理呈现学习素材,才能促使学生对转化策略形成清晰的认知。为此,在课的一开始,我便呈现了一个直观性和操作性极强的素材图“哪个图形面积大?”学生积极开动脑筋,通过平移和旋转把这两个图形转化为一个长方形。这样以典型而具有直观性的图形转化为切入口,既使学习内容鲜明生动,很快调动起学生积极的学习心向,又能唤醒学生原有认知中的“转化”体验,让学生不知不觉地开始进一步感悟“转化”策略。
对转化策略的理解不能仅仅依赖直观的演示与形象的操作,更重要的是能让学生亲身经历策略的形成过程,尤其是思维不断发展的过程。因此,教学时,加强了对知识的学习进行系统分类,以逐步建构学生对转化策略的深层理解,让学生经历转化策略的形成过程:
(1)图形面积、体积方面的应用;
(2)数与计算方面的应用。通过唤醒经验——回顾整理——体会应用,分类让学生经历转化策略的形成过程,符合学生“感知——表象——抽象”的认知规律。
在学生经历策略的形成过程后,精心设计一些富有变化的问题是必要的,这对于策略的理解、掌握和熟练运用起着“催化”的作用。在学生学习过程中,我针对性地设计了一些练习题,这些习题的练习,突出了教学的重点,分散了教学的难点,增强了教学的有效性。学以致用,学生对所学知识理解得会更加透彻,学生对策略的价值所在会感受得更加深刻,而且在运用策略的过程中,学生的实践能力也能够得到培养和提高。
反思问题往往容易为人们所疏忽,但它是发展数学思维的一个重要方面,也是数学思维过程辩证性的一种体现,即一个思维活动的结束包含着另一个思维活动的开始。因此,在解决问题后应该及时引导学生回顾解决问题的策略,反思策略的运用过程,对具体采用的策略进行分析、加工、整合,从中提炼出应用范围广泛的一般方法,使解决问题的策略得到不断提升,并获得成功的情感体验。总结学习的收获,然后出示数学家的名言,让学生从今天学习转化策略的角度,谈谈自己的理解,力图增强数学学习的文化性、历史性,让学生在与数学家的对话中,充分感受转化价值的魅力所在。
1、时间把握不准。由于学生还没有进行系统的整理复习,对于知识的掌握不牢,(如:公式的推导、计算能力等),加之教师缺乏及时、有效的引导,导致了部分环节浪费了时间。
2、语言尚需锤炼。教师的语言不够简练,有时啰嗦。
五年级数学解决问题的策略教案篇六
1.使学生经历解决简单实际问题的过程,学会用列表的方法整理实际问题中的信息,分析数量关系,寻求解决问题的有效方法,初步体会用列表的方法整理相关信息的作用。
2.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验。
教学过程。
一、动画引入,感受策略。
1.谈话:同学们喜欢看动画片吗?(播放动画《曹冲称象》的故事,播放至曹操质疑大象有多重呢)大象有多重?称大象,没有那么大的秤!又不能杀掉大象。在大家一筹莫展的时候,曹冲究竟想出了一个什么样的策略?(板书:策略)。
2.小结:曹冲想到把大象转化成同样重量的石头,称出石头的重量,就知道大象的体重了。这是一个很好的策略!
其实,在日常生活和数学学习中,为了解决实际问题,需要运用很多策略。(板书:解决问题)。
1.学会列表。
谈话:我校同学在小书虫俱乐部成员的带领下积极参与了读书快乐,快乐读书的各项活动,为了及时记下读书心得,大家利用假期到文具店购买笔记本。(出示例题情境图)。
引导:仔细观察情境图,你知道了哪些信息?
提问:题目中的信息比较多,怎样才能看得更清楚一些?
学生可能提出不同的想法:按不同人物将信息进行整理;从问题出发,找到有关联的信息。
引导:老师给大家介绍另一种整理信息的方法。出示表格:
可以先把题目中小明买笔记本的信息填在表格第一行,第二行填谁的信息?(小华)5本填在哪里?多少元填在哪里?完成下列表格:
小明。
3本。
18元。
小华。
5本。
元
回顾:为什么每人购买的本数和所用的钱数填在同一行?(买的本数和钱数是对应的,3本用的钱数是18元)。
你觉得列表整理信息有什么好处?(清楚、简洁)。
2.引导学生利用表格,分析数量关系。
引导:根据表格的第一行,小明买3本用去18元,可以先求出什么?(1本的价钱)再看表格的第二行,求小华买5本用去多少元,需要知道什么条件?(1本的价钱)。
提问:你能列式解决这个问题吗?
引导学生列式:183=6(元)。
65=30(元)。
提问:解决这个问题先求什么?再求什么?
3.尝试从问题想起,列式解答。
提问:刚才我们是根据表格从条件想起的。如果从问题出发,可以怎样想呢?(要求5本用去多少元,先要求出1本的价钱)。
提问:这样想该怎样列式?
小结:解决这个问题,我们采用了两种不同的思路。
(1)从条件想起:根据买3本用去18元,可先求出1本的价钱。
(2)从问题想起:要求买5本用去多少元,先要求出1本的价钱。
出示:如果小军用42元买笔记本,他买了多少本?你能先列表整理再解答吗?(学生自己填表)。
提问:要解决这个问题,可以怎样想?先在小组里说一说。
引导学生分别从条件和问题想起。
全班交流,列式解答。
提问:通过两次用表格整理条件和问题,你体会到什么?(利用表格分析数量关系比较容易)。
谈话:根据上面两题的解答结果和表格,如果把两次的表格合并起来,可以得到:
小明。
3本。
18元。
小华。
5本。
元
小军。
()本。
42元。
我们把这张表格再简化:
3本18元。
5本()元。
()本42元。
学生在书上第66页填出括号里的数。
1.完成想想做做第1、2题。(略)。
2.书法长卷。
介绍:我校的才女邱叶红同学是南京市十佳少先队员,小书法家。为迎接的北京奥运会专门书写了米书法长卷,已经被载入上海吉尼斯大全。
学生独立列表整理信息,并列式解答。
3.想想做做第3题。
引导重点理解照这样计算的意思。
4.投篮比赛。
出示相关信息:姚明在两场比赛中投篮30次,投中21次,得分为42分。奥尼尔在三场比赛中投篮40次,投中30次,得分为60分。
解决下面的问题:
(1)假设姚明保持这样的状态不变,下面的五场比赛中姚明一共能得多少分?
(2)姚明平均每场比奥尼尔多得多少分?
五年级数学解决问题的策略教案篇七
《解决问题的策略》这一课如何让学生知道与应用列举法,靠灌是不能形成的,也不能让学生掌握的。如何让学生生成这一解决问题的策略?探索——发现——归纳是一个很好的途径。如例1,学生在有多少种不同的围法,一开始是无序的找出每一种,这是探索规律人之常情的方法,当这种无序的方法获得答案学生感到不满意时,他们也在寻求一种解决问题的好办法,这时学生茫然,指望老师指定迷津。
学生既然有迷津,他们会积极思考,努力听取别人解决问题的方法。这时教师加以引导,指导学生对自己解决问题的方法进行优化,促使学生进行有序思考,自然形成采用列举法获得不同的围法,比如进行列表,借助列表进行有序思考,例1,宽1米,长8米、宽2米,长7米、宽3米,长6米……比如进行一定的顺序找答案,练一练中第一次投中10环,第二次可能是10环、8环、6环;第一次投中8环、6环,第二次可能是投中10环、8环、6环……经过删除重复的,就轻松地获得答案,用这一方法解决问题全面,无遗漏,无重复。
在教学例1时,当学生无序时,教师引导学生进行有序的观察、分析有多少种不同的围法,然后找出规律,对解决这一问题形成的规律进行反思和总结,自然就产生出解决问题的策略——列举法。在练习时通过应用更加发现应用列举法解决问题容易获得解决问题的结果。
五年级数学解决问题的策略教案篇八
教材分析:
1.课标中例1通过解答一个与长方形周长计算有关的实际问题,让学生初步感知一一列举的策略在解决问题过程中的作用。初步掌握运用一一列举的策略解决问题的基本思考过程和方法。在此之前学生已经学习过用列表和画图的策略决问题,对解决问题策略的价值已有了一些具体的体验和认识。通过这部分内容的学习,一面可以使学生进一步加深对现实问题增强分析问题贩条理性和严密性。
2.本节结合场景图提出问题:王大叔用18根1米长的栅栏围成一个长方形羊圈,有多少种不同的围法?这场景图既有助于学生准确地理解题意,又有助于学生从数学的角度展开对问题的分析和思考。
学情分析:
1.让学生通过观察、分析、独立思考、动手摆小棒的操作、合作交流等方式进行学习,学生学得轻松愉快,而且学习效果好。
2.解决本例题的问题关键有三个:第一,要认识到18根1米的栅栏的总长度就是围成的长方形的周长;第二,用18根1米长的栅栏围成长方形,其围法应该是多样的;第三,要知道一共有多少种不同的围法,就需要把符合要求的长宽一一列举出来,这就是学生认知障碍点,在这方面学生学得有点困难,所以教材先引导学生用小棒摆一摆。
3.通过摆小棒的操作,一方面可以使学生进一步明确围成的长方形的周长与它的长和宽的关系;另一方面也能使学生实实在在地感受到:要找出所有不同的围法,需要有条理地一一列举,再列表填一填。
教学目标:
1、使学生经历用一一列举的策略解决简单实际问题的过程,能通过有条理的列举分析有关实际问题的数量关系,并获得问题的答案。
2、使学生在对解决简单实际问题过程的反思和交流中,感受一一列举策略的特点和价值,进一步发展思维的条理性和严密性。
3、在学习过程中,感受策略带来的好处,培养学生学习数学的积极情感。
教学重点和难点:
重点:让学生体会策略的价值,并使学生能主动运用策略解决问题。
难点:在学习过程中,感受策略带来的好处,培养学生学习数学的积极情感。
教学环节:
一、创设情境、探索策略。
1.预设学生行为。
提出不同的问题,活跃学生的思维。同学们能积极讨论融入到火热的课堂中。
学生热情地投入各自的操作,组织展示、交流。
学生回答不只,有很多种,使学生更进一步去探问题。
学生很积极地说相信我们能。
学生积极地参与活动中。
学生回答:能!
学生积极融入学习中。每个小组把活动中不同的围法有条理地画在黑板上。
学生独立完成!积极回答老师提出的问题。
积极,认真投入作业中去!
2.设计意图。
激发学生的学习兴趣,调动学生的学习极性。培养学生独立思考的能力。
积极地想展示自己的能力。体会成功的乐趣,培养学生的学习兴趣。
培养学生勇于挑战的精神。
培养学生的互相合作的精神。
培养学生多动脑动手能力。
能举一反三列举规律,解决生活中的实际问题。
培养学生善于严准学习的习惯。使学生体会不重复,不遗漏的重要性。
能独立完成作业,加深应用能力!
二、动手操作验证策略。
1、出示例题及其场景图,指名读题。
2、提问:你们能根据题意,用18根同样长的小棒先围成一个长方形吗?
3、把学生分组活动,组织交流。
谈话:同学们通过操作找到了这么多种不同的围法,真是了不起呀!但是否还会有其他的不同的围法呢?我们再作进一步的分析。
三、联系实际,应用策略。
1、羊圈的周长是多少米?如果宽是1米,长是几米?宽是2米,长是几米?
2、从刚才解决问题的过程,能说说你们的体会吗?
四、应用巩固。
你们能算出围成的每个长方形的面积,并比较它们的长、宽和面积吗?
五、课堂作业。
出示练一练和想想做做,让同学独立完成。做练习十一的第1~3题。
五年级数学解决问题的策略教案篇九
1、使学生在解决实际问题的过程中初步学会运用假设的策略分析数量关系、确定解题思路,并有效地解决问题。
2、使学生在对自己解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:使学生理解并运用假设的策略解决问题。
教学难点:当假设与实际结果发生矛盾时该如何进行调整是学生学习的难点。
1.直接出示你知道吗?鸡兔同笼问题是我国古代的数学名题之一。它出自于我国古代的一部算书《孙子算经》。书中的题目是这样的:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?师:你能理解这句话的含义吗?学生回答。
2.师说明:解答鸡兔同笼问题时,我们会用到一个新的解决问题的策略假设,同时要用到以前的策略画图或列表。教师板书:解决问题的策略假设。
1.教师出示题目:鸡和兔一共有8只,数一数腿有22条。你知道鸡和兔各有多少只?教师边出示边说明:为了解答方便,老师适当的改了几个数据。师:看到这个题目,是否觉得比较难?师:这样吧,我们用以前的一种策略画图来解决。师让学生上台画鸡或兔,当学生有疑问时,问:这样画鸡或兔是否很麻烦,能否用其他方法来代替?师应引导学生用圈来表示鸡或兔,用2脚与4脚区分鸡与兔。问:能不能马上确定鸡兔各有几只?因此,我们画图时不能马上画出几只兔几只鸡。师:这时我们可以假设全部是鸡或兔了。
分别板书:假设都是鸡假设都是兔。师:我们先来假设都是兔,兔有几条腿?我们就用短线段表示脚,请同学们把所有的脚都画上。数一数,一共有几条腿?为什么会多腿?(要求学生一定说出因为把鸡当成是兔)了多几只腿?一只兔比一只鸡多几条腿?师:因为每只鸡比每只兔少2条腿,所以我们每次拿走2条腿。要拿走几次,你是怎样算的?师:现在你能发现什么吗?现在兔有几只?鸡有几只了?你能否把刚才的过程表述出来?请同桌互说把刚才的过程表述出来。
师:刚才的过程我们还可以用式子表示,谁来说明?教师根据学生回答分别板书。84=32(条)。
表示实际多画了10条腿。4-2=2(条)。
表示一只兔比一只鸡多2条腿。102=5(只)。
表示鸡有5只。8-5=3(只)。
表示兔有3只。教师重点多次提问要求学生回答出每句话的含义。
教师小结:我们可以首先假设全部是兔,然后数出兔的腿与实际的腿的差距,因为一只兔比一只鸡多2条腿,所以看这个差距里有几个2,所求出的与假设相反的鸡,最后求兔。
兔的只数。
腿的条数。
和22条腿比较。
师根据学生的回答分别板书。
4442+44=24。
多了2条在这里多了2条,表明什么?按照刚才的假设兔4只太多了还是太少了?如何调整?如果在这里少了4条,表明什么?该如何调整?师小结:此种方法我们首先假设各有一半,然后按照这种假设算出腿的总数,根据与题意差距,合理地调整。
4、师:要知道我们所求的答案是否正确,我们还应检验,如何检验?教师根据学生的回答板书检验。
5、小结:刚才我们用了三种方法解答了鸡兔同笼问题,都是采用的假设法,可以假设一种全是,也可以假设另一种全是,还可以假设各有一半,在解答时,可以选择你比较喜欢的一种来解答。
1、师:刚才我们采用假设法解决鸡兔同笼,我们回到刚才的你知道吗。老师把题目转化了。出示题目。现在你会解决了吗?这样吧,行的话你们可以直接完成,不行的话半分钟后会出现提示,还是不行的话一分钟后可以两人或四人商量商量。学生独立解决,完成后要求学生检验。
2、交流时在实物转换仪展示学生作业,师提问学生每步的意义。
兔的只数182023。
腿的条数171512。
小结:对于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。
1、师:刚才我们解答了两道鸡兔同笼问题,知道了此类题目的方法,接下去老师来考考你。(出示例题)全班51人去公园划船,一共租了11条船。每只大船坐5人,每只小船坐3人。租用的大船和小船各有几只?学生独立完成,教师帮助有困难的学生。交流时要求学生说明理由。
2、师:现在你能归纳这种方法的解答过程吗?小结:于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。
你什么收获?
五年级数学解决问题的策略教案篇十
本单元教学用替换的方法解决实际问题。替即替代,换则更换,替换能使复杂的问题变得简单。本单元的教学要求是,让学生在解决问题的过程中初步体会替换,充实思想方法,发展解题策略。教材在编写上有以下特点。
第一,选择学生能够接受的素材创设问题情境。我国有经典的、应用替换方法解决的问题,如果用这些题来教学,学生只能被动接受解法,潜在的学习能力得不到开发。这些离开生活实际的题目虽然能引起学生短时间的好奇,却难以维持学习热情,更不会产生学习需要。教材联系生活实际设计需要用替换方法解决的问题,如把果汁倒入大杯与小杯、在公园租用大船和小船、布置展板、储钱罐里的硬币、乒乓球比赛时的单打和双打利用情境的趣味性,唤起积极性;利用问题的挑战性,调动主动性;利用素材的现实性,激活已有经验,变被动接受为主动探索。教材在你知道吗里介绍古代名题,让学生了解我国很早就有替换思想。现代与古代的题目合理配置,使本单元教学更有价值。
第二,着眼于积累思想方法,发展解题策略。替换作为一种思想方法,对学生的发展很有好处。用替换方法解决的实际问题,比大纲教材里教学的应用题稍复杂些,解答那些题目很少应用替换方法。编排本单元,不是为了增多题型、增加学习难度,而是为学生创造替换的机会,提供进行替换的载体。因此,两道例题只指点思路和方向,不出现题目的解法。两次练一练都提示可以怎样想,应该做些什么。练习十七的题量不多,控制了难度。尤其是例1里说说为什么这样替换说说解决这个问题的策略,例2里你准备怎样来解决这个问题,都是着眼于体会数学思想,积累数学方法,感受解题策略。
一、直观的情境引发替换。
例1用文字叙述,学生一般能读懂题意,但不会利用其中的数量关系思考。例题画出6个小杯和1个大杯,学生就能在图画里看到,如果把1个大杯换成3个小杯,就相当于果汁倒入了9个小杯;如果把6个小杯换成2个大杯,就相当于果汁倒入了3个大杯。这就是利用小杯的容量是大杯的1/3这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。可见,在学生的经验结构里有替换,不过是潜在的、无意识的。教学的任务是把沉睡的方法唤醒,使隐含的思想清晰起来。这是例题的编写意图,也是设计的教学思路。教材要求学生说说为什么这样替换,引导他们回顾刚才的替换活动,反思是怎样替换的,清楚地知道可以从哪个数量关系引发替换的思考。这是十分重要的教学环节,使例题的教学意义超越解答一道题目,得到一组答案,体会一种思想方法。
教材让学生列式解答,把替换的思考和方法用算式表示出来。部分学生可能会有困难,他们或者列算式7203=240(毫升),先算1个大杯的容量,或者列算式7209=80(毫升),先算1个小杯的容量。教学应指导学生在这两道算式的前面,先写出63+1=3(个)或者6+3=9(个),用算式表达自己的替换。也通过这样的算式,使替换时的思考数学化、模型化。
检验结果要抓住两点进行:一是果汁总量720毫升,二是小杯的容量是大杯的1/3,只有同时满足这两个关系的答案才是正确答案。教材把检验安排在写答句的前面,有两层意思:一层是先经过检验确认结果,再写出答句是解决问题的程序,也是良好的习惯。另一层是一种新的方法是否可行、是否可信要检验,这是严谨的态度与科学的精神,是教学应该倡导和培养的。
第90页练一练仍然用图画配合文字呈现问题情境,有助于学生进行替换。通过两个大卡通的提问,指导学生开展替换活动。每个大盒比小盒多装8个球,如果把2个大盒替换成2个小盒,会少装82=16(个)球,7个小盒一共装100-16=84(个)球。如果把5个小盒都替换成大盒,会多装85=40(个)球,7个大盒一共装100+40=140(个)球。学生看着示意图,容易理清这些变化。例1和练一练都有不同解法,这是由于替换策略有不同的具体应用。教材希望学生理解各种解法,体会应用策略的灵活性,但不要求他们一题多解。
例2里42人一共乘坐10只船,其中有几只大船、几只小船是要解决的问题。你准备怎样来解决这个问题不是要求学生说出解题的思路和步骤,而是鼓励学生选择解决问题的形式,正如猴子卡通用画图的方法,兔子卡通用列表的方法,丰富思考问题的手段。画图和列表都能用于解决实际问题,在前几册教材里已多次教学,这里只要稍加启发,学生能够想到。
猴子卡通画了10只船,每只船上画5个圆表示乘坐5人,先假设乘的都是大船,这些船一共可以坐50人,比实际多8人。于是从一只船上去掉2人,把这只大船换成小船;又从另一只船上去掉2人,也用小船替换大船照这样替换4次,6只大船和4只小船一共乘42人,和全班人数相同,得到了问题的答案。兔子卡通先假设乘了5只大船和5只小船,这些船一共可以乘40人,比全班人数少2人。为了让这2人也乘船,所以把其中1只小船换成大船,得到的答案也是租用6只大船、4只小船。
教材把替换留给学生进行。用猴子卡通的方法,可以在图画里划去一些圆,表示减少乘坐的人数,把大船换成了小船。教学时要让学生知道在一只船上只能而且必须同时划去2个圆,体会每划去2个圆就是进行了一次替换。用兔子卡通的方法,教材里有一张表格,里面填了兔子卡通的假设,空格是让学生替换时用的。要注意的是,教材没有要求学生列式计算。这里有两个原因:一是解决实际问题未必都要列式计算,画图和列表也是解题的形式。教学要鼓励解题形式多样化,发展个性和创造性。二是像例2这样的题算式比较难列,如果列式计算,不仅增加了教学的困难,而且会弱化替换活动,挫伤学生学习的积极性。
仅从表面看,两个卡通的解法是不同的。其实都应用了替换策略,都是先提出一个假设,再通过替换进行大船与小船的调整,逐渐逼近,直至获得准确结果。可见,例2应用替换策略的水平,比例1高了一个台阶。教材要学生研究两种方法的共同特点,就是要体会上述的替换策略。
在猴子兔子卡通的启发下,学生一定会提出其他的假设,如假设10只都是小船,假设1只大船和9只小船并希望按自己的假设画图或列表解答这个问题,甚至少数学生还会想到别的解题形式。教材满足学生的需要,让他们在小组里交流还可以用什么方法找出答案,再次经历解决问题的过程。比比各种假设进行的替换和次数,感受怎样假设能较快地解决问题,进一步体验替换思想和方法。
第92页的练一练安排两道题,仍然体现解决问题形式的多样和灵活。第1题适宜用画图方法解答,分三步指导学生画图。关键是理解给其中几只动物添2条腿的原因,以及给一个动物添2条腿后它成了什么动物,也就是要体会画图时的替换。第2题适宜列表解答,关键是看懂表格里的三点内容:一是开始时怎样假设两种展板块数的?二是用哪种展板替换哪种展板?什么原因?三是为什么一下子就用3块大展板替换3块小展板?明白了这几点,就知道接着该怎样替换,以及如何较快地得出结果。
五年级数学解决问题的策略教案篇十一
本课时学习的是用替换的策略解决实际问题。教学例题是要让学生在解决问题的过程中初步体会替换,发展解题策略。解题的关键就是利用小杯的容量是大杯的1/3这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。教学的任务是把学生潜在的、无意识的方法唤醒,使隐含的思想清晰起来。
学情分析本节课的学习者特征分析主要是根据教师平时对学生的了解和学生前面的学习表现而做出的。
学生是合肥市区六年级的学生。
学生有良好的小组合作进行探究的学习习惯。
学生已经掌握了一些解决问题的策略。
教学目标一、知识目标:
二、能力目标:
使学学生在对解决实际问题过程的不断反思中,感受替换策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
三、情感目标:
使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。
教学重、难点1、使学生初步学会用替换的策略去分析数量关系,并能根据问题的特点确定合理的解题步骤和选择相应的解题策略。
2、在解决实际问题过程中,感受替换策略对于特定问题的价值,进一步发展分析、综合和简单推理能力。
教学具准备多媒体课件。
教学程序教学内容教学活动学习方式教学策略。
一、复习。
引新。1、提问:
(列表、画图、列举还原)、
2、揭示课题。
二、探究。
新知。
1、出示例题(图文结合)。
2、理解题意。
(1)你从题中获得哪些信息?要我们解决什么问题?
根据回答完成板书:
小杯6个。
小杯的容量720ml。
是大杯的1/3,
大杯1个。
你认为哪个条件是解题的关键?
小杯的容量是大杯的1/3,
它们的关系还可以怎么说?
大杯的容量是小杯的3倍,
现在根据已知的条件能直接求出大杯和小杯的容量各是多少毫升?不能!
那么你有什么好办法吗?
我们可以:
把1个大杯换成3个小杯。
或是。
把3个小杯换成1个大杯。
3、自主探索,研究替换策略。
同学们想到了两种方法来解决,下面请选择一种你喜欢的方法。
(1)先画出换杯子示意图。
(2)然后根据图再列式计算。
4、汇报交流。
生a、大杯换小杯。
1个大杯换成3个小杯。
13=3(个)。
6+3=9(个)。
7209=80(毫升)。
803=240(毫升)。
生b、大杯换小杯。
6个小杯换成2个大杯。
63=2(个)。
2+1=3(个)。
7203=240(毫升)。
2401/3=80(毫升)。
5、检验结果。
怎样知道我们计算得对不对呢?
我们要来检验一下。
这题怎样检验?
生:806=480(毫升)。
240+480=720(毫升)。
符合果汁有720毫升这条件就行了吗?
生:80240=1/3或是。
24080=3。
还要符合小杯的容量是大杯的1/3这个重要的条件才行。
都符合了题目中的条件才说明我们做对。
请大家写上答语。
6、比较方法,提升策略。
完成板书:
小杯6个6+3=9。
1/3720毫升。
大杯1个2+1=3。
仔细观察这两种方法,它们的共同点是什么?
都是把两种不同容量的杯子换成同一种容量的杯子,来计算的。
7、小结方法,揭示课题。
也就是把两种不同的量换成同一种量。
这就是我们今天研究的解决问题的策略替换策略。
1、理解题意。
出示变式题(图文结合)。
还是刚才那道题吗?
与刚才的题目有什么不同?
已知的条件和要求的问题各是什么?
关键句是什么?
大杯的.容量比小杯多20毫升。
还可以怎么说?
小杯的容量比大杯少20毫升。
你会解答吗?
2、自主尝试。
请自己试一试,用我们学习解答例题的方法来解决这个问题。
学生自主画图列式计算。
2、交流方法。
生c、大杯换小杯。
1个大杯换成1个小杯。
7007=100(毫升)。
100+20=120(毫升)。
多20ml。
大杯1个。
生d、大杯换小杯。
6个小杯换成6个大杯。
206=120(毫升)。
720+120=840(毫升)。
8407=120(毫升)。
多20ml。
大杯1个6+1=7720+120。
4、检验结果。
互相检验结果.
生:1006=600(毫升)。
600+120=720(毫升)。
符合已知信息我们就做对了。
4、小结变式题思路。
仔细观察,它们的共同点是什么?
也是把两种不同的量通过替换变成同一种量,这样使复杂的问题变得简单。
组织学生画图、列式解答、研究方法,使学生充分感知替换策略。
引导学生利用两种量之间的关系,想到不同的解决方法,同时发现它们共同的特征。组织学生讨论,再利用多媒体直观演示,丰富学生的感知。
组织学生自己尝试根据两种量之间的关系,继续运用替换策略解决相差问题。运用多媒体直观演示,解决教学中的疑难问题,帮助学生理解替换中,总量变化的疑惑点。
引导学生比较发现替换策略能解决的两种不同情况的问题的特征。充分体会替换策略的价值。
通过自主研究,汇报交流,使学生的语言、思维得到发展,学生通过画图计算感知替换策略。
观察比较、小组讨论、合作交流,引导学生得出结论。
通过尝试算法,汇报交流,进一步理解替换策略,体验它的实用性。
通过比较集体研讨发现问题的不同类型的特征。
画图汇报交流,培养学生自主探究知识的能力。
通过相互评价,激发学生的学习热情。
合作学习,共同研究策略。在合作学习中,相互取长补短,增强合作意识。
(三)、比较例题与变式题。
小组讨论,集体交流。
倍数关系,杯子个数变化,但总量没有变。
相差关系,杯子的个数没有变,而总量却变化了。
根据学生回答完成板书。
三、运用新知,解决问题。1、纸盒问题。
(1)先画出替换示意图。
(2)再交流自己是怎样来解答的。
2、门票问题。
3、练习十七的第1题。
钢笔和铅笔的问题。
4、机动练习。
5、生活实例让学生联系生活实际,独立分析习题,运用所学知识解决实际问题。独立完成,交流反馈。通过解决实际问题,深化新知,充分感受数学知识与生活实际的紧密联系。
五、板书设计解决问题的策略替换。
小杯6个6+3=9(个)720ml。
小杯是大杯的1/3变了没变。
大杯1个2+1=3(个)720ml。
大杯比小杯多20ml没变变了。
大杯1个6+1=7(个)720+120。
五年级数学解决问题的策略教案篇十二
教学目标:
1、使学生在解决较复杂的实际问题中,学会用画示意图的方法整理相关信息,能借助示意图分析实际问题中的数量关系,确定解决问题的正确思路。
2、使学生在对解决实际问题不断的反思中,感受用画示意图的方法整理信息对于解决问题的价值,体会到画图策略是解决问题的一种常用的策略。
3、使学生进一步积累解决问题的经验,增强解决问题的意识,获得解决问题的成功体验,提高学好数学的`信心。
教学重难点:学会用示意图的方法整理相关信息,能借助示意图分析实际问题中的数量关系。
教学过程:
基于上述目标和重难点,我设计了这样几次画图,以达成目标和突破难点。
第一次画图:
出示例题,学生读题,说说你知道了哪些条件,要求什么?先让学生明确条件和问题。可以根据题目的条件和问题,画出示意图。学生已经认识绘制过长方形,所以可以学生自己画图。展示学生作业,对比学生作业。1、没有数据的。2、画错的。3、标了条件的。4、长度的比例。学生修改,结合画好的图,说说图表达的意思。指生完整地说说图意,条件和问题。
要求原来花圃的面积,先要求出什么?通过这样的提示帮助学生分析思路,学生会说先求长、宽,这个地方是个难点,在学生回答时应借助图讲解,老师顺势应把中间的线描红。再指名说说,原来长方形的宽=现在长方形的长。看来,从图上可以看到隐藏的信息。
反思,提升:
对比文字和图,用文字和图都可以表述信息,在这里你会选择谁,为什么选择图?突出两点:1、一目了然,简洁。2、可以读出隐含的信息。在这里第一次体会画图的价值。
第二次画图:
长增加了面积就会变大,那还可能有哪些变化?这个问题的提出既考查了学生的思考能力,同时为下面的教学埋下伏笔。
学生读题“试一试”,这道题和例题不同,刚才是增加学生知道在外面加一块,现在是减少,学生没有接触过,所以给学生一个半成品,已经标注了20米和减少的5米,学生独立画图。画好后结合图完整地描述图意。此时不再给孩子提示,由学生自己独立解答,解答后让学生根据图自己完整的汇报解答思路。因为有了上次的基础,学生理解此题会稍好些,所以这样里注意引导学生用两种不同思路分析,即综合法和分析法。从问题入手,从条件入手如何思考,提高学生分析解决问题的能力。
反思,提升:
第一次反思提升,是让学生体会到画图的价值,这次是突出画图的优势,感受画图的好处,再次体验。同时比较两道题,有什么不同和相同的地方?题意不同,一个是增加长,一个是减少宽,但是都用了画图的方法。进一步感受画图整理信息。
第三次画图:
想想做做1。
学生读题,首先理解题目本事意思,帮助整理信息。怎么理解“长增加6米,或者宽增加4米,面积都是增加48平方米。”这句话对部分学生来讲并不能很好地理解,所以,提出来解释。只有当学生对原题理解了才能画出准确的图。在理解的基础上,学生画图。画好后,充分解释图表示的意义,特别是对“或者”这个词的理解,也可以用手势的方式学生理解或者。那这道题怎么解呢?同桌互相说一说。之前两题都是全班交流的,这次小组合作讨论,互相学习补充。指名借助图汇报。这里我们先求出两个隐藏信息。用红笔描出。这里给我们找到了两个隐藏的信息。
反思,提升:
看来画图确实给我们提供了方便,你觉得方便在哪呢?进一步体会画图策略的价值,提高应用意识。
第四次画图:
学生读题,开放让学生自己画。学生可能的情况,肯定每种情况都是正确的。而每种问题都蕴含一种方法。一边涂色一边理解方法。再呈现列表的方式。这题也给我们提示,解决问题的方法是多样的,哪个合适就用哪个,没有固定的模式。学生可以采用合适的方法。
小结:今天我们学习了画图的策略解决问题,但是之前我们就有过接触,展示教材前面的内容,通过今天的学习你觉得画图对解决问题有什么帮助?解决图形面积计算的问题,我们可以用画图的方法使题意简洁,让我们一眼看到隐藏的信息。
五年级数学解决问题的策略教案篇十三
苏教版数学六年级上册教案解决问题的策略(替换)时间:08月12日作者:佚名来源:网络[教材分析]:本单元主要教学用替换和假设的策略解决实际问题。本单元共安排了2个例题,分3课时进行教学,本节课是其中的第1课时。“替”即替代,“换”则更换,替换能使复杂的问题变得简单。教学要求是,让学生在解决问题的过程中初步体会替换,充实思想方法,发展解题策略。教材安排的例题就是利用“小杯的容量是大杯的”这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。教学的任务是把沉睡的方法唤醒,使隐含的思想清晰起来。这是例题的编写意图,也是设计的教学思路。教材要求学生“说说为什么这样替换”,引导他们回顾刚才的替换活动,反思是怎样替换的,清楚地知道可以从哪个数量关系引发替换的思考。[教学意图]:这节课的教学设计,力求体现新课程的理念,给学生自主探索的空间,为学生营造宽松和谐的氛围,让他们学得更主动、更轻松,凸现了内容的情趣化和生活化;在探索的过程中,培养学生的实践能力、创造能力、合作精神,鼓励学生大胆发表自己的意见,最大限度地调动学生学习数学的积极性、主动性和创造性,体现了过程的活动化,达成了预定的教学目的。[教学目标]:1、使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。2、使学学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。[教学过程]:课前欣赏:播放《曹冲称象》录像,感受策略。创设情境,感受用策略解决问题的魅力1.承接故事情境,感受策略的作用。(1)故事中曹操提出了什么要求?(2)众大臣有没有解决这个难题吗?(3)曹冲用了什么办法解决了这个难题?(4)过渡语:要称出那头大象的重量,大人们都束手无策,七岁的曹冲却想出了那么妙的解决办法,用称出与大象相同重量的一船石头的重量来求出大象的重量,真了不起!今天我们就一起来学习用这种办法解决一些实际问题。板书:解决问题的策略探究新知,初步理解替换的策略(一)解决生活中的难题1、[电脑出示]例1小明把720毫升果汁倒入6个小杯和1个大杯,正好都倒满。小杯的容量是大杯的。小杯和大杯的容量各是多少毫升?2、引导交流:从题目中获得哪些信息?随机贴出杯子图3、你是怎样理解“小杯的容量是大杯的1/3”这句话?4、问:你可以提出哪些数学问题呢?(课前估计学生可能出现的问题,做好充分的准备,结合学生的回答灵活的提炼到今天要解决的问题上来)5、问:这些问题现在都能解决吗?6、(生广泛发言,教师及时肯定和评价)7、针对学生提出的问题,提炼到今天所要解决的问题上来。问题:同学们,你们看每个大杯和小杯的容器不一样。杯子的数量也不一样,只告诉我们这些杯子里果汁的总量720毫升,那怎样来求小杯和大杯的容量呢?我们该怎么办呢?你们能不能想一个比较好的方法呢?8、讨论讨论,想想曹冲称象的故事给我们解决这一个问题有什么启示呢?9、结合学生提出的已有经验,学生可能出现的情况是:a把大杯换成小杯b把小杯换成大杯10、小结学生的方法:不管是大杯换小杯,还是把小杯换成大杯,同学们有没有发现,他们的共同点都是把两个较复杂的量转化成比较简单的同一种量来考虑。这就是我们今天要学习的内容:替换策略来解决问题板书:替换11、过渡:在刚才的探究中,我们知道了可以把小杯替换成大杯,也可以把大杯替换成小杯,在这个过程中怎样来替换,又如何来解决这个问题呢?在每个同学的桌上有这样的一张作业纸,拿出来四人小组合作。要求1、画一画,选一种替换方法画出替换过程。2、说一说,应该怎样替换,并且如何计算。小组展示汇报。12、分析数量关系及解答。黑板上(1)学生根据投影出来的方法说一说解答思路。问:要解决这个问题,根据我们画的图可以怎么想?(2)哪些同学是和他一样的做法,还有不同的方法吗?交流第二种方法。13、怎样检验结果是否正确?学生口头检验。你觉得小杯的容量加上大杯的容量满足720毫升以后,还需要满足什么条件吗?14、回顾反思(1)在解决这一问题的过程中用到了什么策略?为什么要替换?(2)我们又是怎样来替换的?15、小结:在解决这一过程中,原来是有大杯和小杯两种不同的`量,用替换的策略简化成了都是小杯这同一种量,而且总量也告诉我们,这样要求小杯的容量就方便了;同样用替换的方法把小杯替换成大杯,使题目中只出现了大杯这同一种量,要求大杯的容量也方便了。在整个过程中我们还借助了画图的方法,帮助我们解决问题。三、拓展应用,巩固策略过渡:同学们在日常生活中用替换的策略可以帮助我们解决很多实际问题。来我们一起来看一段小广告1、播放达能广告同学们,从刚才的广告中你又发现了哪些数学知识呢?2、让学生说说自己的发现3、是啊!在我们每天的生活中蕴涵着丰富的数学知识,只要你做个有心人,你会有更多的收获。课前老师也做了一些调查:[电脑出示]8块达能饼干的钙含量相当于1杯牛奶的钙含量。小明早餐吃了12块饼干,喝了1杯牛奶,钙含量共计500毫克。你知道每块饼干的钙含量大约是多少毫克吗?1杯牛奶呢?(1)要解决这个问题你准备用什么策略?在替换的过程中还需要用到画图,老师给你们准备了一张图在练习纸二上,画一画来尝试解决这个问题。学生独立完成。并说出想的过程。(2)除了把牛奶替换成饼干,还有没有别的不同的方法吗?(3)说一说这题该怎样检验?(4)提问:为什么你们都不把饼干替换成牛奶来考虑?学生交流后小结:在解决实际问题的过程中,一般要选择简洁、容易的方法来解答。2、[电脑出示]在2个同样的大盒和5个同样的小盒里装满网球,正好是100个。每个大盒比小盒多装8个,每个大盒和小盒各装多少个?(1)读题,从题目中获得哪些信息?(2)与前面两题相比,有什么不同的地方?(3)你准备怎样替换?还有不同的替换吗?(学生说,教师演示部分课件)(4)“每个大盒比小盒多装8个”这句话你是怎么理解的?(5)选择一种喜欢的方法进行替换,请在练习纸上完成(6)学生汇报,结合学生的汇报让学生说说总数有没有发生变化?(7)口头检验3、学校买来5个足球和10个篮球,共计700元。每只足球比每只篮球便宜10元。足球和篮球的单价各是多少元?(1)画一画图来解决这个问题吗?(2)重点说说自己是怎样来解答的四、小结全课,优化策略通过今天的学习,你对用替换策略解决实际问题又有了哪些新的认识?
五年级数学解决问题的策略教案篇十四
重难疑点,一网打尽。
2.28名少先队员乘小船游览玄武湖,可乘2人的双人船或乘3人的`观光船(不能有空位),有多少种不同的安排方法?先列举出所有不同的可能情况,再填空。
(1)可以先从2人的双人船考虑。
(2)可以先从3人的观光船考虑。
一共有()种不同的安排。
源于教材、宽于教材、拓展探究显身手。
五年级数学解决问题的策略教案篇十五
理解用转化的方法解决问题的思路,能根据具体问题找到对应的转化方法,从而解决问题,了解转化思想在数学课程中普遍存在。
【过程与方法】。
通过转化比较两个不规则图形面积大小的过程,提高观察、分析、解决问题的能力;通过对解决问题过程的反思,提高归纳、总结、概括的能力,以及知识迁移能力。
【情感、态度与价值观】。
在主动参与数学活动的过程中,感受成功的体验,提高学习数学的兴趣。
二、教学重难点。
【重点】用转化策略比较不规则图形的面积。
【难点】转化的方法及应用。
三、教学过程。
(一)导入新课。
大屏幕出示学习多边形面积时的图片,引导学生回忆之前比较两个图形面积时,用到数方格、平移等方法。
教师指出前面接触的图形相对简单,本节课进一步学习比较两个图形面积的大小。
(二)讲解新知。
1。问题探究。
大屏幕出示教材图片,并提问下面两个图形,哪个面积大一些?
学生根据之前学习经验,直观的会提出数方格,教师引导学生注意其中涉及不满一格的情况,若按照前面数方格时不满一格按半格计算,得到的结果不够准确,并且较为繁琐,引发学生思考更为确切的比较方法。
学生根据导入中的情境,能够想到可以通过平移将不规则图形转化为规则图形进行比较。
教师组织学生小组活动,5分钟时间,探究图片中的不规则图形可否转化为较为规则的图形,若可以,思考如何转化。小组代表做好讨论记录,探究结束找小组分享讨论结果。教师巡视,对于有困难的学生及时给予指导。
教师总结学生回答,两个图形都可转化为规则的矩形,通过平移或旋转的方法得到。通过比较转化后的图形面积(数方格、数边长)得到两个图形面积相等。教师利用多媒体演示图形多种变化过程。
2。方法总结。
教师组织学生思考上述图形变换前后的区别与联系,总结图形转换的方法与特点,同桌之间交流分享。
教师总结学生回答:
(1)变换前后图形的形状改变了,由复杂变为简单熟悉,但面积的大小不变;
(2)图形转化可通过平移、旋转、翻折、拼接等方法;
(3)经过转化之后将无解变得可解,将复杂问题变成简单问题。
教师讲解其为转化的策略解决问题,即将未知事物转化为已知事物,从而解决问题的方法。组织学生回忆学习过程中,哪些知识的学习中用到了转化的策略,小组间进行交流总结。
教师总结学生回答:探究平行四边形、三角形、梯形、圆的面积时;代数领域学习异分母分数运算、小数乘法等。通过回忆学习过程,感受数学知识间的联系。
(三)课堂练习。
算一算下列三个图形中阴影部分面积占整个面积的几分之几。
(四)小结作业。
小结:总结本节课学习内容。
作业:课后练一练。
五年级数学解决问题的策略教案篇十六
6、甲、乙两车同时从相距528千米的两地相向而行,6小时后相遇,甲车每小时比乙车快6千米,求甲、乙两车每小时各行多少千米?(用方程解)。
8、学校分配学生宿舍,如果每个房间住6人,那么有20人没有床位;如果每个房间住8人,则正好住满。学生宿舍有多少个房间?(用方程解答)。
五年级数学解决问题的策略教案篇十七
苏教版小学数学五年级下册第88~89页。
1、让学生通过分析具体情境中的实际问题,学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。
2、使学生在对解决实际问题过程的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
:学会用“倒过来推想”的策略解决问题。
掌握用“倒过来推想”的策略解决问题的思路。
请同学们看大屏幕:
(一)教学例1。
从题目中你了解了哪些信息?甲倒给乙40毫升后,什么不变?什么变了?怎么变的?我们可以用以前学过的什么相关策略我们解决呢?自己先想一想,再把你的想法写下来,在小组交流。先想好的同学可以帮助组里其他有困难的同学一下。根据小组的交流,发现你们有以下这么几种想法:
(1)示意图请画图的同学说说你的想法。
(2)画线段图。
他这样做也是先求什么?然后再把甲倒给乙的40毫升还回去,求出原来甲。
乙各有多少毫升。
(3)表格。
刚才同学们用了我们以前学过的画线段图、画示意图、列表等方法来解决这个问题。那想一想,不管你用的.是哪种方法,都是先从什么出发?然后再根据原来到现在的变化过程求出什么?这就是运用倒过来推想的策略来解决问题。请同学们打开课本88页把例1看一遍,再体验一下用倒推的策略解决问题。
(二)教学例2。
这种策略在日常生活中运用非常广泛,请看大屏幕例2。
你了解到哪些信息?你能想个办法来信息,清晰地表明邮票变化情况吗?先自己试一试,再与同组同学交流。现在请小组汇报一下。你们是怎样信息与解答的呢。
教师板书。
原有?张收集24张送走30张还剩52张”
“原有?张去掉24张要回30张还剩52张”
说出意思。
我刚才在下面发现有个同学也是用箭头表示,不过不象我们用文字叙述,而是用符合来表示的,请同学们看黑板,你们看得明白吗?来那我们把掌声送给他。同时这掌声也是送给你们自己,你们的想法都不错,表现让我非常满意。
请看书上89页的练一练。甲、乙两位同学到黑板上来做,其他同学在下面自己独立完成。
请黑板上板演的同学说说你的想法。我刚才发现有两个同学是这样列式的,25*2+1,发现这种解法错在什么地方,做错的同学能不能自己主动站起来勇敢地说一说。同学们你看这位同学说得多好,我们不怕犯错误,关键是错了能知道错在什么地方,及时地改正过来,这是最珍贵的,我希望同学们在有错误时都能象这位同学一样,勇敢地承认自己错误,并改正过来,做一个诚实的人。掌声送给他,勇敢的人。
下面请同学们打开课堂练习本,把书上90页的第1、2题做在本子上。
通过刚才的作业我发现同学们这节课掌握得不错,只有两个同学计算时粗心错了。这节课我们学习的是什么内容?对用倒过来推想解决问题,这些问题有什么共同的特征?都是已知结果,求原来。用这个策略解决问题时,我们可以借助示意图、线段图、表格、箭头图等分析题意,如果对刚才课上还有不清楚的地方,欢迎同学们下课与我交流,好,这节课就到这里,谢谢同学们的配合,下课。