二次函数教学设计(模板13篇)
总结是一个提升自己的途径,只有不断总结才能不断进步。在写总结时要注意避免太过于个人化的情绪和言辞,保持中立和客观。以下是一些总结的经典范文,希望对大家有所启示。
二次函数教学设计篇一
这节课的教学主要使学生在原有基础上,通过类比一次函数掌握二次函数图象和性质,突出的是探索交流合作的方式。
在知识学习过程中给学生留有充分的思考与交流的时间和空间,让学生经历了画图、观察、猜测、交流、反思等活动,借助图形教学,形象直观,体现了数形结合思想,激发了学生的学习兴趣,培养学生的观察、分析、归纳、概括能力,提高数学课堂教学的效率和效果,促使学生主动参与到“做”数学的活动中,从而更加深刻地认识最简二次函数的性质。
对于本节课,我个人认为在教学思路上还是比较清晰的,重难点把握得还是比较准确的,复习时利用原来学过的函数图像,让学生说出增减性,很自然的就引发出了探究二次函数性质的问题以及利用具体的图像,学生比较容易理解和掌握。
2011年10月21日来源:本站。
进入二次函数这一章节后,难点也就随之而来了,因为这一章节中大部分的内容都是数形结合的知识,学生在这部分也一直是难点。在学习一次函数的时候,涉及到函数增减性的问题,当时的解决方法是让学生动手去做,方法如下:首先做出一次函数的草图,然后用左手从图像的左到右移动,并且要求学生说出随着x的增大(手由左向右的移动过程中x是一直在增大的),图像是升高了还是降低了。最后把话说完整,随着x的增大y是增大了还是减小了,这种方法在当时大部分学生还是能够接受的。所以在二次函数的性质这节课之前我就决定了,还是用动手比划的方法让学生去理解增减性。
首先,让学生理解想求出二次函数的增减性首先要从二次函数的一般式转化为顶点式,目的在于通过顶点式就可以直接看出对称轴,再给学生充分的时间让学生发现,二次函数与一次函数的增减性是不同的,一次函数不用分段去说,而二次函数要求以对称轴为分界点分段去说。在这些都准备好之后,告诉学生判断增减性的要点:
(1)通过函数的顶点和开口方向,画出二次函数的草图。
(2)在草图上标出对称轴,然后用对称轴把二次函数的定义域分成两部分。
二次函数教学设计篇二
在“一次函数”一章时已经了解了一次函数与一元一次方程,一元一次不等式(组),二元一次方程组的联系。本章专门设一节,通过探讨二次函数与一元二次方程的关系,再次展示函数与方程的联系。一方面可以深化我们对一元二次方程的.认识,另一方面又可以运用一元二次方程解决二次函数的有关问题。
本节通过画图,看图,分析图,列表对比,抽象概括进行教学,让每个学生动手,动口,动脑,积极参与,提高教学效率和教学质量(此文来自优秀),使学生进一步理解数形结合和从特殊到一般的思想方法。不足之处是:有少部分学生对函数与方程之间的关系有点费解。通过了解发现:这部分同学对一次函数和方程的关系也不熟悉,也就是数学基础不扎实,还有就是数形结合能力差,也就是不能建立数与形之间的联系。他们为什么不能很好的做到这些呢?我想,这正是本节课的要点所在。在今后的教学中,一定关注这一点,解决之。
二次函数教学设计篇三
一、说课内容:
九年级数学下册第27章第一节的二次函数的概念及相关习题(华东师范大学出版社)。
二、教材分析:
1、教材的地位和作用。
这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解数形结合的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:
(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.
(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.
3、教学重点:对二次函数概念的理解。
4、教学难点:抽象出实际问题中的二次函数关系。
1、从创设情境入手,通过知识再现,孕伏教学过程。
2、从学生活动出发,通过以旧引新,顺势教学过程。
3、利用探索、研究手段,通过思维深入,领悟教学过程。
四、教学过程:
(一)复习提问。
1.什么叫函数?我们之前学过了那些函数?
(一次函数,正比例函数,反比例函数)。
2.它们的形式是怎样的?
(y=kx+b,ky=kx,ky=,k0)。
【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.
(二)引入新课。
函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。
例1、(1)圆的半径是r(cm)时,面积与半径之间的关系是什么?
解:s=0)。
解:y=x(20/2-x)=x(10-x)=-x2+10x(0。
解:y=100(1+x)2。
=100(x2+2x+1)。
=100x2+200x+100(0。
教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?
(三)讲解新课。
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如y=ax2+bx+c(a0,a,b,c为常数)的函数叫做二次函数。
1、强调形如,即由形来定义函数名称。二次函数即y是关于x的二次多项式(关于的x代数式一定要是整式)。
2、在y=ax2+bx+c中自变量是x,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r0)。
3、为什么二次函数定义中要求a?
(若a=0,ax2+bx+c就不是关于x的二次多项式了)。
4、在例3中,二次函数y=100x2+200x+100中,a=100,b=200,c=100.
5、b和c是否可以为零?
由例1可知,b和c均可为零.
若b=0,则y=ax2+c;。
若c=0,则y=ax2+bx;。
若b=c=0,则y=ax2.
注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.
判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.
(1)y=3(x-1)2+1(2)s=3-2t2。
(3)y=(x+3)2-x2(4)s=10r2。
(5)y=22+2x(6)y=x4+2x2+1(可指出y是关于x2的二次函数)。
(四)巩固练习。
1.已知一个直角三角形的两条直角边长的和是10cm。
(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;。
(2)设这个直角三角形的面积为scm2,其中一条直角边为xcm,求s关。
于x的函数关系式。
【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。
2.已知正方体的棱长为xcm,它的表面积为scm2,体积为vcm3。
(1)分别写出s与x,v与x之间的函数关系式子;。
(2)这两个函数中,那个是x的二次函数?
【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。
五、评价分析。
本节的一个知识点就是二次函数的概念,教学中教师不能直接给出,而要让学生自己在分析、揭示实际问题的数量关系并把实际问题转化为数学模型的过程中,使学生感受函数是刻画现实世界数量关系的有效模型,增加对二次函数的感性认识,侧重点通过两个实际问题的探究引导学生自己归纳出这种新的函数二次函数,进一步感受数学在生活中的广泛应用。对于最大面积问题,可给学生留为课下探究问题,发展学生的发散思维,方法不拘一格,只要合理均应鼓励。
二次函数教学设计篇四
教学目标:
1.经历探索二次函数y=ax2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。
2.能够利用描点法作出函数y=ax2的图象,并能根据图象认识和理解二次函数y=ax2的性质,初步建立二次函数表达式与图象之间的联系。
3.能根据二次函数y=ax2的图象,探索二次函数的性质(开口方向、对称轴、顶点坐标)。
教学方法:自主探索,数形结合。
教学建议:
利用具体的二次函数图象讨论二次函数y=ax2的性质时,应尽可能多地运用小组活动的形式,通过学生之间的合作与交流,进行图象和图象之间的比较,表达式和表达式之间的比较,建立图象和表达式之间的联系,以达到学生对二次函数性质的真正理解。
教学过程:
一、认知准备:
1.正比例函数、一次函数、反比例函数的图象分别是什么?
2.画函数图象的方法和步骤是什么?(学生口答)。
你会作二次函数y=ax2的图象吗?你想直观地了解它的性质吗?本节课我们一起探索。
二、新授:
(一)动手实践:作二次函数y=x2和y=-x2的图象。
(同桌二人,南边作二次函数y=x2的图象,北边作二次函数y=-x2的图象,两名学生黑板完成)。
(二)对照黑板图象议一议:(先由学生独立思考,再小组交流)。
1.你能描述该图象的形状吗?
2.该图象与x轴有公共点吗?如果有公共点坐标是什么?
3.当x0时,随着x的增大,y如何变化?当x0时呢?
4.当x取什么值时,y值最小?最小值是什么?你是如何知道的?
5.该图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点。
(三)学生交流:
1.交流上面的五个问题(由问题1引出抛物线的.概念,由问题2引出抛物线的顶点)。
2.二次函数y=x2和y=-x2的图象有哪些相同点和不同点?
3.教师出示同一直角坐标系中的两个函数y=x2和y=-x2图象,根据图象回答:
(1)二次函数y=x2和y=-x2的图象关于哪条直线对称?
(2)两个图象关于哪个点对称?
(3)由y=x2的图象如何得到y=-x2的图象?
(四)动手做一做:
1.作出函数y=2x2和y=-2x2的图象。
(同桌二人,南边作二次函数y=-2x2的图象,北边作二次函数y=2x2的图象,两名学生黑板完成)。
2.对照黑板图象,数形结合,研讨性质:
(1)你能说出二次函数y=2x2具有哪些性质吗?
(2)你能说出二次函数y=-2x2具有哪些性质吗?
(3)你能发现二次函数y=ax2的图象有什么性质吗?
(学生分小组活动,交流各自的发现)。
3.师生归纳总结二次函数y=ax2的图象及性质:
(2)性质。
a:开口方向:a0,抛物线开口向上,a〈0,抛物线开口向下[。
b:顶点坐标是(0,0)。
c:对称轴是y轴。
e:增减性:a0时,在对称轴的左侧(x0),y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(x0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。
4.应用:(1)说出二次函数y=1/3x2和y=-5x2有哪些性质。
(2)说出二次函数y=4x2和y=-1/4x2有哪些相同点和不同点?
三、小结:
通过本节课学习,你有哪些收获?(学生小结)。
1.会画二次函数y=ax2的图象,知道它的图象是一条抛物线。
a:开口方向:a0,抛物线开口向上,a〈0,抛物线开口向下。
b:顶点坐标是(0,0)。
c:对称轴是y轴。
e:增减性:a0时,在对称轴的左侧(x0=,y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(x0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。
二次函数教学设计篇五
教学目标。
知识技能。
2、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项。
教学思考。
1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力。
2、通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性。
3、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,从而进一步提高学生分析问题、解决问题的能力。
解决问题。
在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感态度。
1、培养学生主动探究知识、自主学习和合作交流的意识。
2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识。
重点。
难点。
1、由实际问题向数学问题的.转化过程。
2、正确识别一般式中的“项”及“系数”。
教学流程安排。
活动流程图。
活动内容和目的。
活动1。
创设情境引入新课。
活动2。
启发探究获得新知。
活动3。
运用新知体验成功。
活动4。
归纳小结拓展提高。
活动5。
布置作业分层落实。
复习一元一次方程有关概念;通过实际问题引入新知。
通过类比一元一次方程的概念和一般形式,让学生获得一元二次方程的有关概念。
回顾梳理本节内容,拓展提高学生对知识的理解。
分层次布置作业,提高学生学习数学的兴趣。
二次函数教学设计篇六
《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生“跳一跳就可以摘到桃子”。
探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形,从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。
2.关注学生学习的过程。
在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的.形成和能力的培养相伴而行,创造“海阔凭鱼跃,天高任鸟飞”的课堂境界。
3.强化行为反思。
“反思是数学的重要活动,是数学活动的核心和动力”,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,“数学日记”就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。“数学日记”该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。
4.优化作业设计。
作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。
二次函数教学设计篇七
1.能画二次函数的图象,并能够比较它们与二次函数的图象的异同,理解对二次函数图象的影响.
2.能说出二次函数图象的开口方向、对称轴、顶点坐标、增减性、最值.
3.经历探索二次函数的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验,体会数形结合思想在数学中的应用.
4.通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.
二次函数教学设计篇八
对数函数(第二课时)是2006人教版高一数学(上册)第二章第八节第二课时的内容,本小节涉及对数函数相关知识,分三个课时,这里是第二课时复习巩固对数函数图像及性质,并用此解决三类对数比大小问题,是对已学内容(指数函数、指数比大小、对数函数)的延续和发展,同时也体现了数学的实用性,为后续学习起到奠定知识基础、渗透方法的作用,因此本节内容起到了一种承上启下的作用.
根据教学大纲的要求以及本节课的地位与作用,结合高一学生的认知特点确定教学目标如下:
学习目标:
2、运用对数函数的性质比较两个数的大小。
能力目标:
1、培养学生运用图形解决问题的意识即数形结合能力。
2、学生运用已学知识,已有经验解决新问题的能力。
3、探索出方法,有条理阐述自己观点的能力。
德育目标:
培养学生勤于思考、独立思考、合作交流等良好的个性品质。
教学中将在以下2个环节中突出教学重点:
1、利用学生预习后的心得交流,资源共享,互补不足。
2、通过适当的练习,加强对解题方法的掌握及原理的理解。
教学中会在以下3个方面突破教学难点:
1、教师调整角色,让学生成为学习的主人,教师在其中起引导作用即可。
2、小组合作探索新问题时,注重生生合作、师生互动,适时用语言鼓励学生,增强学生参与讨论的自信。
3、本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。
长处:高一学生经过几年的数学学习,已具备一定的数学素养,对于已学知识或用过的数学思想、方法有一定的应用能力及应用意识,对于本节课而言,从知识上说,对数函数的图像和性质刚刚学过,本节课是知识的应用,从数学能力上说,指数比大小问题的解题思想和方法在这可借鉴,另外数形结合能力、小结概括能力、特殊到一般归纳能力已具备一点。
学生可能遇到的困难:本节课从教学内容上来看,第三类对数比大小是课本以外补充的内容,没有预习心得,让学生在课堂中快速通过合作探究来完成解题思路的构建,有一定的挑战性,从学生能力上来看,探索出方法,有条理阐述自己观点的能力还需加强锻炼,知识之间的联系认识上还显不足。
新课程强调教师要调整自己的角色,改变传统的教育方式,在教育方式上,以学生为中心,让学生成为学习的主人,教师在其中起引导作用即可。基于此,本节课遵循此原则重点采用问题探究和启发引导式的教学方法。从预习交流心得出发,到探索新问题,再到题后的回顾总结,一切以学生为中心,处处体现学生的主体地位,让学生多说、多分析、多思考、多总结,引导学生运用自己的语言阐述观点,加强理解,在生生合作,师生互动中解决问题,为提高学生分析问题、解决问题能力打下基础。本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。
1、课件展示本节课学习目标。
设计意图:明确任务,激发兴趣。
2、温故知新(已填表形式复习对数函数的图像和性质)。
设计意图:复习已学知识和方法,为学生形成知识间的联系和框架建立平台,并为下一步的应用打下基础。
3、预习后心得交流。
1)同底对数比大小。
2)既不同底数,也不同真数的对数比大小。
设计意图:通过学生的预习,自己总结方法及此方法适用的题型,有条理的阐述自己的学习心得,老师只需起引导作用,引导学生从题目表面上升到题目的实质,从而找到解决问题的有效方法。
4、合作探究——同真异底型的对数比大小。
以例3为例,学生分组合作探究解题方法,预计两种:一是利用换底公式将此类型转化为同底异真型,利用之前总结的方法解决此问题。二是利用具体对数的大小关系探究出不同底对数函数在同一直角坐标系中的图像,以此来解决此类型比大小问题。
设计意图:这一部分是本节课的难点,探究中充分发挥学生的主动性,培养主动学习的意识,同时也锻炼学生各方面能力的很好机会,为以后的探究学习积累经验和方法,充分体现“授之以鱼,不如授之以渔”的教学理念。另外数学问题的解决仅仅只是一半,更重要的是解题之后的回顾,即反思,如果没有了反思,他们就错过了解题的一次重要而有效益的方面。因此,本题解决后,让学生反思明白,要想利用性质解决问题,关键要做到“脑中有图”,以“形”促“数”。
5、小结。
6、思考题。
以2009高考题为例,让学生学以致用,增强数学学习兴趣。
7、作业。
包括两个方面:
1、书写作业。
2、下节课前的预习作业。
通过本节课的教学实例来看,这种通过课本内容预习,而后课堂交流学习成果的方法效果不错,既能很好的完成教学任务,又能充分发挥学生学习的主动性。在自主探究时,学生分组讨论过程中,我参与小组讨论,对有能力的小组,在探究出一种方法后,可鼓励完成更多的方法探究,对于能力较弱的小组,可给予适当的提示,使学生都能动起来,课堂都有所收获,增强学生自信。另外,对于学生的总结回答,可能会比较慢,我一定会耐心听,及时鼓励,给予学生微笑和语言的鼓励,效果很好。在小结环节中,对于高一学生自己小结的方法,是我一直的教学尝试,由于只训练了半学期,学生只能达到小结知识的程度,在以后的训练中还会加入数学思想、数学方法的小结内容,使这些数学名词让学生不再觉得抽象,而是变成具体的,可操作的、具体的解题工具。
二次函数教学设计篇九
“指数函数及性质”的教学共分两个课时完成,这是第一课时。本节课主要学习了指数函数的定义,研究了指数函数的图像及相关的性质。回顾这节课,心中有很多感想,也有下面一些思考:
1.这节课是在学生系统的学习了指数概念、函数概念,基本掌握了函数性质的基础上进行学习的,具有初步的函数知识,但是对于研究具体的初等函数的性质的基本方法和步骤还比较陌生,对于指数函数要怎么样进行较为系统的研究对学生来说是有困难的,因此这节课的每一个环节以我引导,以学生的自主探究为主来完成是符合学情的。
2.设计“指数函数的图象及性质”,“y=ax的图象和y=(1/a)x的图象间的关系”.“a的大小对函数图象的影响”三个问题,让学生通过几何画板软件动手画图操作、自主探究、主动思考来达到对知识的发现和接受,改变过去机械接受和死记结论的状况,符合新课改的理念,同时也完成了这节课的主要教学任务。
3.在对底数a的范围的思考及三个探究性问题后都设置了练习,能及时反馈学生对所探求到的知识的掌握程度,便于及时调整课堂教学行为。从课后看学生对这些知识的掌握应该是比较好的。
4.这节课的学习及对函数研究方法和步骤的总结对后续学习新的函数起到了重要的示范作用。
在整个的教学过程中,始终体现以学生为本的教育理念。在学生已有的认知基础上进行设问和引导,关注学生的认知过程,强调学生的品德、思维和心理等方面的发展。重视讨论、交流和合作,重视探究问题的习惯的培养和养成。同时,考虑不同学生的个性差异和发展层次,使不同的学生都有发展,体现因材施教的原则。
在教学的过程中,考虑到学生的实际,有意地设计了一些铺垫和引导,既巩固旧有知识,又为新知识提供了附着点,充分体现学生的主体地位。
三.存在的问题。
1.没有充分调动学生的积极性,课堂气氛显得沉闷。
2.尽量放手让学生自己去解决问题,教师自己讲得偏多,学生的主体作用体现得不够。
3.指数函数概念部分的教学时间稍多,后面教学过程稍显仓促,学生自主探究的时间不够,因此违背了教学设计的初衷。当然我会通过对学生作业的批改获得更全面的对学生知识掌握的评价和课堂效果的反思,并在后续的时间里修订课堂设计方案,达到预期的教学效果,实现学生的目标掌握和能力发展。
二次函数教学设计篇十
时,函数值变化情况的区分.(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.二.学情分析:学生在学习了函数概念和函数性质基础上对函数有了初步认识,但我所教班时平行班,学生学习兴趣不浓,积极性高,针对这种情况,教学时要总层层设问降低难度,用几何画板直观演示提高学生学习积极性,时学生主动学习。
三.教学目标:
知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。
过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。
情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
投影仪。
六.教学方法。
启发讨论研究式。
七.教学过程。
(一)创设情景。
学生回答:y与x之间的关系式,可以表示为y=2x。
问题2:一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%.求出这种物质的剩留量随时间(单位:年)变化的函数关系.设最初的质量为1,时间变量用x表示,剩留量用y表示。
学生回答:y与x之间的关系式,可以表示为y=0.84x。
(二)导入新课。
引导学生观察,两个函数中,底数是常数,指数是自变量。设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。函数y=2x、y=0.84x分别以01的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。
一般地,函数是r。
叫做指数函数,其中x是自变量,函数的定义域的含义:
”如果不这样规定会出现什么情况?问题:指数函数定义中,为什么规定“设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢?这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。
对于底数的分类,可将问题分解为:
(1)若a。
则在实数范围内相应的函数值不存在)都无意义)。
在这里要注意生生之间、师生之间的对话。
设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是r;并为学习对数函数,认识指数与对数函数关系打基础。
教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。
1:指出下列函数那些是指数函数:
在同一平面直角坐标系内画出下列指数函数的图象。
画函数图象的步骤:列表、描点、连线思考如何列表取值?教师与学生共同作出。
图像。
时函数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。为此,必须利用图像,数形结合。教师亲自板演,学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图像,目的是使学生更加信服,加深印象,并为以后画图解题,采用数形结合思想方法打下基础。
利用几何画板演示函数特征。由特殊到一般,得出指数函数。
的图象,观察分析图像的共同。
的图象特征,进一步得出图象性质:
教师组织学生结合图像讨论指数函数的性质。
设计意图:这是本节课的重点和难点,要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的运用。
特别地,函数值的分布情况如下:
设计意图:再次强调指数函数的单调性与底数a的关系,并具体分析了函数值的分布情况,深刻理解指数函数值域情况。3.简单应用(板书)。
1.利用指数函数单调性比大小.(板书)。
一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题.首先我们来看下面的问题.
例1.比较下列各组数的大小。
(1)与;(2)与;。
(3)与1.(板书)。
首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同.再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想指数函数,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小.然后以第(1)题为例,给出解答过程.
二次函数教学设计篇十一
1、教材的地位和作用: 函数是高中数学学习的重点和难点,函数的贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,同时也为今后研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。
2、教学的重点和难点:根据这一节课的内容特点以及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及其运用,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。
基于对教材的理解和分析,我制定了以下的教学目标
1、知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用。
2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论,增强学生识图用图的能力。
3、情感目标(可持续性目标): 通过学习,使学生学会认识事物的特殊性与一般性之间的关系,培养学生勇于提问,善于探索的思维品质。
1、教学策略:首先从实际问题出发,激发学生的学习兴趣。第二步,学生归纳指数的图像和性质。第三步,典型例题分析,加深学生对指数函数的理解。
2、教学: 贯彻引导发现式教学原则,在教学中既注重知识的直观素材和背景材料,又要激活相关知识和引导学生思考、探究、创设有趣的问题。
3、教法分析:根据教学内容和学生的状况, 本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。
二次函数教学设计篇十二
指数函数的教学共分两个课时完成。第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。指数函数第一课时是在学习指数概念的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。
1.知识目标:掌握指数函数的概念,图像和性质
2.能力目标:通过数形结合,利用图像来认识,掌握函数的性质,增强学生分析问题,解决问题的能力。
3.德育目标:对学生进行辩证唯物主义思想的教育,使学生学会认识事物的特殊性与一般性之间的关系,培养学生善于探索的思维品质。
(三
1、重点:指数函数的定义、性质和图象
2、难点:指数函数的定义理解,指数函数的图象特征及指数函数的性质。
3、关键:能正确描绘指数函数的图象
(三)
在讲解指数函数的定义前,复习有关指数知识及简单运算,然后由实例引入指数函数的概念,因为手工绘图复杂且不够精确,并且是本节课的教学关键,教学中,我借助电脑手段,通过描点作图,观察图像,引导学生说出图像特征及变化规律,并从而得出指数函数的性质,提高学生的形数结合的能力。
一.
1,学情分析:大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。
2, 学法指导:针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。
二次函数教学设计篇十三
“指数函数”的教学共分两个课时完成。第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。“指数函数”第一课时是在学习指数概念的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。
在讲解指数函数的定义前,复习有关指数知识及简单运算,然后由实例引入指数函数的概念,因为手工绘图复杂且不够精确,并且是本节课的教学关键,教学中,我借助电脑手段,通过描点作图,观察图像,引导学生说出图像特征及变化规律,并从而得出指数函数的性质,提高学生的形数结合的能力。
大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。
为了调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在指数函数图像的画法上,我借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。总之,本堂课充分体现了“教师为主导,学生为主体”的教学原则。